JP4147701B2 - Manufacturing method of bolt parts with excellent delayed fracture resistance and beach weather resistance - Google Patents

Manufacturing method of bolt parts with excellent delayed fracture resistance and beach weather resistance Download PDF

Info

Publication number
JP4147701B2
JP4147701B2 JP28850399A JP28850399A JP4147701B2 JP 4147701 B2 JP4147701 B2 JP 4147701B2 JP 28850399 A JP28850399 A JP 28850399A JP 28850399 A JP28850399 A JP 28850399A JP 4147701 B2 JP4147701 B2 JP 4147701B2
Authority
JP
Japan
Prior art keywords
delayed fracture
less
weather resistance
resistance
beach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28850399A
Other languages
Japanese (ja)
Other versions
JP2001107139A (en
Inventor
義男 山崎
和彦 塩谷
俊幸 星野
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP28850399A priority Critical patent/JP4147701B2/en
Publication of JP2001107139A publication Critical patent/JP2001107139A/en
Application granted granted Critical
Publication of JP4147701B2 publication Critical patent/JP4147701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、800 〜1100MPa 級のボルト部品に係り、海浜近くの厳しい腐食環境においても優れた海浜耐候性と耐遅れ破壊特性を兼備したボルト部品に関する。なお、本発明におけるボルト部品とは、ボルト、ナットおよび座金を含むものとする。また、本発明でいう海浜耐候性とは、海浜地帯における大気暴露に対する耐食性(耐候性)をいうものとする。
【0002】
【従来の技術】
従来から、飛来海塩粒子が多い海浜地帯などにおける構造部材の防食としては、防錆塗料等による塗装が一般的であった。しかし、塗料の劣化、剥離等の問題から塗り替えが必ず必要とされ、再塗装費等保守管理費が高価となるという問題があり、海浜地帯などに建設される建物、橋梁等の鋼構造物において無塗装使用が可能な鋼材が要望されていた。
【0003】
無塗装使用が可能な鋼材として、耐候性鋼がある。耐候性鋼材は、使用後数年〜10年で鋼材表面に耐食性に優れた緻密な安定さびが形成され、この安定さびがその後の鋼材の腐食の進行を防ぎ、耐候性に優れた鋼材とされている。しかし、従来の耐候性鋼材では、比較的腐食環境の穏やかな田園地帯ではこのような緻密な安定さびの形成が認められるが、飛来海塩粒子が多い海浜地帯では、安定さびの形成が見られず、腐食が進行し十分な耐候性を示さなくなる。このようなことから、耐候性鋼材の無塗装使用は田園地帯では認められても、飛来海塩粒子が多い海浜地帯では認められず、耐候性鋼材といえども塗装等の防食処理を施す必要があった。
【0004】
ところが最近、飛来塩分の多い海浜地帯等の腐食の激しい環境下においても、十分な耐候性を有し、海浜地帯でも無塗装使用が可能な鋼材の開発が指向されている。例えば、特開平11-172370 号公報には、重量%で、C:0.03〜0.15%、Cu:0.30〜1.00%、Ni:1.0 〜5.5 %を含有し、Cr:0.1 %以下に低減し、あるいはさらにTi:0.005 〜0.02%をTi/N:2.0 〜3.5 の範囲で含有する高耐候性鋼が提案されている。特開平11−172370号公報に記載された鋼ではNi、Cuの適正量添加により海岸耐候性が向上し、さらに飛来塩分量に応じてNi含有量を調整することにより経済性、溶接性ともに好ましくなるとされる。しかしながら、特開平11-172370 号公報に記載された鋼は、鋼板としての使用を前提としており、高強度を必要とし、しかも常に応力が負荷されるボルト等への使途については何ら配慮がなされていない。
【0005】
建物、橋梁等の鋼構造物や自動車、建設機械等には、鋼材として鋼板以外にボルト、ナット等が使用され、鋼板同様あるいはそれ以上の特性を具備することが要求される。とくに、ボルトは、高強度を要求されしかも常に応力の負荷があり、遅れ破壊の発生が懸念される。
高強度鋼材では、遅れ破壊がしばしば大きな問題となっており、例えば、引張強さが1300MPa を超える強度を有する高強度ボルトでは、とくに遅れ破壊の危険性が増大すると言われ、現在使用されているボルトの強度は1100MPa 級が上限である。
【0006】
大部分の鋼材の遅れ破壊は水素脆化を主因とすると言われ、とくに腐食環境下で使用される高強度鋼材では、遅れ破壊の発生の危険性が大きくなる。例えば、従来ではあまり問題とならなかった引張強さ1000Mpa 級のボルトでも腐食が激しい環境においては、遅れ破壊が発生する可能性がある。このようなことから、高強度ボルトの耐遅れ破壊性の改善が強く要望されている。
【0007】
耐遅れ破壊性を改善した鋼材の例として、例えば、特開平6-271975号公報には、重量%で、C:0.01〜0.3 %、Si:0.01〜2.5 %、Mn:0.01〜3.0 %およびAl:0.005 〜0.1 %含有し、あるいはさらに、Cu、Ni、Cr、Mo、Nb、V、Ti、Bのうちの1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、組織が焼入ままのマルテンサイトまたはベイナイトもしくはそれらの混合組織とした高強度鋼が提案されている。特開平6-271975号公報に記載された技術では、1〜30vol %の残留オーステナイトを含有するラス状組織とすることが耐水素脆化特性を高めるのに好ましいとしている。
【0008】
また、特開平10-219352 号公報には、重量%で、C:0.1 〜0.35%で、Si:0.1 %以下、Mn:0.35%以下と低減し、Ni:3 〜12%と高め、あるいはさらにTi:0.015 〜0.055 %とB:0.0005〜0.003 %含有する鋼材を、800 〜950 ℃で20〜80%の熱間加工後、直ちに15℃/s以上の冷却速度で急冷する耐遅れ破壊性に優れた高強度鋼材の製造方法が提案されている。特開平10-219352 号公報に記載された技術では、Si、Mn、あるいはP、Sを低減し、あるいはさらにTi、Bを添加して粒界偏析を低減して粒界強度を向上させ、さらにNiを多量添加して、腐食環境下での水素侵入を抑制し、さらに残留オーステナイト量を増加し水素を有効にトラップすることにより、1400Mpa 級以上の強度がありながら耐遅れ破壊性が向上するとしている。
【0009】
【発明が解決しようとする課題】
しかしながら、特開平6-271975号公報、特開平10-219352 号公報に記載された技術では、耐候性、とくに海浜地帯等の飛来塩分の多い環境下での耐候性、すなわち海浜耐候性についての十分な検討はなされていない。特開平6-271975号公報、特開平10-219352 号公報に記載された鋼材では耐遅れ破壊性の改善は認められるが、海浜耐候性が十分とはいえず、耐遅れ破壊性と海浜耐候性の両立という問題が残されていた。
【0010】
本発明は、上記した従来技術の問題を有利に解決し、ボルト部品の耐候性と耐遅れ破壊性を向上させて、飛来塩分の多い海浜地帯でも十分な海浜耐候性と耐遅れ破壊特性を兼備した800 〜1100MPa 級のボルト部品を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、海浜耐候性と耐遅れ破壊性に及ぼす化学成分、組織の影響について鋭意研究した。その結果、Ni、Cr、固溶B含有量を適正範囲とすることにより、飛来塩分量の多い海浜地帯でも安定さびを形成することができ、海浜耐候性の改善が得られるという知見を得た。
【0012】
この安定さびの形成により、同時に鋼材への水素の侵入を抑制するとともに、粒界の組織強化により、耐遅れ破壊性の改善にも寄与するという知見を得た。さらに、焼入れ時の組織を、残留オーステナイトが0または1%未満(体積率)の、マルテンサイト組織とし、さらに焼戻処理を調整して均質な焼戻しマルテンサイトとすることにより、さらに侵入する水素による遅れ破壊を防止でき耐遅れ破壊性が改善されるという知見を得た。
【0013】
本発明は、上記した知見に基づいてさらに検討して完成されたものである。
すなわち、質量%で、C:0.15〜0.40%、Si:0.15〜2.0 %、Mn:0.2 〜2.0 %、P:0.02%以下、S:0.015 %以下、Al:0.01〜0.050 %、Cu:0.2 〜0.5 %、Ni:2.3 〜5.0 %、Cr:0.15%以下、Ti:0.01〜0.05%、B:0.0005〜0.0040%、N:0.0060%以下を含み、残部Feおよび不可避的不純物からなる鋼組成を有する鋼素材を熱間圧延によりボルト部品用素材としたのち、該ボルト部品用素材に成形加工を施しボルト部品とし、ついで該ボルト部品に、Ac3 点以上の温度からの焼入れ処理を施し、残留オーステナイト量が体積率で0〜1%未満含む焼入組織とし、引き続いてAc1 点以下の温度での焼戻し処理を施し、焼戻しマルテンサイト組織とすることを特徴とする耐遅れ破壊性および海浜耐候性に優れるボルト部品の製造方法であり、前記組成に加えてさらに、質量%で、Mo:0.05〜1.0 %、Nb:0.01〜0.3 %、V:0.02〜0.5 %の1種または2種以上を含むことが好ましい。
【0014】
【発明の実施の形態】
本発明により製造されるボルト部品は、引張強さ800 〜1100MPa を有するボルト部品であり、優れた海浜耐候性と優れた耐遅れ破壊性を有する。
まず、鋼素材の化学成分の限定理由について説明する。
C:0.15〜0.40質量%(以下、単に%と記す)
Cは、強化元素として欠くことのできない元素であり、800MPa以上の引張強さを確保するためには0.15%以上の含有を必要とする。一方、0.40%を超えて含有するとMs点が低下して、かえって焼入性が低下し残留オーステナイトが増加し、強度の低下や海浜耐候性の劣化、さらには経時変化を起こすという問題が生じる。このため、Cは0.15〜0.40%に限定した。なお、好ましくは0.30%以下である。
【0015】
Si:0.15〜2.0 %
Siは、脱酸作用を有し、さらに焼もどし軟化抵抗を増す作用を有する元素である。これらの効果を発揮するためには、少なくとも0.15%の含有を必要とする。一方、2.0 %を超えて過剰に含有すると、海浜耐候性や耐遅れ破壊性を劣化させる。このため、Siは0.15〜2.0 %に限定した。なお、好ましくは、1.5 %以下である。
【0016】
Mn:0.2 〜2.0 %
Mnは、Sと結合して固溶Sを硫化物として固定して、Sによる熱間脆化を抑制する効果を有する。このような効果を得るためには、0.2 %以上の含有が必要である。また、Mnは単独には焼入れ性を向上させる元素であるが、本発明の特徴である多量のNi含有に加えて、多量のMnの含有は、Ms点を低下させ、残留オーステナイトの増加を招き、海浜耐候性の劣化や経時変化を起こすという問題を生じる。このため、Mnは0.2 〜2.0 %の範囲に限定した。なお、好ましくは、1.0 %以下である。
【0017】
P:0.02%以下
Pは、海浜耐候性を向上させる元素であり、適量の含有は海浜耐候性に有利となる。一方、Pは、海浜地帯のような強腐食環境下では遅れ破壊特性を著しく劣化させる。このため、本発明では、Pを0.02%以下に限定した。なお、好ましくは0.015 %以下である。
【0018】
S:0.015 %以下
Sは、著しく冷間鍛造性を劣化させる元素であり、また海浜耐候性および耐遅れ破壊性にも悪影響を及ぼす。このため、本発明では、これらの影響を抑制するためには、0.015 %以下に限定した。なお、好ましくは0.010 %以下である。
Al:0.010 〜0.050 %
Alは、脱酸のために0.010 %以上添加する必要があるが、0.050 %を超えるとアルミナ系介在物が増え、鍛造性を損なう。このため、Alは0.010 〜0.050 %に限定した。
【0019】
Cu:0.2 〜0.5 %
Cuは、海浜耐候性を向上させるとともに、耐遅れ破壊性をも向上させる元素である。その機構については、現在のところ詳細には不明なことが多いが、Cuが焼戻しマルテンサイト母相中に微細に整合析出することで、有効な水素トラップサイトとして機能しているものと推察される。このような効果は0.2 %以上の含有で認められるが、一方、0.5 %を超える含有はその効果が飽和し、含有量に見合う効果が期待できない。このため、Cuは0.2 〜0.5 %に限定した。
【0020】
Ni:2.3 〜5.0 %
Niは、海浜耐候性を顕著に向上させる最も有効な元素である。このような効果は2.3 %以上の含有で認められ、とくに2.5 %以上の含有で顕著となる。一方、5.0 %を超えての含有は、含有量に見合う顕著な向上効果が認められないため、経済的に不利となる。このため、Niは2.3 〜5.0 %の範囲に限定した。なお、Niの多量添加は、焼入時に残留オーステナイトを増加させ、耐遅れ破壊性を劣化させる可能性がある。このため、他の焼入性向上元素の含有量との関連もあるが、残留オーステナイトを形成させない範囲としてNiは3.5 %以下とするが好ましい。
【0021】
Cr:0.15%以下
Crは、飛来塩分の少ない田園地帯での耐候性向上には有効な成分であるが、飛来塩分の多い海浜地帯での耐候性、すなわち海浜耐候性に対しては、数%程度の含有で逆に腐食を促進し、悪影響を及ぼす。そのような海浜耐候性への悪影響を抑制するために、本発明ではCrを0.15%以下に制限する。なお、好ましくは0.10%以下である。
【0022】
Ti:0.01〜0.05%
Tiは、Bより強い窒化物形成元素であり、本発明ではBとともに含有され、Bの効果が抑制されないように0.01%以上含有させる。とくに、Bが鋼中NによりBNとして析出固定されその効果が抑制されないように、TiはN含有量に応じ(N%×(48/14 ))以上含有するのが好ましい。一方、0.05%を超えて含有すると、粗大な窒化物を形成しやすくなり、靭性および耐遅れ破壊性が劣化する。このため、Tiは0.01〜0.05%の範囲に限定する。
【0023】
B:0.0005〜0.0040%
Bは、本発明では重要な元素であり、鋼中に固溶して存在する場合は、粒界への脆化元素の偏析を抑制して粒界を強化し、耐遅れ破壊性を向上させる。さらにBは水素侵入の抑制にも寄与し、また、理由は明らかではないが、表面近傍で安定さび相の形成に有利に作用して海浜耐候性の向上に寄与しているものと推察される。このような効果は、0.0005%以上の含有で認められるが、一方、0.0040%を超えて過剰に含有してもその効果は飽和する。このため、Bは0.0005〜0.0040%の範囲に限定した。なお、好ましくは0.0010%以上である。
【0024】
N:0.0060%以下
Nは、鋼中に固溶して存在すると靭性を劣化させる。このため、本発明ではNをTi窒化物として析出固定する。Nが0.0060%を超えて含有すると析出固定に必要なTi量が増えるばかりか、粗大なTi窒化物を形成して靭性および耐遅れ破壊特性を劣化させる。このため、Nは0.0060%以下に限定した。なお、好ましくは0.0040%以下である。
【0025】
さらに、高強度化のために、本発明では、Mo:0.05〜1.0 %、Nb:0.01〜0.3 %、V:0.02〜0.5 %の1種または2種以上を含有することができる。
Moは、固溶してあるいは炭化物を形成して常温および高温での強度を上昇する効果があり、本発明では必要に応じ含有できる。このような強度を上昇させる効果は0.05%以上の含有で顕著となる。一方、1.0 %を超えて含有しても、その効果が飽和し、含有量に見合う効果が期待できないため経済的に不利となる。このため、Moは0.05〜1.0 %の範囲とするのが好ましい。
【0026】
Vは、炭窒化物を形成して組織の微細化と析出強化により強度を上昇する効果を有し、必要に応じ含有できる。この効果は、0.02%未満の含有では不明瞭であり、一方、0.5 %を超えて含有しても効果が飽和するうえ、連鋳時に鋳片割れ等の問題を引き起こす。このため、Vは0.02〜0.5 %の範囲とするのが好ましい。 Nbは、Vと同様に炭窒化物を形成して組織の微細化と析出強化により強度を上昇する効果を有し、必要に応じ含有できる。このような強度を上昇させる効果は0.01%未満の含有では不明瞭であり、また、0.3 %を超えて含有しても効果が飽和する。このため、Vは0.01〜0.3 %の範囲とするのが好ましい。
【0027】
上記した化学成分以外の残部はFeおよび不可避的不純物である。
まず、上記した組成の溶鋼を、転炉、電気炉等通常公知の溶製方法で溶製し、造塊法あるいは連続鋳造法等の通常公知の鋳造方法で凝固させ、鋼素材とするのが好ましい。なお、溶製にあたっては、取鍋精錬等の2次精錬を行ってよいのは言うまでもない。また、中心偏析の低減のために、鋳造時の鍛圧や均熱炉による保持を図ってもよい。
【0028】
ついで、これら鋼素材は、必要に応じ加熱され、板圧延、線棒圧延等の熱間圧延によりボルト部品用素材とされるのが好ましい。ボルト部品用素材とするための熱間圧延方法、熱間圧延条件についてはとくに限定されないが、熱間圧延後の冷却時に、その後のボルト部品成形のための鍛造や機械加工等に有利なように組織制御を行うのが好ましい。組織制御方法としては、制御圧延、制御冷却等が好ましく、これによりボルト部品用素材の軟質化が図れる。
【0029】
ついで、これらボルト部品用素材は、成形加工を施されて、ボルト部品とされる。成形加工は、とくに限定されないが、所望の寸法形状に応じ冷間鍛造、熱間鍛造、機械加工などから選択して用いるのが好ましい。なお、成形加工前に、工具寿命の改善を目的に、ボルト部品用素材に軟化焼鈍や球状化焼鈍を施す工程を設けてもよい。また、最終ボルト部品の製品寸法精度を得るために伸線加工などの軽加工を施してもよいことはいうまでもなく、またこれらの加工を施してもなんら本発明の効果には影響しない。
【0030】
本発明における特徴は、成形加工後のボルト部品の調質方法にある。
成形されたボルト部品は、まずオーステナイト単相領域であるAc3 変態点以上加熱し、焼入れる焼入れ処理を施される。
本発明では、焼入れ時の組織を残留オーステナイトが1%未満(0%を含む)のマルテンサイト組織とする。マルテンサイト以外の、たとえばベイナイト、パーライト等の組織を含むと、強度が低下し、所望の引張強さを得ることが困難となる。
【0031】
また、焼入れ時に残留オーステナイトが1%を超えて含有されると、残留オーステナイトが焼戻し時に分解されて形成される組織がボルト部品内に不均一を生じ、その理由は詳細には不明であるが、とくに海浜地帯等の飛来塩分量の多い環境下では耐候性(海浜耐候性)および耐遅れ破壊性を低下させる。
このため、本発明では焼入れ加熱温度をオーステナイト単相領域であるAc3 変態点以上とする必要がある。
【0032】
焼入れ加熱温度がAc3 変態点未満では、組織をほぼ完全なマルテンサイト単相組織とすることができない。このようなほぼ完全なマルテンサイト単相組織を得るためには、焼入れ温度をAc3 変態点以上、好ましくは1000℃以下の温度域とするのが好ましい。
なお、焼入組織における残留オーステナイト量は組成、焼入油温度、焼入前のオーステナイト粒径、焼入冷却速度などにより、複雑に変化するが、焼入性向上元素であるC、Mn、Ni等が多く含有されるほど、また焼入前のオーステナイト粒径が大きいほど、また焼入油温度が高いほど多い傾向となる。焼入時に残留オーステナイトが1 vol%以上含まれる場合は、サブゼロ処理などにより焼戻し処理前に残留オーステナイト量を1 vol%未満としておいてもよい。
【0033】
さらに、ボルト部品は、焼入のままでは十分な靭性が得られず、焼戻し処理を施される。焼戻し処理は、Ac1変態点以下の温度域で行うのが好ましい。焼戻し温度がAc1 変態点を超えると、オーステナイトが形成されるようになり、強度的にも不利になるばかりか、耐候性や耐遅れ破壊性が劣化する。なお、焼戻し処理は、Ac1変態点以下、 350℃以上とするのが耐遅れ破壊性の観点からより好ましい。
【0034】
【実施例】
表1に示す組成を有する溶鋼を転炉で溶製し、連続鋳造法により 300× 400mmの鋼素材とした。その後、これら鋼素材を、熱間圧延により、一旦150mm 角のビレットとし、さらに、熱間圧延(線材圧延)して22mmφの丸棒とし、ボルト部品用素材とした。また、一部の鋼素材は、熱間圧延にて6mmの熱延板とした。
【0035】
これらボルト部品用素材に適当な球状化処理を施し、冷間鍛造、転造からなる成形加工により、M22のボルトとした。
これら成形したボルトについて、表2に示す条件の焼入れ処理および焼戻し処理を施し、組織試験、引張試験、耐候性試験、耐遅れ破壊試験を実施した。なお、焼入れ処理のままでも、組織試験を実施した。組織試験、引張試験、耐候性試験、耐遅れ破壊試験の試験方法について下記に示す。
(1)組織試験
焼入れのままおよび焼入れ焼戻し後の各ボルトから試験片を採取し組織調査を行った。また、焼入れのまま試験片についてX線回折によりオーステナイト格子定数のピークを定量化することにより残留オーステナイト量を測定した。
(2)引張試験
引張試験は、ボルトよりJIS 4 号試験片を採取し、室温で引張速度:5mm/minで実施し、降伏強さYS、引張強さTS、伸びEl、絞りηを求めた。
(3)耐候性試験
ボルトと同一の熱履歴(焼入れ焼戻し処理)を施した熱延板に、表面研削−ショットを施したのち、125 ×60×5mmの試験片を採取し、海水散布促進を200 日間実施し、試験後の試験片の腐食減厚を測定し、耐候性を評価した。なお、海水散布促進試験の条件はつぎのとおりである。
【0036】
設置場所:岸壁
海水散布:2回/週
腐食減厚が0.05mm未満を◎、0.05mm以上0.2 mm未満を△、0.2 mm以上を×として耐候性(海浜耐候性)を評価した。
(4)耐遅れ破壊試験
図1に示す試験片を用いて実施した。試験片は、直径6mmφで、ノッチ先端に0.05mmの丸味を付与した深さ1.5 mm、開き角度60°の環状切り欠きが設けられた試験片を使用した。試験雰囲気は0.1N-HCl水溶液中とし、付加応力は、同一形状の試験片を用い予め測定した切り欠き引張り強さ(σN )の0.8 倍とし、破断するまでの時間を求めた。
【0037】
これら試験の結果を表2に示す。
【0038】
【表1】

Figure 0004147701
【0039】
【表2】
Figure 0004147701
【0040】
表2から、本発明例は、いずれも 800MPa 以上の引張強さを有し、従来例に比べ、耐候性、および耐遅れ破壊性がともに優れている。
これに対し、本発明の範囲を外れる比較例は、引張強さが所望の値より低いか、耐候性、耐遅れ破壊性のいずれかあるいは両方が劣っている。
【0041】
【発明の効果】
以上のように、本発明によれば、飛来塩分量の多い海浜地帯でも十分な海浜耐候性を有しさらに耐遅れ破壊性にも優れたボルト部品を安定して製造することが可能となり、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】実施例で用いた促進遅れ破壊試験片の形状を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bolt component of 800 to 1100 MPa class, and relates to a bolt component that has excellent beach weather resistance and delayed fracture resistance even in a severe corrosive environment near the beach. The bolt component in the present invention includes a bolt, a nut, and a washer. Moreover, the beach weather resistance as used in the field of this invention shall mean the corrosion resistance (weather resistance) with respect to the atmospheric exposure in a beach area.
[0002]
[Prior art]
Conventionally, coating with a rust preventive paint or the like has been common as an anticorrosion of a structural member in a beach area where there are many incoming sea salt particles. However, there is a problem that repainting is always necessary due to problems such as paint deterioration and peeling, and there is a problem that maintenance and management costs such as repainting costs become expensive. In steel structures such as buildings and bridges constructed in the beach area, etc. Steel materials that can be used without painting have been demanded.
[0003]
As a steel material that can be used without coating, there is a weather-resistant steel. A few years to 10 years after use, a weather-resistant steel material forms a dense stable rust with excellent corrosion resistance on the surface of the steel material, and this stable rust prevents the subsequent corrosion of the steel material, making it a steel material with excellent weather resistance. ing. However, with conventional weathering steel, such dense stable rust formation is observed in rural areas where the corrosive environment is relatively mild, but stable rust formation is seen in beach areas with a lot of incoming sea salt particles. Therefore, corrosion progresses and sufficient weather resistance is not exhibited. For this reason, unpainted use of weathering steel is permitted in rural areas, but not in coastal areas with a lot of incoming sea salt particles. there were.
[0004]
Recently, however, the development of steel materials that have sufficient weather resistance and can be used uncoated even in beach areas, such as beach areas with a high amount of salt, has been directed toward the development. For example, Japanese Patent Application Laid-Open No. 11-172370 discloses that, by weight, C: 0.03-0.15%, Cu: 0.30-1.00%, Ni: 1.0-5.5%, Cr: reduced to 0.1% or less, or Furthermore, a highly weather-resistant steel containing Ti: 0.005 to 0.02% in the range of Ti / N: 2.0 to 3.5 has been proposed. In the steel described in JP-A-11-172370, coastal weather resistance is improved by adding appropriate amounts of Ni and Cu, and further, by adjusting the Ni content according to the amount of incoming salt, both economy and weldability are preferable. It will be. However, the steel described in Japanese Patent Application Laid-Open No. 11-172370 is premised on the use as a steel plate, and requires no consideration for its use for bolts that require high strength and are constantly stressed. Absent.
[0005]
In steel structures such as buildings and bridges, automobiles, construction machines, etc., bolts, nuts and the like are used as steel materials in addition to steel plates, and it is required to have characteristics similar to or higher than steel plates. In particular, bolts are required to have high strength and are always stressed, and there is a concern that delayed fracture will occur.
Delayed fracture is often a major problem in high-strength steel. For example, high-strength bolts with tensile strength exceeding 1300 MPa are said to increase the risk of delayed fracture, and are currently used. The upper limit of bolt strength is 1100 MPa class.
[0006]
The delayed fracture of most steel materials is said to be caused mainly by hydrogen embrittlement, and the risk of delayed fracture increases especially in high-strength steel materials used in corrosive environments. For example, even in the case of bolts with a tensile strength of 1000 Mpa, which has not been a major problem in the past, delayed fracture may occur in an environment where corrosion is severe. For these reasons, there is a strong demand for improving delayed fracture resistance of high-strength bolts.
[0007]
Examples of steel materials with improved delayed fracture resistance include, for example, Japanese Patent Application Laid-Open No. Hei 6-271975, in weight percent, C: 0.01 to 0.3%, Si: 0.01 to 2.5%, Mn: 0.01 to 3.0%, and Al. : 0.005 to 0.1% contained, or further containing one or more of Cu, Ni, Cr, Mo, Nb, V, Ti, B, the balance consisting of iron and inevitable impurities, Has been proposed high-strength steel with martensite or bainite as quenched or mixed structure thereof. In the technique described in JP-A-6-271975, a lath-like structure containing 1 to 30% by volume of retained austenite is preferable for improving the hydrogen embrittlement resistance.
[0008]
Japanese Patent Application Laid-Open No. 10-219352 discloses that, by weight, C: 0.1 to 0.35%, Si: 0.1% or less, Mn: 0.35% or less, Ni: 3 to 12%, or higher With delayed fracture resistance, steel containing Ti: 0.015-0.055% and B: 0.0005-0.003% is hot-worked at 800-950 ° C and 20-80%, then immediately cooled at a cooling rate of 15 ° C / s or higher. A method for producing an excellent high-strength steel material has been proposed. In the technique described in Japanese Patent Laid-Open No. 10-219352, Si, Mn, or P and S are reduced, or Ti and B are further added to reduce grain boundary segregation to improve grain boundary strength. By adding a large amount of Ni to suppress hydrogen intrusion in a corrosive environment, further increasing the amount of retained austenite and effectively trapping hydrogen, the delayed fracture resistance is improved while having strength of 1400 MPa class or higher. Yes.
[0009]
[Problems to be solved by the invention]
However, the techniques described in JP-A-6-271975 and JP-A-10-219352 have sufficient weather resistance, particularly in a salty environment such as a beach area, that is, sufficient beach weather resistance. No serious consideration has been made. Although the steel materials described in JP-A-6-271975 and JP-A-10-219352 are improved in delayed fracture resistance, the beach weather resistance is not sufficient, and delayed fracture resistance and beach weather resistance are not sufficient. The problem of coexistence was left.
[0010]
The present invention advantageously solves the above-described problems of the prior art, improves the weather resistance and delayed fracture resistance of bolt parts, and has both sufficient beach weather resistance and delayed fracture resistance even in coastal salty beach areas. An object of the present invention is to provide a bolt component of 800 to 1100 MPa class.
[0011]
[Means for Solving the Problems]
In order to achieve the above-described problems, the present inventors have intensively studied the influence of chemical components and structures on beach weather resistance and delayed fracture resistance. As a result, it was found that by setting the content of Ni, Cr, and solute B within appropriate ranges, stable rust can be formed even in beach areas with a large amount of incoming salt, and beach weather resistance can be improved. .
[0012]
The formation of this stable rust at the same time suppresses the intrusion of hydrogen into the steel, and the strengthening of grain boundaries contributes to the improvement of delayed fracture resistance. Furthermore, the structure at the time of quenching is a martensite structure in which the retained austenite is 0 or less than 1% (volume ratio), and the tempering treatment is adjusted to obtain a homogeneous tempered martensite, thereby further penetrating hydrogen. It was found that delayed fracture can be prevented and delayed fracture resistance is improved.
[0013]
The present invention has been completed by further examination based on the above-described findings.
That is, in mass%, C: 0.15-0.40%, Si: 0.15-2.0%, Mn: 0.2-2.0%, P: 0.02% or less, S: 0.015% or less, Al: 0.01-0.050%, Cu: 0.2- 0.5%, Ni: 2.3-5.0%, Cr: 0.15% or less, Ti: 0.01-0.05%, B: 0.0005-0.0040%, N: 0.0060% or less, and having a steel composition composed of the balance Fe and inevitable impurities After the steel material is made into a bolt part material by hot rolling, the bolt part material is formed into a bolt part, and then the bolt part is quenched from a temperature of 3 or more points of accumulating residual austenite. Delayed fracture resistance and beach weather resistance, characterized by a hardened structure containing 0 to less than 1% by volume, followed by tempering at a temperature of Ac 1 point or less to form a tempered martensite structure. In addition to the above composition, in addition to the above composition, Mo: 0.05~1.0%, Nb: 0.01~0.3%, V: preferably comprises one or more 0.02 to 0.5%.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The bolt component manufactured according to the present invention is a bolt component having a tensile strength of 800 to 1100 MPa, and has excellent beach weather resistance and excellent delayed fracture resistance.
First, the reason for limiting the chemical composition of the steel material will be described.
C: 0.15-0.40 mass% (hereinafter, simply referred to as%)
C is an element indispensable as a reinforcing element, and needs to be contained in an amount of 0.15% or more in order to ensure a tensile strength of 800 MPa or more. On the other hand, if the content exceeds 0.40%, the Ms point is lowered, the hardenability is lowered, the retained austenite is increased, the strength is lowered, the beach weather resistance is deteriorated, and further, there is a problem of causing a change with time. For this reason, C was limited to 0.15-0.40%. In addition, Preferably it is 0.30% or less.
[0015]
Si: 0.15-2.0%
Si is an element having a deoxidizing action and an action of increasing tempering and softening resistance. In order to exert these effects, the content of at least 0.15% is required. On the other hand, if the content exceeds 2.0%, the beach weather resistance and delayed fracture resistance deteriorate. For this reason, Si was limited to 0.15-2.0%. In addition, Preferably, it is 1.5% or less.
[0016]
Mn: 0.2 to 2.0%
Mn binds to S and fixes solute S as a sulfide, and has an effect of suppressing hot embrittlement due to S. In order to obtain such an effect, the content of 0.2% or more is necessary. Mn alone is an element that improves hardenability, but in addition to the large amount of Ni that is a feature of the present invention, the addition of a large amount of Mn lowers the Ms point and causes an increase in retained austenite. This causes problems such as deterioration of beach weather resistance and aging. For this reason, Mn was limited to the range of 0.2 to 2.0%. In addition, Preferably, it is 1.0% or less.
[0017]
P: 0.02% or less P is an element that improves beach weather resistance, and inclusion of an appropriate amount is advantageous for beach weather resistance. On the other hand, P significantly deteriorates the delayed fracture characteristics in a strongly corrosive environment such as a beach area. For this reason, in the present invention, P is limited to 0.02% or less. In addition, Preferably it is 0.015% or less.
[0018]
S: 0.015% or less S is an element that significantly deteriorates cold forgeability, and also adversely affects beach weather resistance and delayed fracture resistance. For this reason, in this invention, in order to suppress these influences, it limited to 0.015% or less. In addition, Preferably it is 0.010% or less.
Al: 0.010 to 0.050%
Al needs to be added in an amount of 0.010% or more for deoxidation, but if it exceeds 0.050%, alumina inclusions increase and forgeability is impaired. For this reason, Al was limited to 0.010 to 0.050%.
[0019]
Cu: 0.2-0.5%
Cu is an element that improves beach weather resistance and also improves delayed fracture resistance. The mechanism is often unknown at present, but it is presumed that Cu functions as an effective hydrogen trap site by finely coherent precipitation in the tempered martensite matrix. . Such an effect is recognized at a content of 0.2% or more, while a content exceeding 0.5% saturates the effect, and an effect commensurate with the content cannot be expected. For this reason, Cu was limited to 0.2 to 0.5%.
[0020]
Ni: 2.3 to 5.0%
Ni is the most effective element that significantly improves beach weather resistance. Such an effect is recognized when the content is 2.3% or more, and is particularly remarkable when the content is 2.5% or more. On the other hand, the content exceeding 5.0% is economically disadvantageous because a remarkable improvement effect corresponding to the content is not recognized. For this reason, Ni was limited to the range of 2.3 to 5.0%. Note that the addition of a large amount of Ni may increase retained austenite during quenching and may deteriorate delayed fracture resistance. For this reason, although there is a relationship with the content of other hardenability improving elements, Ni is preferably 3.5% or less as a range in which retained austenite is not formed.
[0021]
Cr: 0.15% or less
Cr is an effective component for improving weather resistance in rural areas with low levels of incoming salt. However, it is effective to contain a few percent for weather resistance in beach areas with high levels of incoming salt, that is, beach weather resistance. Promotes corrosion and adverse effects. In order to suppress such adverse effects on beach weather resistance, the present invention limits Cr to 0.15% or less. In addition, Preferably it is 0.10% or less.
[0022]
Ti: 0.01-0.05%
Ti is a nitride-forming element stronger than B. In the present invention, Ti is contained together with B, and 0.01% or more is contained so that the effect of B is not suppressed. In particular, Ti is preferably contained (N% × (48/14)) or more according to the N content so that B is precipitated and fixed as BN by N in the steel and the effect is not suppressed. On the other hand, if the content exceeds 0.05%, coarse nitrides are easily formed, and the toughness and delayed fracture resistance deteriorate. For this reason, Ti is limited to a range of 0.01 to 0.05%.
[0023]
B: 0.0005-0.0040%
B is an important element in the present invention. When present in a solid solution in steel, B suppresses segregation of embrittlement elements to the grain boundary, strengthens the grain boundary, and improves delayed fracture resistance. . Further, B contributes to the suppression of hydrogen intrusion, and the reason is not clear, but it is presumed that it contributes to the improvement of beach weather resistance by favorably forming a stable rust phase near the surface. . Such an effect is recognized when the content is 0.0005% or more. On the other hand, if the content exceeds 0.0040%, the effect is saturated. For this reason, B was limited to the range of 0.0005 to 0.0040%. In addition, Preferably it is 0.0010% or more.
[0024]
N: 0.0060% or less N, when present in a solid solution in steel, deteriorates toughness. For this reason, in the present invention, N is precipitated and fixed as Ti nitride. If N exceeds 0.0060%, not only the amount of Ti required for precipitation fixation is increased, but also coarse Ti nitride is formed to deteriorate toughness and delayed fracture resistance. For this reason, N was limited to 0.0060% or less. In addition, Preferably it is 0.0040% or less.
[0025]
Furthermore, in order to increase the strength, the present invention may contain one or more of Mo: 0.05 to 1.0%, Nb: 0.01 to 0.3%, and V: 0.02 to 0.5%.
Mo has the effect of increasing the strength at room temperature and high temperature by forming a solid solution or forming a carbide, and can be contained as necessary in the present invention. Such an effect of increasing the strength becomes remarkable when the content is 0.05% or more. On the other hand, if the content exceeds 1.0%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to make Mo into the range of 0.05 to 1.0%.
[0026]
V has an effect of increasing strength by forming a carbonitride and refining the structure and strengthening precipitation, and can be contained if necessary. This effect is unclear when the content is less than 0.02%. On the other hand, if the content exceeds 0.5%, the effect is saturated, and problems such as cracking of the slab occur during continuous casting. For this reason, V is preferably in the range of 0.02 to 0.5%. Nb, like V, has an effect of increasing strength by forming a carbonitride and refining the structure and strengthening precipitation, and can be contained if necessary. The effect of increasing the strength is unclear when the content is less than 0.01%, and the effect is saturated when the content exceeds 0.3%. For this reason, V is preferably in the range of 0.01 to 0.3%.
[0027]
The balance other than the chemical components described above is Fe and inevitable impurities.
First, molten steel having the above composition is melted by a generally known melting method such as a converter or an electric furnace, and solidified by a generally known casting method such as an ingot casting method or a continuous casting method to obtain a steel material. preferable. Needless to say, secondary melting such as ladle refining may be performed for melting. Further, in order to reduce center segregation, forging during casting or holding with a soaking furnace may be performed.
[0028]
Then, these steel materials are preferably heated as necessary and made into bolt component materials by hot rolling such as plate rolling and wire rod rolling. There are no particular restrictions on the hot rolling method and hot rolling conditions for making the bolt component material, but it is advantageous for forging and machining for subsequent bolt component molding when cooling after hot rolling. It is preferable to perform tissue control. As the structure control method, controlled rolling, controlled cooling, and the like are preferable, and the softening of the bolt component material can be achieved.
[0029]
Next, these bolt component materials are subjected to a molding process to be bolt components. The forming process is not particularly limited, but is preferably selected from cold forging, hot forging, machining or the like according to a desired size and shape. In addition, you may provide the process of performing softening annealing or spheroidizing annealing on the bolt component material for the purpose of improving the tool life before forming. Further, it goes without saying that light processing such as wire drawing may be performed in order to obtain the product dimensional accuracy of the final bolt part, and even if such processing is performed, the effect of the present invention is not affected at all.
[0030]
The characteristic in this invention exists in the tempering method of the bolt components after a forming process.
The formed bolt part is first heated above the Ac 3 transformation point, which is an austenite single phase region, and subjected to quenching and quenching.
In the present invention, the structure at the time of quenching is a martensitic structure having a retained austenite of less than 1% (including 0%). If a structure other than martensite, such as bainite or pearlite, is included, the strength decreases and it becomes difficult to obtain a desired tensile strength.
[0031]
Further, if the retained austenite is contained in excess of 1% during quenching, the structure formed by the decomposition of the retained austenite during tempering causes unevenness in the bolt part, and the reason is unknown in detail. The weather resistance (beach weather resistance) and delayed fracture resistance are deteriorated especially in an environment with a large amount of incoming salt, such as in a beach area.
For this reason, in the present invention, it is necessary that the quenching heating temperature be equal to or higher than the Ac 3 transformation point which is the austenite single phase region.
[0032]
When the quenching heating temperature is less than the Ac 3 transformation point, the structure cannot be made into a substantially complete martensite single phase structure. In order to obtain such an almost complete martensite single-phase structure, it is preferable to set the quenching temperature to a temperature range of Ac 3 transformation point or higher, preferably 1000 ° C. or lower.
The amount of retained austenite in the hardened structure varies in a complex manner depending on the composition, quenching oil temperature, austenite grain size before quenching, quenching cooling rate, etc., but the hardenability improving elements C, Mn, Ni Etc., the larger the austenite particle size before quenching, and the higher the quenching oil temperature, the greater the tendency. When 1 vol% or more of retained austenite is contained during quenching, the amount of retained austenite may be set to less than 1 vol% before tempering by sub-zero treatment or the like.
[0033]
Further, the bolt parts cannot be sufficiently toughened as they are quenched, and are tempered. The tempering treatment is preferably performed in a temperature range below the Ac 1 transformation point. When the tempering temperature exceeds the Ac 1 transformation point, austenite is formed, which is not only disadvantageous in strength but also deteriorates in weather resistance and delayed fracture resistance. The tempering treatment is more preferably at most Ac 1 transformation point and at 350 ° C. from the viewpoint of delayed fracture resistance.
[0034]
【Example】
Molten steel having the composition shown in Table 1 was melted in a converter and made into a steel material of 300 × 400 mm by a continuous casting method. After that, these steel materials were once made into 150 mm square billets by hot rolling, and further hot rolled (wire rolling) into 22 mmφ round bars, which were used for bolt parts. In addition, some steel materials were hot-rolled sheets of 6 mm by hot rolling.
[0035]
Appropriate spheroidizing treatment was applied to these bolt component materials, and a M22 bolt was formed by a forming process consisting of cold forging and rolling.
These formed bolts were subjected to quenching treatment and tempering treatment under the conditions shown in Table 2, and subjected to a structure test, a tensile test, a weather resistance test, and a delayed fracture resistance test. In addition, the structure test was carried out even in the quenching process. The test methods for the structure test, tensile test, weather resistance test and delayed fracture test are shown below.
(1) Microstructure test A specimen was taken from each bolt after quenching and after quenching and tempering, and the microstructure was examined. Further, the amount of retained austenite was measured by quantifying the peak of the austenite lattice constant by X-ray diffraction for the test piece as quenched.
(2) Tensile test The tensile test was performed by collecting JIS No. 4 specimens from bolts and carrying out at room temperature at a tensile rate of 5 mm / min to determine the yield strength YS, tensile strength TS, elongation El, and drawing η. .
(3) After applying surface grinding and shot to a hot-rolled sheet that has been subjected to the same thermal history (quenching and tempering treatment) as the weather resistance test bolt, a 125 x 60 x 5 mm test piece is collected to promote seawater spraying. The test was conducted for 200 days, and the corrosion thickness of the test piece after the test was measured to evaluate the weather resistance. The conditions for the seawater spray promotion test are as follows.
[0036]
Installation location: Quay seawater spraying: Twice / week Corrosion thickness was evaluated as the weather resistance (beach weather resistance) where 0.05 is less than 0.05 mm, Δ is 0.05 mm or more and less than 0.2 mm, and × is 0.2 mm or more.
(4) Delayed fracture resistance test The test piece shown in FIG. 1 was used. As the test piece, a test piece having a diameter of 6 mmφ, a depth of 1.5 mm having a roundness of 0.05 mm at the tip of the notch, and an annular notch with an opening angle of 60 ° was used. The test atmosphere was in a 0.1N-HCl aqueous solution, the applied stress was 0.8 times the notch tensile strength (σN) measured in advance using a test piece of the same shape, and the time until breakage was determined.
[0037]
The results of these tests are shown in Table 2.
[0038]
[Table 1]
Figure 0004147701
[0039]
[Table 2]
Figure 0004147701
[0040]
From Table 2, all of the examples of the present invention have a tensile strength of 800 MPa or more, and both the weather resistance and delayed fracture resistance are superior to the conventional examples.
On the other hand, the comparative example outside the scope of the present invention has a tensile strength lower than a desired value, or is inferior in either or both of weather resistance and delayed fracture resistance.
[0041]
【The invention's effect】
As described above, according to the present invention, it is possible to stably produce a bolt component having sufficient beach weather resistance and excellent delayed fracture resistance even in a beach area with a large amount of incoming salt. Has an exceptional effect.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the shape of an accelerated delayed fracture test piece used in an example.

Claims (2)

質量%で、
C:0.15〜0.40%、 Si:0.15〜2.0 %、
Mn:0.2 〜2.0 %、 P:0.02%以下、
S:0.015 %以下、 Al:0.01〜0.050 %、
Cu:0.2 〜0.5 %、 Ni:2.3 〜5.0 %、
Cr:0.15%以下、 Ti:0.01〜0.05%、
B:0.0005〜0.0040%、 N:0.0060%以下
を含み、残部Feおよび不可避的不純物からなる鋼組成を有する鋼素材を熱間圧延によりボルト部品用素材としたのち、該ボルト部品用素材に成形加工を施しボルト部品とし、ついで該ボルト部品に、Ac3 点以上の温度からの焼入れ処理を施し、体積率で1%未満の残留オーステナイトを含む焼入組織とし、引き続いてAc1 点以下の温度での焼戻し処理を施し、焼戻しマルテンサイト組織とすることを特徴とする耐遅れ破壊特性および海浜耐候性に優れるボルト部品の製造方法。
% By mass
C: 0.15-0.40%, Si: 0.15-2.0%,
Mn: 0.2 to 2.0%, P: 0.02% or less,
S: 0.015% or less, Al: 0.01 to 0.050%,
Cu: 0.2 to 0.5%, Ni: 2.3 to 5.0%,
Cr: 0.15% or less, Ti: 0.01-0.05%,
B: 0.0005 to 0.0040%, N: 0.0060% or less, steel material having the steel composition consisting of the remainder Fe and inevitable impurities is made into a bolt part material by hot rolling, and then molded into the bolt part material Then, the bolt part is quenched from a temperature of Ac 3 point or higher to obtain a hardened structure containing residual austenite with a volume ratio of less than 1%, and subsequently at a temperature of Ac 1 point or lower. A method for producing a bolt part excellent in delayed fracture resistance and beach weather resistance, characterized in that the tempering treatment is performed to obtain a tempered martensite structure.
前記組成に加えてさらに、質量%で、Mo:0.05〜1.0 %、Nb:0.01〜0.3 %、V:0.02〜0.5 %の1種または2種以上を含むことを特徴とする請求項1に記載のボルト部品の製造方法。2. In addition to the composition, the composition further comprises one or more of Mo: 0.05 to 1.0%, Nb: 0.01 to 0.3%, and V: 0.02 to 0.5% by mass%. Bolt parts manufacturing method.
JP28850399A 1999-10-08 1999-10-08 Manufacturing method of bolt parts with excellent delayed fracture resistance and beach weather resistance Expired - Fee Related JP4147701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28850399A JP4147701B2 (en) 1999-10-08 1999-10-08 Manufacturing method of bolt parts with excellent delayed fracture resistance and beach weather resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28850399A JP4147701B2 (en) 1999-10-08 1999-10-08 Manufacturing method of bolt parts with excellent delayed fracture resistance and beach weather resistance

Publications (2)

Publication Number Publication Date
JP2001107139A JP2001107139A (en) 2001-04-17
JP4147701B2 true JP4147701B2 (en) 2008-09-10

Family

ID=17731073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28850399A Expired - Fee Related JP4147701B2 (en) 1999-10-08 1999-10-08 Manufacturing method of bolt parts with excellent delayed fracture resistance and beach weather resistance

Country Status (1)

Country Link
JP (1) JP4147701B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956683B2 (en) * 2001-12-03 2007-08-08 住友金属工業株式会社 Multi-layered chromium-based stainless steel and its manufacturing method
JP4542624B2 (en) 2008-11-11 2010-09-15 新日本製鐵株式会社 High strength thick steel plate and manufacturing method thereof
JP5774859B2 (en) * 2011-01-24 2015-09-09 株式会社神戸製鋼所 Corrosion resistant steel for ship superstructure
JP5812268B2 (en) * 2011-07-29 2015-11-11 Jfeスチール株式会社 Steel offshore structure
JP6034632B2 (en) 2012-03-26 2016-11-30 株式会社神戸製鋼所 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance

Also Published As

Publication number Publication date
JP2001107139A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
US11920207B2 (en) Cold rolled steel sheet and a method of manufacturing thereof
JP6008039B2 (en) High-strength hot-rolled steel sheet with a maximum tensile strength of 980 MPa or more with excellent bake hardenability and low-temperature toughness
KR101218448B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
US11365468B2 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
CA3140117C (en) A cold rolled martensitic steel and a method of martensitic steel thereof
US20230141152A1 (en) Cold rolled heat treated steel sheet and a method of manufacturing thereof
CN109642263B (en) Method for producing a high-strength steel strip with improved properties during further processing, and such a steel strip
JP6965956B2 (en) High-strength steel plate and its manufacturing method
CA2936733A1 (en) High-strength flat steel product having a bainitic-martensitic microstructure and method for producing such a flat steel product
JP7117381B2 (en) Cold-rolled coated steel sheet and its manufacturing method
CA3110629C (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
JP4147701B2 (en) Manufacturing method of bolt parts with excellent delayed fracture resistance and beach weather resistance
JP7006849B1 (en) Steel sheets, members and their manufacturing methods
CA3138625C (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
EP4073281A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
JP7006848B1 (en) Steel sheets, members and their manufacturing methods
CN115151673B (en) Steel sheet, member, and method for producing same
KR100402127B1 (en) Unpainted weatherproof steel manufacturing method
WO2024033688A1 (en) A cold rolled martensitic steel and method of producing thereof
KR20230016218A (en) Heat-treated cold-rolled steel sheet and its manufacturing method
WO2021172297A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4147701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees