KR20000041437A - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor device Download PDFInfo
- Publication number
- KR20000041437A KR20000041437A KR1019980057296A KR19980057296A KR20000041437A KR 20000041437 A KR20000041437 A KR 20000041437A KR 1019980057296 A KR1019980057296 A KR 1019980057296A KR 19980057296 A KR19980057296 A KR 19980057296A KR 20000041437 A KR20000041437 A KR 20000041437A
- Authority
- KR
- South Korea
- Prior art keywords
- episilicon
- growing
- ion implantation
- semiconductor device
- undoped
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000004065 semiconductor Substances 0.000 title claims abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 20
- 239000010703 silicon Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000005468 ion implantation Methods 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 125000006850 spacer group Chemical group 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract 2
- 239000002019 doping agent Substances 0.000 claims description 11
- 150000002500 ions Chemical class 0.000 claims description 10
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 3
- 238000009413 insulation Methods 0.000 abstract 2
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 238000000151 deposition Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4983—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
본 발명은 반도체소자의 제조방법에 관한 것으로, 특히 형성되는 에피택셜층 상단부의 도핑농도를 증가시켜 후속 콘택저항을 감소시켜 소자의 전기적 특성을 향상시킬 수 있는 엘리베이티드 소오스/드레인(elevated source/drain; ESD) 제조를 위한 선택적 에피실리콘 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and in particular, an elevated source / drain that can improve the electrical properties of the device by increasing the doping concentration of the upper part of the epitaxial layer formed to reduce subsequent contact resistance. ; ESD) Selective episilicon forming method for manufacturing.
도 1a 내지 도 1f를 참조하여 종래의 엘리베이티드 소오스 및 드레인 구조의 반도체소자 제조방법을 설명하면 다음과 같다.Referring to FIGS. 1A to 1F, a method of fabricating a semiconductor device having a conventional elevation source and drain structure is as follows.
도 1a를 참조하면, 실리콘기판(1) 소정영역에 소자분리막(2)을 형성하고, 기판상에 게이트산화막(3), 게이트전극(4) 및 마스크절연막(5)을 형성한다. 이어서 도 1b에 나타낸 바와 같이 게이트전극 측면에 산화막 또는 질화막으로 스페이서(6)를 형성한 후, 도 1c에 나타낸 바와 같이 에피실리콘(7)을 화학기상증착법을 이용하여 노출된 기판상에 선택적으로 형성한다.Referring to FIG. 1A, an isolation layer 2 is formed in a predetermined region of a silicon substrate 1, and a gate oxide film 3, a gate electrode 4, and a mask insulating film 5 are formed on the substrate. Subsequently, as shown in FIG. 1B, the spacer 6 is formed of an oxide film or a nitride film on the side of the gate electrode, and then episilicon 7 is selectively formed on the exposed substrate using chemical vapor deposition as shown in FIG. 1C. do.
다음에 도 1d에 나타낸 바와 같이 소오스 및 드레인 형성을 위한 이온주입(8)을 실시한 후, 도 1e에 나타낸 바와 같이 이온주입된 도펀트를 활성화시키기 위해 열처리하면 도펀트들이 실리콘기판내로 약간 확산하여 엘리베이티드 소오스 및 드레인(9)이 형성된다.Next, after the ion implantation 8 for source and drain formation is performed as shown in FIG. 1D, heat treatment is performed to activate the ion implanted dopant as shown in FIG. 1E. And a drain 9 are formed.
종래의 ESD공정은 상술한 바와 같이 도핑되지 않은 실리콘을 에피택셜 성장시킨 후, 접합부위로 활용하기 위하여 후속 이온주입의 에너지와 주입이온의 양을 조절함에 의해 반도체 접합을 형성시키나, 이와 같이 하면 접합부위는 형성되더라도 이온주입된 도판트의 농도가 실리콘 에피택셜층의 두께방향으로 500Å이하에서부터 주로 분포하도록 설계하기 때문에 실제로 후속 콘택이 형성되는 표면에서 500Å정도의 부위는 거의 도판트가 존재하지 않게 되므로 콘택저항이 매우 높아지는 문제가 있다(도 1f).Conventional ESD processes epitaxially grow undoped silicon as described above, and then form semiconductor junctions by controlling the amount of implanted ions and energy of subsequent ion implantations to utilize them as junction sites. Although the concentration of ion implanted dopant is designed to be distributed mainly from 500 Å or less in the thickness direction of the silicon epitaxial layer, the region of 500 에서 on the surface where the subsequent contact is actually formed has almost no dopant. There is a problem that the resistance is very high (Fig. 1F).
본 발명은 상술한 문제점을 해결하기 위한 것으로, 실리콘 에피택셜층 형성시 성장되는 에피택셜층 상단부의 농도를 증가시켜 후속 콘택저항을 감소시킬 수 있도록 하는 엘리베이티드 소오스 및 드레인 제조방법을 제공하는 것을 그 목적으로 한다.The present invention is to solve the above-described problems, to provide an elevated source and drain manufacturing method for increasing the concentration of the upper part of the epitaxial layer grown during the formation of the silicon epitaxial layer to reduce subsequent contact resistance. The purpose.
상기 목적을 달성하기 위한 본 발명의 반도체소자 제조방법은 실리콘기판상에 게이트절연막과 게이트전극 및 마스크산화막을 순차적으로 형성하는 단계와, 상기 게이트전극 측면에 절연막 스페이서를 형성하는 단계, 도핑되지 않은 에피실리콘을 상기 실리콘기판의 노출된 부분에 소정두께로 성장시키는 단계, 상기 도핑되지 않은 에피실리콘을 성장시킨 후, 계속해서 상기 에피실리콘 성장공정에 사용되는 장비내에 불순물이온을 함유한 가스를 도입시키면서 에피실리콘을 소정두께만큼 더 성장시키는 단계, 및 이온주입을 실시하여 소오스 및 드레인을 형성하는 단계를 포함하여 구성된다.The semiconductor device manufacturing method of the present invention for achieving the above object comprises the steps of sequentially forming a gate insulating film, a gate electrode and a mask oxide film on a silicon substrate, forming an insulating film spacer on the side of the gate electrode, undoped epi Growing silicon to a predetermined thickness on the exposed portion of the silicon substrate, growing the undoped episilicon, and subsequently introducing epi-containing gas into the equipment used in the episilicon growth process Growing silicon further by a predetermined thickness, and performing ion implantation to form a source and a drain.
도 1a 내지 1f는 종래기술에 의한 엘리베이티드 소오스 및 드레인구조의 반도체소자 제조방법을 도시한 공정순서도,1A to 1F are process flowcharts showing a method for manufacturing a semiconductor device having an elevated source and drain structure according to the prior art;
도 2a 내지 2f는 본 발명의 일실시예에 의한 엘리베이티드 소오스 및 드레인구조의 반도체소자 제조방법을 도시한 공정순서도,2A to 2F are process flowcharts showing a method for manufacturing a semiconductor device having an elevated source and a drain structure according to an embodiment of the present invention;
도 3은 본 발명에 의한 2단계 이온주입에 의한 에피실리콘층의 도핑프로파일을 나타낸 도면.Figure 3 is a view showing a doping profile of the episilicon layer by two-step ion implantation according to the present invention.
*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *
1.실리콘기판 2.소자분리막1. Silicon substrate 2. Device separation membrane
3.게이트산화막 4.게이트전극3.gate oxide 4.gate electrode
5.마스크산화막 6.스페이서5.mask oxide 6.spacer
7.에피실리콘층 9.소오스 및 드레인7.Episilicon layer 9.Source and drain
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
도 2a 내지 도 2f를 참조하여 본 발명에 의한 ESD 형성방법을 설명하면 다음과 같다.Referring to Figures 2a to 2f will be described in the ESD forming method according to the present invention.
먼저, 도 2a를 참조하면, 실리콘기판(1) 소정영역에 소자분리막(2)을 형성하고, 기판상에 게이트산화막(3)과 게이트전극(4)을 형성한다. 이어서 도 2b에 나타낸 바와 같이 게이트전극(4)상에 마스크산화막(5)을 형성하고, 그 측면에 산화막 또는 질화막으로 스페이서(6)를 형성한다.First, referring to FIG. 2A, an isolation layer 2 is formed in a predetermined region of a silicon substrate 1, and a gate oxide film 3 and a gate electrode 4 are formed on the substrate. Subsequently, as shown in FIG. 2B, a mask oxide film 5 is formed on the gate electrode 4, and a spacer 6 is formed on the side surface with an oxide film or a nitride film.
이어서 실리콘 표면의 산화막 제거를 위한 세정을 실시한다. 이는 산화막이 남아있으면 에피층이 형성되지 않기 때문이다. 실리콘 표면 세정은 RCA세정, UV오존세정, HF디핑, 또는 이들의 혼합으로 행해질 수 있다.Subsequently, cleaning is performed to remove the oxide film from the silicon surface. This is because no epitaxial layer is formed if the oxide film remains. Silicon surface cleaning can be done by RCA cleaning, UV ozone cleaning, HF dipping, or a mixture thereof.
다음에 도 2c에 나타낸 바와 같이 도핑되지 않은 에피실리콘(7)을 저압화학기상증착법 또는 고진공 화학증착법을 이용하여 노출된 기판상에 500Å정도 선택적으로 성장시킨다. 이와 같이 도핑되지 않은 에피실리콘을 성장시키는 이유는 이것이 도핑된 에피실리콘보다 기판상에서 더 잘 형성되기 때문이다.Next, as shown in FIG. 2C, the undoped episilicon 7 is selectively grown on the exposed substrate by about 500 kPa using low pressure chemical vapor deposition or high vacuum chemical vapor deposition. The reason for growing such undoped episilicon is that it is better formed on the substrate than doped episilicon.
다음에 도 2d에 나타낸 바와 같이 상기 에피층(7)이 일단 성장되면, p+콘택일 경우, 바로 장비내에 공급되는 가스에 다이보랜(diborane)을 50-300sccm 추가하여 보론이 에피층으로 도핑되도록 하고, n+콘택일 경우에는 포스핀(phospine) 또는 아사인(arsine)을 흘려주어 성장하는 에피층(7-1)에 도판트가 1E20 이상 함유되도록 하여 약 1000Å정도 성장시킨다. 저압화학증착법의 경우에는 에피실리콘층을 형성하기 전에 약 1-5분 동안 800-900℃ 하이드로겐 베이크(Hydrogen bake)를 실시한다. 이는 산화막 형성을 방지하기 위한 것으로 장비내에서(in-situ) 이루어져야 한다. 에피실리콘의 성장조건은 다음과 같다. 증착가스는 DCS(Dichlorosilane)와 HCl의 혼합가스를 사용한다. 증착시 DCS는 약 30-300sccm, HCl은 약 30-200sccm을 사용하며, 증착압력은 10-50Torr 정도로 하며, 증착온도는 750-950℃에서 실시한다. 이때 증착시간은 3-10min이다.Next, as shown in FIG. 2D, once the epitaxial layer 7 is grown, in the case of p + contact, diborane is added to the gas supplied directly into the equipment to add boron to the epitaxial layer. In the case of n + contact, phosphine or phosphine (asine) is flowed to grow the epitaxial layer 7-1 so that the dopant is contained at least 1E20 and grows about 1000Å. In the case of low pressure chemical vapor deposition, a hydrogen bake is performed at 800-900 ° C. for about 1-5 minutes before the episilicon layer is formed. This is to prevent oxide film formation and must be done in-situ. The growth conditions of episilicon are as follows. The deposition gas uses a mixed gas of DCS (Dichlorosilane) and HCl. In the deposition, DCS is about 30-300sccm, HCl is about 30-200sccm, the deposition pressure is about 10-50Torr, the deposition temperature is carried out at 750-950 ℃. The deposition time is 3-10 min.
고진공화학증착법의 경우에는 증착가스는 실레인(silane)이나 디실레인(disilane)을 사용하며, 증착압력은 1Torr미만, 증착온도는 600-700℃로 하는 것이 바람직하다.In the case of high vacuum chemical vapor deposition, the deposition gas uses silane or disilane, and the deposition pressure is preferably less than 1 Torr and the deposition temperature is 600-700 ° C.
다음에 도 2e에 나타낸 바와 같이 소오스 및 드레인 형성을 위한 이온주입(9)을 실시한다. 이때, p+ 소오스/드레인인 경우에는 도펀트로11B+나 BF2+를 사용하는데,11B+이온의 경우 5-50keV로, BF2+이온의 경우 10-100keV로 이온주입하며, 주입량은 1x1015- 1x1017ions/cm2로 한다. n+ 소오스 및 드레인의 경우에는 도펀트로 As+나 P+를 사용하는데, As+이온의 경우 10-100keV로, p+이온의 경우 10-70keV로 이온주입하며 주입량은 1x1015- 1x1017ions/cm2로 한다.Next, as shown in Fig. 2E, ion implantation 9 for source and drain formation is performed. In this case, when the p + source / drain in the case of, 11 B + ions for use 11 B + or BF2 + with a dopant to 5-50keV, for BF2 + ions and the ion implantation to 10-100keV, injection amount is 1x10 15 - 1 x 10 17 ions / cm 2 . For n + source and drain is to use a P + or As + with a dopant, in the case of As + ions by 10-100keV, in the case of p + ion-implanted at an 10-70keV and injection amount is 1x10 15 - 1x10 17 ions / cm 2
이어서 이온주입된 도펀트를 활성화하기 위해 열처리를 하는데 도펀트들이 실리콘표면내로 약간 확산함으로써 도 2f에 도시한 바와 같이 엘리베이티드 소오스 및 드레인이 형성되게 된다. 이때 열처리는 로를 이용하여 행하거나 RTA로 가능하다. 로를 이용하는 경우 N2분위기에서 약 800-900℃ 에서 10-30분간 실시한다. RTA의 경우 N2또는 NH3의 분위기에서 약 900-1050℃에서 5-30초간 실시한다.Subsequently, heat treatment is performed to activate the ion implanted dopant, and the dopants diffuse slightly into the silicon surface to form an elevated source and drain as shown in FIG. 2F. At this time, the heat treatment may be performed using a furnace or RTA. In the case of using a furnace, it is carried out at about 800-900 ° C. for 10-30 minutes in an N 2 atmosphere. RTA is carried out for 5-30 seconds at about 900-1050 ° C in an atmosphere of N 2 or NH 3 .
본 발명의 다른 실시예로서, 상술한 바와 같이 리트로그레이드 웰(retrograde well) 형성원리를 응용하여 1500Å정도의 도핑되지 않은 에피층을 한 번에 성장시킨 후에 소오스 및 드레인을 형성하기 위한 이온주입을 실시하기 직전에 이보다 낮은 에너지로 에피층 상단부에 충분한 양의 도판트가 들어갈 수 있도록 이온주입을 실시한다. 이렇게 하면, 후속 콘택이 형성되는 상단 500Å정도의 두께에 해당하는 부분에 많은 양의 도판트가 존재하여 콘택저항을 감소시키는 효과를 볼 수 있다. 도 3에 본 발명의 다른 실시예에 의한 2단계 이온주입에 의한 에피실리콘층의 도핑 프로파일을 나타내었다.As another embodiment of the present invention, as described above, by applying the principle of retrograde well formation, an ion implantation is performed to form a source and a drain after growing an undoped epi layer of about 1500 Å at a time. Immediately before the ion implantation, a sufficient amount of dopant is introduced into the upper portion of the epi layer at lower energy. In this case, a large amount of dopant is present in the portion corresponding to the thickness of the top 500 micrometers of the subsequent contact is formed to reduce the contact resistance. Figure 3 shows the doping profile of the episilicon layer by two-step ion implantation according to another embodiment of the present invention.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be apparent to those of ordinary knowledge.
본 발명에서는 기존의 ESD기술에서 나타나는 문제점인 콘택저항의 증가를 해결하기 위해 도핑된 에피층과 도핑되지 않은 에피층의 이중구조를 통해 ESD의 상단부의 도핑농도를 증가시켜 후속 콘택시에 콘택저항을 감소시키며, 도핑되지 않은 ESD를 한 번에 성장시킨 후, 후속 이온주입을 실시하여 결과적으로 에피층 상단부의 도핑농도를 증가시킴으로써 전류구동능력을 증가시킬 수 있다.In the present invention, in order to solve the increase of contact resistance, which is a problem in the existing ESD technology, the doping epitaxial layer and the undoped epilayer are increased through the double structure of the upper end of the ESD to increase the contact resistance during subsequent contact. It is possible to increase the current driving capability by increasing the doping concentration at the top of the epi layer by reducing the doping and then growing the undoped ESD at once.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980057296A KR100318460B1 (en) | 1998-12-22 | 1998-12-22 | Method of fabricating semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980057296A KR100318460B1 (en) | 1998-12-22 | 1998-12-22 | Method of fabricating semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000041437A true KR20000041437A (en) | 2000-07-15 |
KR100318460B1 KR100318460B1 (en) | 2002-02-19 |
Family
ID=19564677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980057296A KR100318460B1 (en) | 1998-12-22 | 1998-12-22 | Method of fabricating semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100318460B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100575617B1 (en) * | 2002-07-11 | 2006-05-03 | 매그나칩 반도체 유한회사 | Drain forming method of semiconductor device |
KR20210093368A (en) * | 2018-12-21 | 2021-07-27 | 어플라이드 머티어리얼스, 인코포레이티드 | Methods and processing systems for forming contacts |
-
1998
- 1998-12-22 KR KR1019980057296A patent/KR100318460B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100575617B1 (en) * | 2002-07-11 | 2006-05-03 | 매그나칩 반도체 유한회사 | Drain forming method of semiconductor device |
KR20210093368A (en) * | 2018-12-21 | 2021-07-27 | 어플라이드 머티어리얼스, 인코포레이티드 | Methods and processing systems for forming contacts |
Also Published As
Publication number | Publication date |
---|---|
KR100318460B1 (en) | 2002-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100301246B1 (en) | Method of manufacturing a semiconductor device | |
KR100332106B1 (en) | Method of manufacturing a transistor in a semiconductor device | |
US20020001930A1 (en) | Method for fabricating a semiconductor device using a damascene process | |
KR100347544B1 (en) | Method of manufacturing a junction in a semiconductor device | |
US5338697A (en) | Doping method of barrier region in semiconductor device | |
KR100430404B1 (en) | Method Of Forming Singlecrystalline Silicon Pattern Utilizing Structural Selective Epitaxial Growth Technique and Selective Silicon Etching Technique | |
KR950008848B1 (en) | Profile control of boron implant | |
KR100332107B1 (en) | Method of manufacturing a transistor in a semiconductor device | |
US7863162B2 (en) | Semiconductor device and manufacturing method thereof | |
KR100280809B1 (en) | Method for forming junction of semiconductor device | |
KR100578218B1 (en) | Method of fabricating semiconductor device including elevated source/drain | |
KR100318460B1 (en) | Method of fabricating semiconductor device | |
KR100333727B1 (en) | Method for fabricating MOSFET with elevated source/drain structure | |
KR20000041382A (en) | Manufacturing method of mos transistor with elevated source/drain structure | |
KR20000043199A (en) | Fabrication method of transistor of semiconductor device | |
KR100440078B1 (en) | Manufacturing method of semiconductor device | |
KR20010064119A (en) | A method for forming of semiconductor device using to Selective Epitaxial Growth | |
KR100502676B1 (en) | Manufacturing Method of Semiconductor Device | |
KR20000043195A (en) | Method for manufacturing semiconductor device | |
KR20010064122A (en) | A method for forming MOSFET of elevated source/drain structure | |
KR100743620B1 (en) | Method for forming shallow junction of semiconductor device | |
CN201004461Y (en) | Transistor part of metal oxide semiconductor | |
EP1579487B1 (en) | Method of manufacturing a semiconductor device | |
KR20050104228A (en) | Method for forming contact plug of semiconductor device | |
KR20010063858A (en) | Fabricating method for semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20101125 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |