JP2581098B2 - Control method of slab perfect solidification position for continuous casting - Google Patents

Control method of slab perfect solidification position for continuous casting

Info

Publication number
JP2581098B2
JP2581098B2 JP62228171A JP22817187A JP2581098B2 JP 2581098 B2 JP2581098 B2 JP 2581098B2 JP 62228171 A JP62228171 A JP 62228171A JP 22817187 A JP22817187 A JP 22817187A JP 2581098 B2 JP2581098 B2 JP 2581098B2
Authority
JP
Japan
Prior art keywords
slab
roll
continuous casting
rotation
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62228171A
Other languages
Japanese (ja)
Other versions
JPS6471559A (en
Inventor
正志 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62228171A priority Critical patent/JP2581098B2/en
Publication of JPS6471559A publication Critical patent/JPS6471559A/en
Application granted granted Critical
Publication of JP2581098B2 publication Critical patent/JP2581098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、連続鋳造設備における鋳片の完全凝固位
置および動向を検出し、この完全凝固位置を任意の位置
に制御し得る制御方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a control method capable of detecting a completely solidified position and a trend of a slab in a continuous casting facility and controlling the completely solidified position to an arbitrary position. It is.

(従来技術) 一般に、連続鋳造においては鋳型内に注入された溶融
金属を鋳型によつて冷却し、ある一定の凝固殻を形成し
た後、多数の鋳片支持ロール群内を通過させてスプレー
冷却によつて二次冷却しつつピンチロールによつて引抜
き、完全凝固後に一定の長さに切断している。
(Conventional technology) In general, in continuous casting, molten metal injected into a mold is cooled by a mold to form a certain solidified shell, and then is passed through a large number of slab support rolls to spray cool. The sheet is drawn out by a pinch roll while being secondarily cooled, and cut to a certain length after complete solidification.

このような連続鋳造工程において、鋳片の完全凝固位
置を知り、その位置を制御することは操業上においても
品質上においても多大の効果が得られる。
In such a continuous casting process, knowing the completely solidified position of the slab and controlling the position has a great effect on both operation and quality.

例えば、凝固殻が成長して完全凝固に至る過程で未凝
固部の不純物の濃度が高く、いわゆる中心偏析を呈する
現象がよく知られており、この中心偏析を減少させるた
め鋳片が完全凝固する直前において軽圧下を加える方法
が提案されており、最適位置での軽圧下のためには完全
凝固位置を検出する必要がある。
For example, it is well known that the concentration of impurities in the unsolidified portion is high in the process of growing a solidified shell to complete solidification, so-called central segregation, and the slab is completely solidified to reduce this central segregation. A method of applying light reduction immediately before has been proposed, and it is necessary to detect a complete solidification position for light reduction at an optimum position.

さらに、近年、連続鋳造において製造された高温の鋳
片をそのまま直接圧延工程へ送給する直接圧延が積極的
に採用されており、この直接圧延を実施するには、機端
における鋳片温度をできるだけ高温に維持しなければな
らない。このためには、完全凝固位置をできるだけ機端
側に移動させればよい。
Furthermore, in recent years, direct rolling, in which high-temperature slabs produced in continuous casting are directly fed to a direct rolling process, has been actively adopted.To perform this direct rolling, the slab temperature at the machine end must be reduced. It must be kept as hot as possible. For this purpose, the completely solidified position may be moved as far as possible to the machine end.

また、鋳片の完全凝固位置が鋳片支持ロール群をオー
バーし、機端より外れた場合には、未凝固の状態で切断
することになり、溶融金属が流出するため完全凝固位置
の把握が必要となる。
In addition, if the fully solidified position of the slab exceeds the slab support roll group and deviates from the machine end, it will be cut in an unsolidified state, and the molten metal will flow out, so it is necessary to grasp the fully solidified position Required.

しかしながら、鋳片の完全凝固位置は、鋳込温度の変
化、冷却条件及び鋳込速度の変動等のために常に変動し
ているのが現状であり、鋳片の完全凝固位置を検出する
ことは非常に困難である。
However, the fully solidified position of the slab is always fluctuating due to changes in casting temperature, changes in cooling conditions and casting speed, etc., and it is not possible to detect the fully solidified position of the slab. Very difficult.

従来においては、次のような検出方法が提案されてい
る。
Conventionally, the following detection methods have been proposed.

(i) 特開昭54−17327号 鋳片の未凝固部分に生じている静鉄圧力を、鋳片ガイ
ドロールスタンドの伸びにより測定し、伸びの絶対値と
変動の振幅が凝固完了点を境にして変化することを利用
している。
(I) JP-A-54-17327 The static iron pressure generated in the unsolidified portion of a slab is measured by elongation of a slab guide roll stand. I use that to change.

(ii) 特開昭54−62125号 (i)と同様に静鉄圧力を鋳片ガイドロール(上下対
ロール)にかかる荷重によりロードセルにて検出し、こ
の荷重変化率が大きなガイドロール部分を知ることで完
全凝固位置を検出している。
(Ii) In the same manner as in JP-A-54-62125, the static iron pressure is detected by the load cell by the load applied to the slab guide roll (upper / lower roll), and the guide roll portion having a large load change rate is known. Thus, the complete coagulation position is detected.

(iii) 実開昭55−148849号 (ii)と同様の原理であり、単にロードセルにより連
続検出を行ない、未凝固部先端(クレータエンド)の位
置を目標とする位置に制御すべく速度補正回路を組込ん
でいる。
(Iii) The principle is the same as that of (ii), a speed correction circuit that simply performs continuous detection with a load cell and controls the position of the tip of the unsolidified portion (crater end) to the target position. Is incorporated.

(この発明が解決すべき問題点) しかしながら、従来の伸び(歪)計測法、ロードセル
法には、次のような問題点がある。
(Problems to be solved by the present invention) However, the conventional elongation (strain) measurement method and load cell method have the following problems.

(i) 凝固未期の静圧荷重は鋳片自身の支持力と凝固
未期における未凝固部分形状によつて、非常に小さく、
かつ変動しており、ロール軸受下のロードセルでは、正
確な値が検知できない。特に、ロールに加わつている荷
重(スタンド伸びも同じ)には、前述の静圧力の他に既
凝固分の一部圧延力、ロール偏心による加負荷重、ロー
ル自身の熱膨張差による押付力など数種の荷重が加わつ
ており、実機鋳込中での静圧力荷重(未期の小荷重)の
みを検出判断することは困難である。なお、第9図に一
般的に知られている凝固未期の形状を示す。
(I) The static pressure load in the early stage of solidification is extremely small due to the bearing capacity of the slab itself and the shape of the unsolidified portion in the early stage of solidification.
In addition, it is fluctuating, and an accurate value cannot be detected in the load cell below the roll bearing. In particular, the load applied to the roll (the same applies to the stand elongation) includes, in addition to the static pressure described above, a partial rolling force of the solidified portion, a load weight due to eccentricity of the roll, a pressing force due to a difference in thermal expansion of the roll itself, and the like. Several types of loads are applied, and it is difficult to detect and determine only the static pressure load (unseen small load) during casting in the actual machine. FIG. 9 shows a generally known shape before solidification.

(ii) 静圧荷重は、鋳片幅によつて異なり、鋳込中幅
替を次々に実施していく最近の新鋭マシンには、従来の
荷重検出法では誤差の方が大きく、信頼性に欠け、操業
システムに組込めない。
(Ii) The static pressure load varies depending on the slab width. In recent state-of-the-art machines that continuously perform width change during casting, the error is larger in the conventional load detection method and the reliability is lower. Chipped, cannot be integrated into the operation system.

(iii) 特に、伸び、歪測定法では、(i),(ii)
以外にも熱影響が大きく、実機ベースでの技術としては
不向きである。
(Iii) In particular, in the elongation and strain measurement methods, (i) and (ii)
In addition to this, the heat effect is large, making it unsuitable as a technology based on actual equipment.

(iv) 前述の(i)〜(iii)の技術的問題以外に、
多数の検出器を要し、かつ高温、多湿(100%)の環境
下での伸び(歪ゲージ)検出器やロードセル検出器で
は、その設備費と保守費に膨大な費用を要し、得策でな
い。
(Iv) In addition to the above technical problems (i) to (iii),
Elongation (strain gauge) detectors and load cell detectors under high temperature and high humidity (100%) environment require a large number of detectors, and require enormous costs for equipment and maintenance costs, which is not advisable. .

さらに、特開昭60−12266号に超音波を用いて鋳片内
超音波透過時間および鋳片厚みを測定し、鋳片厚み方向
平均温度を求め、これに基づいて鋳造速度制御あるいは
2次冷却制御を行なうことが記載されているが、特殊な
装置(電磁超音波送受信器)を用いても、測定点が一箇
所であるため、推定誤差も大きく、保守等も困難であり
実用性に問題がある。
Furthermore, the ultrasonic transmission time in the slab and the thickness of the slab were measured using ultrasonic waves as disclosed in JP-A-60-12266, and the average temperature in the slab thickness direction was determined. Based on this, the casting speed was controlled or the secondary cooling was performed. Although control is described, even if a special device (electromagnetic ultrasonic transmitter / receiver) is used, since the measurement point is at one place, the estimation error is large, maintenance is difficult, and the practicality is problematic. There is.

この発明は前述のような問題点を解消すべく提案され
たもので、その目的は完全凝固位置を簡単な原理で精度
良く検出でき、設置、保守を安価に容易に行なえ、さら
に完全凝固位置を任意の位置に制御し得る連続鋳造の鋳
込完全凝固位置制御方法を提供することにある。
The present invention has been proposed in order to solve the above-mentioned problems. The purpose of the present invention is to accurately detect the complete solidification position with a simple principle, to perform installation and maintenance easily and inexpensively, and to further determine the complete solidification position. It is an object of the present invention to provide a method of controlling a casting complete solidification position of continuous casting which can be controlled to an arbitrary position.

(問題点を解決するための手段) 本発明では、完全凝固位置の検出精度を上げるため
に、静圧荷重値ではなく、静圧力による鋳片シエルを膨
圧する力と鋳片の引抜き力を利用する。すなわち、第2
図に示すように連続鋳造機の鋳片支持ロール出側におい
て、上下対になつているロールの上下間隔を一定にした
ゾーンを作り、この間を通過する鋳片の凝固状態によ
り、上部従動支持ロールに鋳片が接触してロール回転し
たり、回転しなかつたりすることを利用する(第1図参
照)。
(Means for Solving the Problems) In the present invention, in order to improve the detection accuracy of the completely solidified position, not the static pressure load value but the force for expanding the slab shell by the static pressure and the drawing force of the slab are used. I do. That is, the second
As shown in the figure, on the exit side of the slab support roll of the continuous casting machine, a zone is formed in which the upper and lower pairs of rolls have a constant vertical interval, and the upper driven support roll The method utilizes the fact that the slab comes into contact with the slab and the roll rotates or does not rotate (see FIG. 1).

この上部従動支持ロールの回転は、非接触センサー等
のロール回転検出器により検出し、ロールの従動回転が
不連続もしくは無回転の従動支持ロール部位を鋳片完全
凝固位置と判断し、この完全凝固位置を高温鋳片を得る
ために機端に位置させるべく、また機端近くの特定位置
(軽圧下設備のある区域)に移動させるべく、鋳込速度
制御あるいはその時の操業条件にマツチした鋳片二次冷
却水のゾーン制御をダイナミツクに行なう。
The rotation of the upper driven support roll is detected by a roll rotation detector such as a non-contact sensor, and the driven support roll portion where the driven rotation of the roll is discontinuous or non-rotating is determined to be a slab completely solidified position, and this completely solidified position is determined. A slab that matches the casting speed control or the operating conditions at that time, so that the position is located at the machine end to obtain a high temperature slab, and is moved to a specific position near the machine end (the area where the light pressure reduction equipment is located). The zone control of the secondary cooling water is performed dynamically.

(作 用) 上記従動支持ロールの従動回転を、上流側の基準ロー
ルの従動回転と比較して不連続、無回転を知り、その従
動支持ロール部位を鋳片完全位置と判断する。このよう
な検出は、鋳片幅に無関係に単に鋳片内部の膨圧力があ
るか、ないか(未凝固または凝固状態)を見極わめるこ
とが可能となり、精度が向上すると同時に鋳込中幅替操
業を実施しているマシンにも信頼度の高い位置検出とし
て使える。
(Operation) By comparing the driven rotation of the driven support roll with the driven rotation of the reference roll on the upstream side, it is determined whether the driven support roll is discontinuous or non-rotating, and the driven support roll portion is determined to be the complete slab position. Such detection makes it possible to simply determine whether or not there is an expansion pressure inside the slab (unsolidified or solidified state) regardless of the slab width. It can also be used as a highly reliable position detector for machines performing medium-width replacement operations.

完全凝固位置を機端に位置させ、軽圧下設備により軽
圧下を行ない、あるいはより高温での抽出を行なう。
The complete solidification position is located on the side of the machine, and light reduction is performed by light reduction equipment, or extraction at a higher temperature is performed.

(実 施 例) 以下、この発明を図示する一実施例に基づいて説明す
る。
(Embodiment) Hereinafter, the present invention will be described based on one embodiment illustrated in the drawings.

連続鋳造設備は、第2図に示すように、鋳型1内で一
次冷却された鋳片3を多数の鋳片支持ロール群2内で二
次冷却する構成であり、鋳片支持ロール群2において
は、鋳片3を挾むロール間隔を凝固収縮分だけ絞り込ん
でいくが、本発明では入側のゾーン2Aを凝固収縮分絞り
込み範囲とし、出側のゾーン2Bを上下ロール間隔一定範
囲とする。
As shown in FIG. 2, the continuous casting equipment is configured such that the slab 3 that has been primarily cooled in the mold 1 is secondarily cooled in a large number of slab support roll groups 2. In the present invention, the zone 2A on the inlet side is defined as a narrowing-down range by the amount of solidification shrinkage, and the zone 2B on the exit side is defined as a constant range of the upper and lower roll intervals.

このようなゾーン2Bの出側にロール回転検出器取付ゾ
ーン2Cを設けるとともにゾーン2Bの上流側の上部の従動
支持ロール4においてロール回転基準信号を取り出すよ
うにする。
A roll rotation detector mounting zone 2C is provided on the exit side of the zone 2B, and a roll rotation reference signal is extracted from the driven support roll 4 on the upper side of the upstream side of the zone 2B.

ゾーン2Cにおける各セグメントは、第1図に示すよう
に、駆動支持ロール5の両側に従動支持ロール6を配設
して構成され、上部の各従動支持ロール6にロール回転
検出器7を設けて上部のロール6の従動回転を検出す
る。
As shown in FIG. 1, each segment in the zone 2C is constituted by arranging driven support rolls 6 on both sides of the drive support roll 5 and providing a roll rotation detector 7 on each of the driven support rolls 6 on the upper side. The driven rotation of the upper roll 6 is detected.

ロール回転検出器7は完全水中型シールを施した光学
式(レーザーも含む),熱線センサー、近接スイツチ
(渦流センサー)などの非接触式センサーであり、悪環
境、ロールの偏心、負荷の変動等に無関係にロールの回
転を検出できる。また、ロールの回転のみならず、さら
にその精度を向上させるために、センサードツグ8を多
数個(6〜18ケ)ロール軸端に取付け、回転パルス信号
を多く発信させる。基準の従動支持ロール4においても
同様のロール回転検出器7が設置される。
The roll rotation detector 7 is a non-contact type sensor such as an optical type (including a laser), a heat ray sensor, and a proximity switch (eddy current sensor) provided with a completely underwater type seal. Irrespective of the rotation of the roll. Further, in order to improve not only the rotation of the roll but also the accuracy thereof, a large number (6 to 18) of sensor dogs 8 are attached to the end of the roll shaft to transmit many rotation pulse signals. A similar roll rotation detector 7 is installed in the reference driven support roll 4 as well.

なお、ロール回転検出器には、パネルジエネレータ、
漏れ電流式等の接触式を用いることもできる。
The roll rotation detector includes a panel generator,
A contact type such as a leakage current type can also be used.

以上のような構成において、ロール回転検出器7から
の回転パルスには第3図に示す3種が見られる。
In the configuration described above, three types of rotation pulses from the roll rotation detector 7 are seen in FIG.

(i) A型 鋳片内部が未凝固で膨圧力を有しており、鋳片シエル
は常に上部の従動支持ロール6に接触支持され、引抜か
れている鋳片によりロール6が正常周期で回転し、検出
器7によつて正常定周期のパルス信号が得られる。
(I) A type The slab is unsolidified and has a bulging pressure. The slab shell is always in contact with and supported by an upper driven support roll 6, and the roll 6 is rotated at a normal cycle by the drawn slab. Then, a pulse signal having a normal fixed period is obtained by the detector 7.

(ii) B型 未凝固部と凝固部が同在している鋳片部が通過してい
る部分の上部従動支持ロール6は、鋳片シエルと接触支
持されていたり、瞬間的に非接触状態になつたりするた
め、検出器7から出てくる回転パルス信号は、周期ムラ
(乱れ)を示す。
(Ii) B type The upper driven support roll 6 in the portion where the slab portion where the unsolidified portion and the solidified portion coexist is passed is supported in contact with the slab shell or is in a non-contact state momentarily. , The rotation pulse signal coming out of the detector 7 shows period unevenness (turbulence).

(iii) C型 鋳片内部が完全凝固すると、膨出力がなくなり、かつ
溶鋼顕熱がなくなり、鋳片は凝固収縮をし、鋳片は上部
従動支持ロール6から離れ非接触状態となり、回転検出
パルスは全くなくなり、直線を示すようになる。
(Iii) C-type When the inside of the slab is completely solidified, the swelling power is lost, the molten steel sensible heat is lost, the slab undergoes solidification and shrinkage, the slab separates from the upper driven support roll 6, and comes into a non-contact state, and rotation is detected. There are no pulses at all, and they show a straight line.

したがつて、ゾーン2B上流側の上部の従動支持ロール
4においてA型の基準パルス信号S0を取り出し、この基
準パルス信号S0と、ゾーン2Cにおける上部の各鋳片支持
ロール6からの回転パルス信号Siを常時連続的に比較さ
せておき、前述のB型、C型の回転パルス信号S1,S2
捕える。
Accordingly, the A-type reference pulse signal S 0 is taken out from the upper driven support roll 4 on the upstream side of the zone 2B, and this reference pulse signal S 0 and the rotation pulse from each of the upper slab support rolls 6 in the zone 2C are obtained. The signals Si are continuously compared at all times, and the aforementioned B-type and C-type rotation pulse signals S 1 and S 2 are captured.

この信号S1,Sを発するロール6位置、あるいはそのロ
ール位置に補正係数Kを剰じた位置を完全凝固位置とす
る。この補正係数Kの値は、鋼種によつて若干異なるも
のの、凝固位置が大きく変わるほどの値でなく、従来の
荷重法、伸び法に比較すると、非常に精度の良いこと
が、鋲打ち法(従来からのスポツト的凝固確認法)にて
確認された。
The position of the roll 6 that emits the signals S 1 and S or the position obtained by adding the correction coefficient K to the roll position is defined as the complete solidification position. Although the value of the correction coefficient K is slightly different depending on the type of steel, it is not a value that greatly changes the solidification position, and is extremely accurate compared to the conventional load method and elongation method. (Conventional spot-like coagulation confirmation method).

さらに、第4図ないし第7図に示すように、回転パル
ス信号の乱れ位置および不転位位置を示す部分が時間と
ともに上流または下流に移動していく状態を把握できる
ため、鋳込速度および鋳片二次冷却方法を制御すること
で、凝固完了位置が常に連鋳機端に位置するようにす
る。
Further, as shown in FIG. 4 to FIG. 7, it is possible to grasp the state where the portion indicating the disturbance position and the dislocation position of the rotation pulse signal moves upstream or downstream with time, so that the casting speed and the slab By controlling the secondary cooling method, the solidification completion position is always located at the end of the continuous casting machine.

第8図に示すのは、本発明を実施するための制御系で
あり、完全凝固位置と目標の完全凝固位置との差に応じ
て鋳込速度の調整あるいは二次冷却水量の調整を行な
い、機端に近い特定部位に完全凝固位置を移動させるべ
くダイナミツクコントロールを行なわせる。
FIG. 8 shows a control system for carrying out the present invention, which adjusts a casting speed or a secondary cooling water amount in accordance with a difference between a completely solidified position and a target completely solidified position. Dynamic control is performed to move the complete coagulation position to a specific site near the machine end.

このダイナミツクコントロールによる高温抽出、最適
位置での軽圧下及び内部撹拌等によつて、鋳片温度の高
いかつ中心偏析の少ない内部品質に優れた高速鋳造操業
が可能となる。
The high-temperature extraction by the dynamic control, the light pressure reduction at the optimum position, the internal stirring, and the like make it possible to perform a high-speed casting operation with a high slab temperature and excellent internal quality with little center segregation.

また、検出精度が良いので、鋳込中幅替、異鋼種連々
操業等の高度操業における鋳込の完全凝固位置検出が可
能である。
Further, since the detection accuracy is good, it is possible to detect a completely solidified position of the casting in the advanced operation such as the width change during the casting and the successive operation of different steel types.

次に、具体例について述べる。回転検出器に水中シー
ル型渦流センサーを使用し、センサードツグを6(ピー
ス/ロール回転)取付け、第2図の#68ロールより基準
パルス信号を取り出し、#87〜#111の従動支持ロール
の回転パルス信号と比較した。また、総合監視盤で凝固
位置(A,B,C型パルス)を監視し、機端近傍に凝固点位
置が行くよう鋳込速度、二次冷却制御をせしめるソフト
を自動制御系に組込んだ。
Next, a specific example will be described. Using an underwater seal type eddy current sensor as the rotation detector, 6 sensor dogs (piece / roll rotation) are attached, and a reference pulse signal is extracted from the # 68 roll in FIG. 2, and the rotation pulses of the driven support rolls # 87 to # 111 Signal. In addition, software for monitoring the solidification position (A, B, C type pulses) with a comprehensive monitoring panel and controlling the casting speed and secondary cooling so that the solidification point is located near the machine end was incorporated into the automatic control system.

この結果、完全凝固位置を±2mの範囲で制御すること
ができ、凝固点位置を機端近へ移動させることにより鋳
片の表面温度を20℃向上させることができた。また、中
心偏析を安定させることができた。
As a result, the complete solidification position could be controlled within a range of ± 2 m, and the surface temperature of the slab could be improved by 20 ° C. by moving the solidification point position closer to the machine end. In addition, the center segregation could be stabilized.

なお、ロール設備の異状(回転不良)を検知すること
も併せて可能であることが分かつた。
In addition, it has been found that it is also possible to detect an abnormality (defective rotation) of the roll equipment.

(発明の効果) 前述のとおり、この発明によれば、鋳片支持ロールの
出側における上部の従動支持ロールにロール回転検出器
を設け、この従動支持ロールの従動回転の不連続あるい
は無回転により完全凝固位置を判断し、この完全凝固位
置を鋳込速度の調整あるいは二次冷却水量の調整により
制御するようにしたため、次のような効果を奏する。
(Effects of the Invention) As described above, according to the present invention, a roll rotation detector is provided on the upper driven support roll on the exit side of the slab support roll. Since the completely solidified position is determined and the completely solidified position is controlled by adjusting the casting speed or adjusting the amount of the secondary cooling water, the following effects are obtained.

(i) 完全凝固位置を簡単な原理で精度良く検出で
き、又、どの様なマシンにも容易に適用できる。
(I) The complete solidification position can be accurately detected by a simple principle, and can be easily applied to any machine.

(ii) 検出機構が簡単な構成であり、設備費および保
守費を安価とすることができる。
(Ii) The detection mechanism has a simple configuration, and equipment and maintenance costs can be reduced.

(iii) 初期(基本)鋳込条件の変動に律速されるこ
となく完全凝固位置を精度良く機端に位置させることが
でき、鋳片温度が上昇し、下工程のエネルギーコスト
(熱延加熱炉原単位)の大幅減少が可能となる。
(Iii) The complete solidification position can be accurately positioned at the machine end without being limited by fluctuations in the initial (basic) pouring conditions, the slab temperature rises, and the energy costs of the lower process (hot rolling furnace Per unit) can be greatly reduced.

(iv) 完全凝固位置を精度良く制御でき、内質改善の
ための軽圧下位置や内部撹拌位置を最適位置とすること
ができ、中心偏析低減による鋳片品質の向上を図ること
ができる。
(Iv) The completely solidified position can be controlled with high accuracy, the lightly reduced position for improving the internal quality and the internal stirring position can be set as the optimal positions, and the slab quality can be improved by reducing center segregation.

(v) 完全凝固を機端に移動させることにより、鋳込
速度上昇による高効率マシンの増産有効活用と、二次冷
却の超緩冷却による表面疵の減少、歩留向上を図ること
ができる。
(V) By moving the complete solidification to the machine end, it is possible to effectively increase the production of a high-efficiency machine by increasing the casting speed, to reduce surface flaws by ultra-low cooling of the secondary cooling, and to improve the yield.

(vi) ロール軸受の破損やロール折損等、支持ロール
の設備故障を早期発見することが可能となり、品質トラ
ブルの減少と、上、下工程への影響を最小限にできる計
画的保守管理を可能とした。
(Vi) Early detection of equipment failure of support rolls, such as breakage of roll bearings or breakage of rolls, enables reduction of quality troubles and scheduled maintenance management that can minimize the impact on upper and lower processes. And

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明を実施するための装置を検出信号のグ
ラフとともに示す説明図、第2図は同様の連続鋳造設備
を示す概略図、第3図は検出信号の種類を示すグラフ、
第4図、第5図は完全凝固位置の移動を示す概略図、第
6図、第7図はその検出信号を示すグラフ、第8図は制
御系を示すブロツク図、第9図は鋳片未凝固部を示す概
略図である。 1……鋳型、2……鋳片支持ロール群、3……鋳片、4
……上部従動支持ロール、5……駆動支持ロール、6…
…上部従動支持ロール、7……ロール回転検出器、8…
…センサードツグ
FIG. 1 is an explanatory diagram showing an apparatus for carrying out the present invention together with a graph of detection signals, FIG. 2 is a schematic diagram showing a similar continuous casting facility, FIG. 3 is a graph showing types of detection signals,
4 and 5 are schematic diagrams showing the movement of the completely solidified position, FIGS. 6 and 7 are graphs showing the detection signals, FIG. 8 is a block diagram showing a control system, and FIG. 9 is a slab. It is the schematic which shows an unsolidified part. 1 ... mold, 2 ... slab support roll group, 3 ... slab, 4
... upper driven support roll, 5 ... drive support roll, 6 ...
... Upper driven support roll, 7 ... Roll rotation detector, 8 ...
… Sensor dog

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】連続鋳造機の鋳片支持ロールの出側に上下
ロール間隔を一定としたゾーンを形成し、このゾーンに
おける多数の上部の従動支持ロールにロール回転検出器
を設けて、この従動支持ロールの従動回転を検出し、こ
の従動回転が不連続もしくは無回転の従動支持ロール部
位を鋳片完全凝固位置と判断し、この完全凝固位置と目
標完全凝固位置との差に応じて鋳込速度の調整あるいは
二次冷却水量の調整を行うことを特徴とする連続鋳造の
鋳片完全凝固位置制御方法。
1. A continuous casting machine is provided with a zone in which the interval between upper and lower rolls is constant on the exit side of a slab support roll, and a plurality of upper driven support rolls in this zone are provided with roll rotation detectors. The driven roll of the support roll is detected, and the driven roll where the driven rotation is discontinuous or non-rotated is determined as the slab fully solidified position, and the casting is performed according to the difference between the completely solidified position and the target fully solidified position. A method for controlling a slab completely solidified position in continuous casting, wherein the speed is adjusted or the amount of secondary cooling water is adjusted.
JP62228171A 1987-09-11 1987-09-11 Control method of slab perfect solidification position for continuous casting Expired - Lifetime JP2581098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62228171A JP2581098B2 (en) 1987-09-11 1987-09-11 Control method of slab perfect solidification position for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62228171A JP2581098B2 (en) 1987-09-11 1987-09-11 Control method of slab perfect solidification position for continuous casting

Publications (2)

Publication Number Publication Date
JPS6471559A JPS6471559A (en) 1989-03-16
JP2581098B2 true JP2581098B2 (en) 1997-02-12

Family

ID=16872336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62228171A Expired - Lifetime JP2581098B2 (en) 1987-09-11 1987-09-11 Control method of slab perfect solidification position for continuous casting

Country Status (1)

Country Link
JP (1) JP2581098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111069556A (en) * 2020-01-21 2020-04-28 中冶南方连铸技术工程有限责任公司 Roll gap dynamic control method based on apparent thermal shrinkage of continuous casting billet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443131A (en) * 1977-09-13 1979-04-05 Ishikawajima Harima Heavy Ind Method and apparatus for controlling point of complete solidification in continous casting
JPS56151147A (en) * 1980-04-24 1981-11-24 Nippon Steel Corp Method for detecting leading end position of unsolidified part of continuously cast ingot

Also Published As

Publication number Publication date
JPS6471559A (en) 1989-03-16

Similar Documents

Publication Publication Date Title
CN103182491B (en) A kind of free loops by thin-strip continuous casting control method and device
CN100518999C (en) On-line prognostication of thin strap continuous casting crackle and solidification organization, and control method thereof
US4413667A (en) Supervising the inclination of mold sides
US4497360A (en) Method of monitoring and controlling operating parameters of a machine for the continuous casting of strips between rolls
CN107303601B (en) Cooling monitoring system and method for casting blank
KR101443278B1 (en) bulging detecting module and bulging detecting method using the same
US4030531A (en) Method and apparatus for monitoring and obviating deformations of continuous castings
JP2581098B2 (en) Control method of slab perfect solidification position for continuous casting
JPS58148061A (en) Method for predicting breakout in continuous casting
JP4802718B2 (en) Method for predicting surface defect occurrence risk region in continuous cast slab and method for producing continuous cast slab
JP2002066704A (en) Method for detecting and controlling fully solidified position of continuously cast slab
KR200227135Y1 (en) Slab optimal cutting device
JPS58148063A (en) Method for predicting cracking of ingot in continuous casting
CN103182490B (en) Method and control system for twin-roll thin strip continuous casting
JP5428494B2 (en) Method for detecting slab seam in continuous casting
JP3074050B2 (en) Continuous casting method and continuous casting machine
US4813471A (en) Method for determining molten metal pool level in twin-belt continuous casting machines
JPH09225611A (en) Method for judging fully solidified position of continuously cast slab
CN107971353A (en) The roller-way control method of steel pipe on-line cooling
KR20120044421A (en) Crack diagnosis device of solidified shell in mold and method thereof
JP2005118804A (en) Method for detecting fully solidified position of continuously-cast bloom
JPS60115354A (en) Installation for producing steel
CN217110896U (en) Steel band machine otic placode warp monitoring devices based on distance sensing principle
JPH11183449A (en) Method and apparatus for measurement of center solid-phase rate of cast piece
JP2000343183A (en) Method and device for measuring thickness in twin drum type continuous casting facility, method and device for controlling thickness, and storage medium