KR20000045505A - Method for measuring final point of solidification using pinch roll displacement during continuous casting - Google Patents

Method for measuring final point of solidification using pinch roll displacement during continuous casting Download PDF

Info

Publication number
KR20000045505A
KR20000045505A KR1019980062064A KR19980062064A KR20000045505A KR 20000045505 A KR20000045505 A KR 20000045505A KR 1019980062064 A KR1019980062064 A KR 1019980062064A KR 19980062064 A KR19980062064 A KR 19980062064A KR 20000045505 A KR20000045505 A KR 20000045505A
Authority
KR
South Korea
Prior art keywords
solidification
pinch roll
displacement
continuous casting
casting
Prior art date
Application number
KR1019980062064A
Other languages
Korean (ko)
Inventor
이주동
전기홍
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019980062064A priority Critical patent/KR20000045505A/en
Publication of KR20000045505A publication Critical patent/KR20000045505A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1287Rolls; Lubricating, cooling or heating rolls while in use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE: A method is provided to effectively predict the position of final point of solidification by monitoring displacement of a pinch roll by on-line in continuous casting. CONSTITUTION: In continuous casting, a tool for measuring the displacement of a pinch roll in casting process is installed in a frame of a continuous casting device stand and a pinch roll. By using the tool, the displacement(20) of a pinch roll caused by an iron static pressure of molten metal is measured and the final point of solidification of a cast piece is measured. Thereby, the final point of solidification is measured by using the displacement of the pinch roll in continuous casting.

Description

연속주조중 핀치롤 변위를 이용한 응고말기점 측정 방법Measurement method of end point of solidification using pinch roll displacement during continuous casting

본 발명은 연속주조시 온라인으로 핀치롤의 변위를 측정함으로써 응고말기점을 측정할 수 있는 방법에 관한 것으로, 이러한 응고말기점의 측정을 통해 주편의 내부품질(중심부크랙, 중심편석등)의 예측이나 이를 방지하기 위한 중요한 수단을 제공할 뿐만 아니라 경압하(soft reduction) 및 고속주조에 이 방법을 적용함으로써 효율적인 설비관리 및 조업조건의 최적화를 도모할 수 있는 연속주조중 핀치롤 변위를 이용한 응고말기점 측정 방법에 관한 것이다.The present invention relates to a method for measuring the end of solidification by measuring the displacement of the pinch roll online during continuous casting, and to predict the internal quality (center crack, center segregation, etc.) of the cast through the measurement of the end of solidification In addition to providing an important means to prevent this, this method can be applied to soft reduction and high speed casting to achieve efficient facility management and optimization of operating conditions. It relates to a point measuring method.

현재, 연속주조작업중 주편의 응고말기점을 온라인으로 예측하는 방법에는 전자기 초음파(electromagnetic ultrasonic), 스트레인게이지(strain gauge), 가이드롤 변위측정 및 하중센서(load cell)를 이용한 방법이 있다. 초음파법의 경우, 응고셀 두께를 직접 측정할 수 있는 장점이 있는 반면 주편온도에 따라 초음파의 속도가 달라지며, 응고말기의 응고속도 모델을 기초로 하여 응고말기점을 이론적으로 예측할 수밖에 없어 정확도가 떨어지는 단점이 있다. 스트레인게이지법은 연주기 프레임의 변형을 측정함으로써 응고말기점을 예측하는 방법으로서, 연주기 세그먼트 상태를 진단하는 메인티넌스(maintenance) 도구(tool)로써도 사용할 수 있는 장점이 있는 반면, 개별적인 롤의 거동을 진단할 수 없고 따라서 응고말기점 측정에 있어서의 정확도도 낮을 수밖에 없는 단점을 갖고 있다. 가이드롤의 변위 및 하중센서를 이용한 경우 철정압에 따른 개별 롤의 변위 또는 하중을 측정함으로써 응고말기점을 예측할 수 있으나 롤 갭이 슬라브 두께에 비해 작은 경우 응고말기점 예측이 곤란하다. 또한, 하중센서의 경우 롤의 베어링 블럭 등에 설치할 경우 롤 교체시 항상 교체하여야 하는 단점도 갖고 있다.Currently, methods for predicting the end point of solidification online during continuous casting operations include electromagnetic ultrasonic waves, strain gauges, guide roll displacement measurements, and load cells. In the case of the ultrasonic method, the thickness of the solidification cell can be measured directly, while the speed of the ultrasonic wave varies depending on the slab temperature, and the end point of solidification can be predicted theoretically based on the solidification rate model at the end of solidification. There is a downside to falling. Strain gauge method is a method of predicting the end of solidification by measuring the deformation of the player frame, which can be used as a maintenance tool for diagnosing the condition of the player segment, but it is possible to measure the behavior of individual rolls. There is a drawback that the diagnosis cannot be made and therefore the accuracy in end point of coagulation is also low. When the guide roll displacement and load sensor are used, the end point of solidification can be predicted by measuring the displacement or load of individual rolls according to the static pressure, but it is difficult to predict the end point of solidification when the roll gap is smaller than the slab thickness. In addition, in the case of the load sensor, when installed in the bearing block of the roll also has the disadvantage that must always be replaced when replacing the roll.

본 발명은 이러한 배경에서 연구된 것으로, 연속주조중 핀치롤의 변위를 온라인으로 모니터링함으로써 롤 갭과 슬라브두께와의 관계에서 파생하는 주편의 압연 상태를 진단할 수 있을 뿐만 아니라, 가이드롤 변위측정 및 하중센서를 이용하는 방법과는 달리 주편에 압연력이 작용하는 조건에서도 주편내 미응고 용강의 철정력의 변화에 따라 움직이는 핀치롤의 변위를 모니터링함으로써 효과적으로 응고말기점의 위치를 예측할 수 있는 방법을 제공함에 그 목적이 있다.The present invention has been studied in this background. By monitoring online the displacement of the pinch roll during continuous casting, it is possible to diagnose the rolling state of the cast steel derived from the relationship between the roll gap and the slab thickness, as well as to measure the guide roll displacement and Unlike the method using the load sensor, it is possible to effectively predict the position of the end point of solidification by monitoring the displacement of the pinch roll that moves according to the change of the iron static force of unsolidified molten steel in the part even under the condition that the rolling force is applied to the cast. Has its purpose.

도1은 본 발명에 사용되는 핀치롤 변위측정수단의 구성도,1 is a block diagram of a pinch roll displacement measuring means used in the present invention;

도2는 주조중 철정력의 변화에 따른 핀치롤 변위를 예시한 개념도,Figure 2 is a conceptual diagram illustrating the pinch roll displacement according to the change of the iron tension during casting,

도3과 도4는 주조속도, 강종, 냉각정도 등 여러 주조조건의 경우에 응고말기점 위치 변화와 핀치롤 변위간의 상관관계를 나타내는 그래프이다.3 and 4 are graphs showing the correlation between the end point of solidification and the pinch roll displacement under various casting conditions such as casting speed, steel grade, degree of cooling, and the like.

* 도면중 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 하부유니트 2 : 상부유니트 3 : 연결부1: lower unit 2: upper unit 3: connection part

4 : 센서 홀더 5 : 변위센서 6 : 센서 타겟4 sensor holder 5 displacement sensor 6 sensor target

7 : 스프링 8 : 에어 입구 9 : 에어 출구7: spring 8: air inlet 9: air outlet

10 : 기준 프레임 11 : 구동롤 스탠드 12 : 타겟 축10 reference frame 11 drive roll stand 12 target axis

13 : 핀치롤 15 : 스탠드 16 : 입측 롤13: pinch roll 15: stand 16: entrance roll

17 : 출측 롤 18 : 용강 19 : 응고완료시 핀치롤의 변위17: exit roll 18: molten steel 19: displacement of the pinch roll when solidification is completed

20 : 미응고 용강 존재시 핀치롤의 변위20: displacement of pinch roll in the presence of unsolidified molten steel

상기한 목적을 달성하기 위한 기술적인 구성으로서 본 발명은 핀치롤 변위측정수단을 연속주조기의 기준스탠드와 핀치롤이 안착되는 거더(girder)에 설치하고, 이를 통해 연속주조중 미응고 용강의 철정압에 의해 발생되는 핀치롤의 변위를 측정하여 응고말기점을 온라인으로 예측함으로써 조업 및 설비조건의 최적화에 응용할 수 있는 방법을 제공한다.As a technical configuration for achieving the above object, the present invention is to install the pinch roll displacement measuring means in the girder on which the standard stand and pinch roll of the continuous casting machine is seated, through which the iron static pressure of unsolidified molten steel during continuous casting By measuring the displacement of the pinch roll generated by the on-line predicting end point of solidification online, it provides a method that can be applied to the optimization of the operation and equipment conditions.

이하, 본 발명을 첨부된 도면을 참조하여 더욱 상세히 설명한다.Hereinafter, with reference to the accompanying drawings the present invention will be described in more detail.

도1은 본 발명에 이용가능한 핀치롤 변위측정수단의 구성을 개략적으로 도시한 것이다. 센서(5)는 상부유니트(2)의 내부에 거꾸로 설치함으로써 핀치롤 움직임을 간접측정함과 더불어 이물질이 센서(5)와 센서홀더(4)사이에 축적되는 것이 방지되도록 하였다. 하부유니트(1)내부에는 센서(5)에 의해 그 위치가 감지되는 타겟(6)이 설치된다. 타겟(6)의 크기는 주조중 핀치롤의 주조방향 움직임과 비주조시에 롤을 오픈(open), 클로스(close)할 때의 지그재그 움직임을 고려하여 센싱범위를 벗어나지 않는 적정한 크기로 제작하였다. 여기에서, 상기 센서(5)가 타겟(6)의 중심에 위치하지 않을 수도 있기 때문에 측정중 타켓(6)이 수평을 유지하도록 하는 것이 중요하다. 따라서, 타겟(6)을 지지하는 축(12)을 주조중 상하이동이 원활하면서도 타겟(6)이 수평을 유지할 수 있도록 제작하였다. 핀치롤 오픈, 클로스시의 실린더 스트로크가 주조갭이나 센서의 측정범위에 비해 매우 크기 때문에 센서(5)를 보호함과 동시에 큰 스트로크가 가능토록 타겟 축(12)에 스프링(7)을 설치함으로서 핀치롤의 움직임이 측정범위를 초과할 때 스프링(7)이 작동하도록 설계하였다. 이때, 주조중 스프링(7)이 움직이면 측정데이타의 신뢰도가 급격히 떨어지기 때문에 스프링(7)의 탄성계수를 층분히 크게 함으로써 스프링(7)은 핀치롤의 움직임이 측정범위를 초과할 때만 작동되도록 하였다. 또한, 시스템의 열팽창 방지, 변위 센서 보호 및 시스템의 내구성 유지를 위해서 현장의 에어라인을 에어입구(8) 및 에어출구(9)에 연결설치하여 장치내부를 24시간 퍼징이 되도록 하였고 약간의 압력이 걸리도록 니들밸브를 이용하여 조절할 수 있도록 하였으며, 에어게이지를 별도로 설치하여 장치내부의 압력상태를 최적으로 조절할 수 있도록 제작하였다. 연결부(3)는 상기의 상부유니트(2)와 하부유니트(1)를 연결시키는 부분으로서 상기에서 언급한 주조중 펀치롤의 주조방향 움직임, 롤 오픈, 클로스시의 지그재그 움직임 및 주조갭에 비해 매우 큰 실린더 스트로크가 가능하도록 벨로우즈를 이용하여 제작하였고, 벨로우즈 표면에 실리콘 고무를 코팅함으로써 장시간 사용에 따른 열화를 방지하도록 하였다. 도1에서 10은 기준 프레임, 11은 구동롤 스탠드를 각각 나타낸다.Fig. 1 schematically shows the configuration of the pinch roll displacement measuring means usable in the present invention. The sensor 5 is installed upside down inside the upper unit 2 to indirectly measure the pinch roll movement and to prevent foreign matter from accumulating between the sensor 5 and the sensor holder 4. Inside the lower unit 1, a target 6 is installed in which the position is sensed by the sensor 5. The size of the target 6 was manufactured in an appropriate size not to exceed the sensing range in consideration of the movement in the casting direction of the pinch roll during casting and the zigzag movement when the roll was opened and closed during non-casting. Here, it is important to keep the target 6 horizontal during measurement since the sensor 5 may not be located at the center of the target 6. Therefore, the shaft 12 supporting the target 6 was manufactured so that the shankdong smoothly while casting, while the target 6 was kept horizontal. Since the cylinder stroke at the time of pinch roll opening and closing is much larger than the casting gap or the measuring range of the sensor, the pinch is provided by installing the spring 7 on the target shaft 12 to protect the sensor 5 and to allow a large stroke. The spring 7 is designed to operate when the roll movement exceeds the measuring range. At this time, when the spring 7 moves during casting, the reliability of the measurement data drops sharply, so that the elastic modulus of the spring 7 is increased so that the spring 7 is operated only when the pinch roll movement exceeds the measurement range. . In addition, in order to prevent thermal expansion of the system, to protect the displacement sensor, and to maintain the durability of the system, an on-site air line is connected to the air inlet 8 and the air outlet 9 to purge the inside of the device for 24 hours. It was designed to be controlled by needle valve, and it was manufactured to install the air gauge separately to adjust the pressure state inside the device optimally. The connecting portion 3 is a part connecting the upper unit 2 and the lower unit 1 as described above, and is much lower than the casting direction movement of the punch roll during casting, roll opening, zigzag movement during closing, and casting gap. The bellows was manufactured to allow a large cylinder stroke, and the silicone rubber was coated on the bellows surface to prevent deterioration due to prolonged use. 1, reference numeral 10 denotes a reference frame, and 11 denotes a driving roll stand.

도2는 주편내 미응고 용강(18)의 철정력에 따라 움직이는 핀치롤(16)(17)의 변위를 도시한 개념도로서, 19는 응고가 이미 완료되었을 경우의 핀치롤 변위를 나타내고, 20은 미응고 용강이 존재할 때의 핀치롤 변위를 나타낸다.Fig. 2 is a conceptual diagram showing the displacement of the pinch rolls 16 and 17 moving according to the iron static force of the unsolidified molten steel 18 in the cast steel, where 19 is the pinch roll displacement when solidification has already been completed, and 20 is Pinch roll displacement when unsolidified molten steel is present.

상술하면, 연속주조시 응고말기점 부근에서의 설비 얼라인먼트 등 이상 주조조건에 의해 주편에 크랙 또는 중심편석 등이 발생할 수 있기 때문에 설비적 요인을 포함하여 이러한 결함의 원인을 규명하고, 특히 경압하(soft reduction)시 응고말기점을 압하 구간내에 존재하도록 조절해야 할 뿐만 아니라 고속주조시 설비의 한계 및 생산성의 관점에서도 응고말기점 예측이 필수적이라 할 수 있다. 주편두께가 롤 갭에 비해 심하게 커서 가이드롤에 칠정력 뿐만 아니라 압연저항이 심하게 발생하는 바람직하지 않은 경우가 생길 수 있으며, 이 때는 압연저항때문에 응고가 완료된 이후에도 롤에 압연력이 걸리고 롤 변위도 전혀 감소하지 않기 때문에 하중센서와 가이드롤 변위측정에 의한 방법으로는 응고말기점 예측이 불가능하다. 그러나, 상기 핀치롤(16)(17)의 경우 주조조건에 따라서 주편의 벌징력에 의해 상,하로 자유로이 움직일 수 있기 때문에, 압연력이 걸리는 경우에도 주편내 미응고 용강의 철정압 변화에 따라 변위가 변하게 되므로 압연력의 존재 유,무에 관계없이 효과적으로 응고말기점을 측정하는 것이 가능하다.Specifically, cracks or central segregation may occur in cast pieces due to abnormal casting conditions such as the alignment of equipment near the end of solidification during continuous casting. In the case of soft reduction, not only the end point of coagulation should be adjusted to exist in the pressing section, but also the end point of coagulation is essential from the viewpoint of equipment limitation and productivity in high speed casting. Due to the large thickness of the cast sheet, the rolling resistance may be excessively increased as well as the rolling force on the guide roll.In this case, the rolling resistance is applied even after the solidification is completed due to the rolling resistance, and the roll displacement is reduced at all. Since it is not possible to predict the end point of solidification by means of the load sensor and guide roll displacement measurement. However, in the case of the pinch rolls 16 and 17, the pinch rolls 16 and 17 can move freely up and down by the bulging force of the cast steel according to the casting conditions. Since is changed, it is possible to effectively measure the end point of solidification regardless of the presence or absence of rolling force.

이하, 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

실시예 1Example 1

도3은 #2 입측 핀치롤(16: m1) 및 출측 핀치롤(17:m2)의 좌,우 변위를 주조속도에 따라서 표시한 것이다. 7600초 부근에서 주조속도가 증가함에 따라서 응고말기점이 앞으로 이동하게 되고, 이에 따라 m2(출측 롤) 변위도 감소하게 된다. 흥미로운 것은 m1(입측 롤)의 경우 롤의 변위가 오히려 약간 증가하는 것을 보여주고 있다. 이는 응고말기점이 #2 핀치롤에 가까워짐에 따라 m2에 의해 눌린 응고말기점 부근의 용강이 m1을 거꾸로 밀어 올린 것에 기인한 것으로 판단된다. 2번째 연연주의 경우 m2의 주조중 위치와 주조가 끝나는 시점의 위치가 크게 차이가 나지 않는다. 즉 주조전, 후의 m2의 변위가 변화가 크지 않다. 이는 #2 핀치롤 부근에서 거의 응고가 완료되었음을 의미한다. 3번째 연연주의 경우, 역시 62500초 부근에서 2차냉각이 강냉에서 약냉으로 바뀌면서 응고말기점이 길어지게 되어 m1, m2의 변위가 모두 커지게 된다. 결론적으로, m1의 경우 m2와의 상호작용에 의해 응고말기점을 예측하기가 어려우나, m2의 경우 응고말기점이 길어지면 변위가 증가하고, 응고말기점이 짧아지면 변위가 감소한다. 즉 m2의 변위를 모니터링함에 의해서 주조중 응고말기점을 매우 효과적이고도 용이하게 예측할 수 있음을 보여준다.Fig. 3 shows left and right displacements of the # 2 entry pinch roll 16: m1 and the exit pinch roll 17: m2 according to the casting speed. As the casting speed increases around 7600 seconds, the end point of solidification moves forward, thus reducing the m2 (outlet roll) displacement. It is interesting to note that the displacement of the roll increases slightly for m1 (side roll). This may be due to the fact that the molten steel near the end of the solidification pressed by m2 pushed up m1 as the end of the solidification approached the pinch roll. In the case of the second cast, the position during the casting of m2 and the point at which the casting ends are not significantly different. That is, the displacement of m2 before and after casting is not large. This means that solidification is almost complete near # 2 pinch roll. In the case of the third smoke, the second cooling is changed from strong to weak cooling near 62500 seconds, and the end point of solidification becomes long, and both the displacements of m1 and m2 become large. In conclusion, in the case of m1, it is difficult to predict the end of coagulation due to the interaction with m2, but in the case of m2, the displacement is increased when the end of coagulation is long, and the displacement is decreased when the end of coagulation is short. In other words, by monitoring the displacement of m2, the end point of solidification during casting can be predicted very effectively and easily.

실시예 2Example 2

도4는 역시 주조조건에 따른 #2 핀치롤의 거동을 나타낸 것이다. 1번째 연연주의 경우 합금원소가 첨가된 API재질의 주편으로서 m2가 상당히 내려가 있고, m1은 상대적으로 많이 올라간 상태이다. m2의 변위로 보아 거의 응고가 이 위치에서 완료되었음을 나타내며, 합금원소 첨가에 의해 응고가 상대적으로 빨라짐을 암시한다. 2,3번째 연연주의 경우 1번째에 비해 응고가 덜 진행되었지만 여전히 응고완료점이 #2 핀치롤 근처에 접근해 있음을 알 수 있다. 4번째 연연주에서는 주속이 1.3m/min로 응고완료점이 상당히 긴 경우로서 m2의 변위가 상당히 크며 상대적으로 m1은 m2에 의해 미는 힘이 감소하고 철정압만에 의해 힘을 받기 때문에 다른 연연주에 비해 주조중 변위가 작다. 이는 실시예 1에서 설명한 바와 같이 응고점이 길어짐에 의해 m2가 증가한 것으로서 다시 한 번 주조중 m2 모니터링에 의한 응고완료점 거동을 예측할 수 있음을 확인해 준다.Figure 4 also shows the behavior of the # 2 pinch roll according to the casting conditions. In the case of the first soft-margin, m2 is significantly lowered, and m1 is relatively high. The displacement of m2 indicates that solidification is almost complete at this position, suggesting that the solidification is relatively fast by the addition of alloying elements. In the 2nd and 3rd rings, the solidification progressed less than the first, but the solidification point is still near the # 2 pinch roll. In the 4th performance, the main speed is 1.3m / min and the solidification completion point is quite long. The displacement of m2 is considerably large, and the relative force of m1 decreases the pushing force by m2 and is applied only by iron static pressure. The displacement is small during casting. This confirms that m2 increased as the solidification point was increased as described in Example 1, and once again, solidification completion point behavior by m2 monitoring during casting can be predicted.

이상에서 상세히 설명한 바와 같이 본 발명은 연속주조중 용강의 철정압에 의한 변위를 일으키는 핀치롤의 변위를 실시간으로 측정 모니터링하는 방법에 의해 연속주조에 있어서의 주편 응고말기점을 정확히 측정함으로써 효율적인 설비관리와 조업조건의 최적화를 기할 수 있는 효과를 제공한다.As described in detail above, the present invention provides efficient facility management by accurately measuring the end point of the solidification of cast steel in continuous casting by a method of measuring and monitoring the displacement of the pinch roll causing the displacement due to the static pressure of molten steel during continuous casting. And the effect of optimizing the operating conditions.

Claims (1)

연속주조에 있어서 주조진행중 핀치롤의 변위를 측정할 수 있는 수단을 연속주조기 스탠드와 핀치롤의 프레임에 설치구비하고, 상기 수단을 통해 주조중 미응고 용강의 철정압에 의해 유발되는 핀치롤의 변위를 측정함으로써 주편의 응고말기점을 측정하도록 하는 것을 특징으로 하는 연속주조중 핀치롤 변위를 이용한 응고말기점 측정 방법.In continuous casting, a means for measuring the displacement of the pinch roll during the casting process is provided in the frame of the continuous casting machine stand and the pinch roll, and the displacement of the pinch roll caused by the iron static pressure of unsolidified molten steel during casting through the means. The method of measuring the end point of solidification using the pinch roll displacement during continuous casting, characterized in that to measure the end point of solidification of the cast.
KR1019980062064A 1998-12-30 1998-12-30 Method for measuring final point of solidification using pinch roll displacement during continuous casting KR20000045505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980062064A KR20000045505A (en) 1998-12-30 1998-12-30 Method for measuring final point of solidification using pinch roll displacement during continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980062064A KR20000045505A (en) 1998-12-30 1998-12-30 Method for measuring final point of solidification using pinch roll displacement during continuous casting

Publications (1)

Publication Number Publication Date
KR20000045505A true KR20000045505A (en) 2000-07-15

Family

ID=19568759

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980062064A KR20000045505A (en) 1998-12-30 1998-12-30 Method for measuring final point of solidification using pinch roll displacement during continuous casting

Country Status (1)

Country Link
KR (1) KR20000045505A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134440A (en) * 1974-09-16 1979-01-16 Nippon Kokan Kabushiki Kaisha Method of continuously casting steel
JPS5588962A (en) * 1979-09-11 1980-07-05 Sumitomo Heavy Ind Ltd Displacement control method of cast billet surface in continuous casting
JPS5680856U (en) * 1979-11-12 1981-06-30
JPH01197051A (en) * 1988-02-01 1989-08-08 Sumitomo Metal Ind Ltd Method for detecting perfect solidified position in continuous casting slab

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134440A (en) * 1974-09-16 1979-01-16 Nippon Kokan Kabushiki Kaisha Method of continuously casting steel
JPS5588962A (en) * 1979-09-11 1980-07-05 Sumitomo Heavy Ind Ltd Displacement control method of cast billet surface in continuous casting
JPS5680856U (en) * 1979-11-12 1981-06-30
JPH01197051A (en) * 1988-02-01 1989-08-08 Sumitomo Metal Ind Ltd Method for detecting perfect solidified position in continuous casting slab

Similar Documents

Publication Publication Date Title
EP1068914B1 (en) Process and apparatus for casting a continuous metal strand
JP2004505777A (en) Method and apparatus for monitoring rotary bearings, especially rolling bearings, of a continuous casting support roll supported on a roll stand of a continuous casting support roll of a metal, especially steel, continuous casting apparatus
US20090301225A1 (en) Apparatus for guiding a strip
US6651729B1 (en) Method for operating a strip-casting machine used for producing a metal strip and a corresponding strip-casting machine
Thomas On-line detection of quality problems in continuous casting of steel
KR101005647B1 (en) Method for operating a sliding gate, and sliding gate
JP4486541B2 (en) Method and apparatus for detecting solidification end position in continuous casting machine
KR20000045505A (en) Method for measuring final point of solidification using pinch roll displacement during continuous casting
WO1997037796A1 (en) Continuous casting mold and foot guide assembly
KR100316387B1 (en) Caster monitoring system and slab bulging prediction method using it
US5353861A (en) Roll casting process
JPH09225611A (en) Method for judging fully solidified position of continuously cast slab
CN106979899B (en) Crystallizer cladding high-temperature friction and wear performance evaluation experiment machine
KR100742884B1 (en) Method for deciding change point of back up roll in rolling mill through accumulative fatigue control
KR100895070B1 (en) Diagnosis method of segment roll in continuous casting
KR200302675Y1 (en) Slab bulging prevention device
KR20010017607A (en) Method For Predicting The Unevenness Of Solidified Shell
KR100405517B1 (en) Device for measuring deformed degree of billet in continuous casting
JP7497706B2 (en) Rolling equipment, spindle support device, spindle monitoring method, and method for attaching and detaching roll and spindle
KR19990050915A (en) On-line coagulation end point measuring method during continuous casting
CN113165061B (en) Method for determining the position of the burner end of a cast metal product
JP2581098B2 (en) Control method of slab perfect solidification position for continuous casting
JP6961295B2 (en) Crater end position detection device for continuously cast slabs, roll segments incorporating it, and crater end position detection method for continuously cast slabs using them.
KR100309781B1 (en) Device for measuring bulging degree of solidified shell during continuous casting
KR100308829B1 (en) Method for diagnosing rolls and setting pass line of rolls during continuous casting

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application