KR20000041270A - Method of manufacturing non-oriented electrical sheet excellent in magnetism - Google Patents

Method of manufacturing non-oriented electrical sheet excellent in magnetism Download PDF

Info

Publication number
KR20000041270A
KR20000041270A KR1019980057106A KR19980057106A KR20000041270A KR 20000041270 A KR20000041270 A KR 20000041270A KR 1019980057106 A KR1019980057106 A KR 1019980057106A KR 19980057106 A KR19980057106 A KR 19980057106A KR 20000041270 A KR20000041270 A KR 20000041270A
Authority
KR
South Korea
Prior art keywords
annealing
less
hot
rem
oriented electrical
Prior art date
Application number
KR1019980057106A
Other languages
Korean (ko)
Other versions
KR100398389B1 (en
Inventor
차상윤
김병구
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1998-0057106A priority Critical patent/KR100398389B1/en
Publication of KR20000041270A publication Critical patent/KR20000041270A/en
Application granted granted Critical
Publication of KR100398389B1 publication Critical patent/KR100398389B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: A method of manufacturing a non-oriented electrical sheet is provided to enhance magnetic characteristic by inducing growth of crystals without annealing a hot-rolled sheet. CONSTITUTION: A silicon steel slab consists of, by weight %: not more than 0.01% of C, not more than 1.0% of Si, 0.10-1.0% of Al, not more than 0.3% of Mn, not more than 0.03% of P, not more than 0.01% of S, not more than 0.0060% of N, 0.01-0.1% of REM, 0.005-0.25% of Sn, Fe and incidental impurities. The silicon steel slab is hot-rolled and pickled without passing through annealing of the hot-rolled sheet. After decarbonization-annealing, the slab is cold-rolled once for up to the final thickness.

Description

자기적특성이 우수한 무방향성전기강판의 제조방법Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties

본 발명은 모타의 철심으로 사용되는 무방향성 전기강판에 관한 것으로서, 보다 상세하게는 열연판소둔을 생략하여 생산성을 개선하면서도 자기적 특성이 우수한 무방향성전기강판의 제조방법에 관한 것이다.The present invention relates to a non-oriented electrical steel sheet used as an iron core of a motor, and more particularly, to a method for manufacturing a non-oriented electrical steel sheet excellent in magnetic properties while improving productivity by omitting hot-rolled sheet annealing.

무방향성 전기강판은 전동기, 발전기, 소형변압기 등의 철심소재로 널리 사용되고 있으며, 대형터빈, 발전기 등의 대형회전기기에 쓰이는 철심재료는 전력손실 및 발열을 감소시키기 위하여 철손이 낮아야 함과 동시에, 기기의 소형화를 위하여 자속밀도가 높은 것이 요구된다.Non-oriented electrical steel sheet is widely used for iron core materials such as electric motors, generators, and small transformers. Iron core materials used for large rotary machines such as large turbines and generators must have low iron loss in order to reduce power loss and heat generation. High magnetic flux density is required for miniaturization.

무방향성 전기강판의 철손은 이력손실과 와류손실로 분류된다. 이중 이력손실이 차지하는 비중이 60-80%정도이다. 이력손실은 결정립 크기에 반비례하여 결정립이 클수록 손실이 낮아지게 된다. 와류손실은 재료내의 비저항이 높을수록, 재료의 두께가 얇을수록 낮아진다. 또한, 무방향성 전기강판의 자기적특성은 집합조직에 의해서도 크게 영향을 받는다. 철손을 낮춤과 동시에 자속밀도를 높이기 위해서는 재료내부를 이루는 결정구조가 압연면에 대하여 (100),(110)면의 집적도를 높이는 것이 필요하다.Iron loss of non-oriented electrical steel is classified into hysteresis loss and vortex loss. Of these, hysteresis losses account for 60-80%. The hysteresis loss is inversely proportional to the grain size, and the larger the grain, the lower the loss. Vortex losses are lower with higher resistivity in the material and thinner material. In addition, the magnetic properties of the non-oriented electrical steel sheet is greatly affected by the texture of the aggregate. In order to reduce the iron loss and increase the magnetic flux density, it is necessary to increase the degree of integration of the (100) and (110) planes with respect to the rolling surface of the crystal structure forming the material.

일반적으로 무방향성전기강판의 제조공정은 규소강슬라브를 열간압연과 열연판소둔을 실시하고, 산세 후 최종두께까지 1회 또는 2회 냉간압연한 다음 최종소둔하는 일련의 공정으로 이루어진다. 이러한 일련의 공정을 거치고, 최종소둔 직전의 강판내에는 C(탄소), N(질소) 및 그 화합물이 강중에 잔존하여 있다. 이들은 모두 최종소둔시 결정립이 성장하는데 장애물이 되어 결정립이 충분한 크기로 성장하지 못하도록 방해를 한다. 또한, 최종제품에서의 불순물들은 자기적인 성질에 치명적인 해를 준다. 이는 자구의 이동을 방해하여 철손을 증가시키는 요인이 된다. 이러한 불순물중 C는 탈탄공정에서 제거가 가능하나, 질소화합물과 황화합물의 경우는 잔류하게 되는 문제점이 있다.In general, the manufacturing process of non-oriented electrical steel sheet consists of a series of processes of hot-rolling silicon steel slab and hot-rolled sheet annealing, cold pickling once or twice to the final thickness after pickling. Through such a series of steps, C (carbon), N (nitrogen) and the compound remain in the steel in the steel sheet immediately before the final annealing. These all hinder the growth of grains during final annealing, which prevents them from growing to sufficient size. In addition, the impurities in the final product are damaging to the magnetic properties. This interferes with the movement of the magnetic domain and increases the iron loss. Among these impurities, C may be removed in the decarburization process, but nitrogen and sulfur compounds may remain.

일본 공개특허공보 평 9-316535(이하, '선행기술'이라 함)에는 C:0.01중량%이하, Si:1.0중량%이하, Al:0.2-1.5중량%, P:0.3중량%의 성분에 REM:0.0002-0.0080중량%을 첨가하여 강중의 불순물인 S(황) 또는 AlN(질화 알루미늄)을 제거하여 철손을 개선하는 방법을 제안한 바 있다. 이 선행기술에서 불순물은 REM(rare earth metal,희토류금속:원자번호가 57-71)으로 제거하는데, 이때의 첨가량의 한정이유는 0.0002중량%이하에서는 불순물제거 효과가 미미하며, 0.0080중량%이상에서는 오히려 자성을 열화시키기 때문이라고 그 이유를 밝히고 있다. 또한, 그 제조공정은, 상기와 같이 조성되는 용강을 연속주조에 의해 슬라브로 만들고 열간압연후 900℃에서 2분간 열연판소둔을 행하고 산세와 냉간압연을 거쳐 0.5mm두께로 만든다. 이후 800℃에서 15초간 최종소둔을 하고 절연피막을 도포하여 제품으로 만든다. 그러나, 선행기술에서는 열연판소둔을 반드시 행하고 있어 생산성이 떨어진다는 문제가 있다.Japanese Laid-Open Patent Publication No. 9-316535 (hereinafter referred to as 'prior art') includes REM in components of C: 0.01% by weight, Si: 1.0% by weight, Al: 0.2-1.5% by weight, and P: 0.3% by weight. A method of improving iron loss by removing S (sulfur) or AlN (aluminum nitride), which are impurities in steel, by adding 0.0002-0.0080 wt% has been proposed. In this prior art, impurities are removed by REM (rare earth metal: atomic number: 57-71), and the limited reason of addition amount is less than 0.0002% by weight, and the effect of removing impurities is less than 0.0080% by weight. Rather, the reason for the deterioration of magnetism is revealed. In addition, the manufacturing process, the molten steel formed as described above is made into slabs by continuous casting, hot-rolled annealing at 900 ℃ for 2 minutes after hot rolling, and made into 0.5mm thickness through pickling and cold rolling. After the final annealing for 15 seconds at 800 ℃ and coated with an insulating film to make a product. However, in the prior art, there is a problem in that the hot rolled sheet annealing is always performed, resulting in low productivity.

따라서, 본 발명은 열연판소둔을 생략하면서도 결정립성장과 집합조직생성을 적절히 유도하여 자기적특성의 우수한 무방향성전기강판의 제조방법을 제공하는데, 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for producing a non-oriented electrical steel sheet having excellent magnetic properties by appropriately inducing grain growth and texture formation while omitting hot rolled sheet annealing.

도 1은 최종소둔온도에 따른 자기적특성의 변화를 나타내는 그래프.1 is a graph showing the change in magnetic properties according to the final annealing temperature.

상기 목적을 달성하기 위한 본 발명은, 중량%로, C:0.01%이하, Si:1.0%이하, Al:0.10-1.0%, Mn:0.3%이하, P:0.03%이하, S:0.01%이하, N:0.0060%이하 및 REM:0.01%-0.1%, Sn:0.005-0.25%이고 나머지 Fe 및 불가피하게 함유되는 불순물로 이루어지는 규소강슬라브를 열간압연한 후 열연판소둔을 생략하고 산세한 다음, 탈탄소둔하고 이어 최종두께까지 1회 냉간압연한 후 연속소둔하는 것을 포함하여 구성된다.The present invention for achieving the above object, in weight%, C: 0.01% or less, Si: 1.0% or less, Al: 0.10-1.0%, Mn: 0.3% or less, P: 0.03% or less, S: 0.01% or less , Hot rolled silicon steel slab consisting of N: 0.0060% or less, REM: 0.01% -0.1%, Sn: 0.005-0.25%, and the remaining Fe and inevitable impurities, followed by hot-rolled sheet annealing, followed by pickling. Decarbonization followed by cold rolling once to final thickness followed by continuous annealing.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 특징은,Features of the present invention,

첫째 제조공정중 열연판소둔을 생략하는 것이며,First, the hot rolled sheet annealing is omitted during the manufacturing process.

둘째, 이로 인한 결정립의 미성장을 REM의 첨가량을 조절하여 막는 것이며,Second, to prevent the ungrowth of crystal grains by adjusting the amount of REM added,

셋째, REM의 첨가로 인해 열화되는 자성을 보상하기 위하여 Sn를 첨가하는데 있으며, 그 원리를 설명하면 다음과 같다.Third, Sn is added to compensate for the deterioration of magnetism due to the addition of REM.

무방향성 전기강판의 제조공정상에서 열연판소둔의 역할은, 최종적으로 강판이 가져야 하는 자기적성질의 요소들을 부여하는 중요한 부분이다. 특히, 결정립성장과 자기적특성에 유리한 집합조직의 형성에 관하여 더욱 중요하다. 따라서, 생산성향상을 위하여 열연판소둔을 생략할 경우, (1)결정립을 크게 할 수 있어야 하고, 또 (2)집합조직을 유리하게 형성할 수 있어야 한다.The role of hot-rolled sheet annealing in the manufacturing process of non-oriented electrical steel sheet is an important part to give the final magnetic properties of the steel sheet. In particular, it is more important with respect to the formation of aggregates that are advantageous for grain growth and magnetic properties. Therefore, when hot-rolled sheet annealing is omitted for the purpose of productivity improvement, (1) the grain size should be large and (2) the aggregate structure should be advantageously formed.

(1)본 발명은 REM를 최대한 첨가하여 결정립성장에 장애물이 되는 불순물을 제거하여 열연판소둔을 생략할 수 있도록 한다. 최종소둔직전의 강판내에 잔존하는 C(탄소), N(질소) 및 그 화합물이 결정립의 성장에 장애물이 되어 결정립이 충분한 크기로 성장하지 못하도록 방해를 한다. 또한, 최종제품에서의 불순물들은 자기적인 성질에 치명적인 해를 주며, 이는 자구의 이동을 방해하여 철손을 증가시키는 요인이 된다(1) In the present invention, the hot rolled sheet annealing can be omitted by removing impurities that are obstacles to grain growth by adding REM as much as possible. C (carbon), N (nitrogen), and the compound remaining in the steel sheet immediately before the final annealing are obstacles to the growth of the grains, which prevents the grains from growing to a sufficient size. In addition, impurities in the final product can cause fatal damage to magnetic properties, which impedes the movement of magnetic domains and increases iron loss.

이러한 불순물중 C는 탈탄공정에서 제거가 가능하나, 질소화합물과 황화합물의 경우는 잔류하게 된다. 따라서, 이를 충분히 제거하여야 결정립성장을 유도할 수 있고 이에 따라 열연판소둔을 생략할 수 있다. 본 발명에서는 이를 위해 REM을 충분히 첨가한다. REM(rare earth metal, 희토류금속:원자번호가 57-71임)은 원자반경이 Fe에 비해 1.5배 정도 클 뿐 아니라 황, 산소 및 질소화합물 등과 반응을 잘하므로 불순물들을 제거하기에 좋은 수단이다. 선행기술에서는 REM을 최대 0.008중량%로 한정하고 있는데, 이는 REM이 불순물을 제거하는 역할을 하지만 지나치게 많을 경우 REM자체가 강판의 자성을 해치기 때문이다. 그러나 열연판소둔을 생략하기 위하여는 더 많은 양의 불순물을 제거해야 하는데, 그러기 위해서는 위에서 언급한 선행기술에서 밝히고 있는 거 보다 더 많은 양의 REM이 필요로 한다. 따라서, 많은 양의 REM을 넣어서 불순물을 제거하면서, 이에 따라 발생하는 집합조직의 문제를 해결하는 것이 필요하다.Among these impurities, C can be removed in the decarburization process, but nitrogen and sulfur compounds remain. Therefore, it must be removed sufficiently to induce grain growth, and thus hot-rolled sheet annealing can be omitted. In the present invention, REM is sufficiently added for this purpose. REM (rare earth metal: rare earth metal: atomic number 57-71) is 1.5 times larger than that of Fe, and reacts well with sulfur, oxygen and nitrogen compounds, so it is a good means to remove impurities. The prior art limits the REM to a maximum of 0.008% by weight, because the REM serves to remove impurities, but if too much, the REM itself damages the magnetic properties of the steel sheet. However, in order to omit hot-rolled sheet annealing, it is necessary to remove a larger amount of impurities, which requires a larger amount of REM than that disclosed in the above-mentioned prior art. Therefore, it is necessary to solve the problem of aggregates generated by removing impurities by inserting a large amount of REM.

(2) 본 발명은 많은 양의 REM의 첨가에 따른 집합조직의 문제를 Sn첨가로 개선한다. 즉, REM은 강판의 자성에 유리한(100),(110)면의 집적도를 낮추게 되며, 자성에 불리한(111)면의 집적도를 높이게 된다. 한편, Sn은 결정립계에 편석하는 성질을 가지고 있으므로 결정립계에서 우선적으로 핵생성되는 (111)면의 발달을 억제할 뿐 아니라 입내에서의 핵생성을 조장하여(110)면의 발달을 촉진시켜준다. 따라서, REM과 Sn을 동시에 첨가하면 REM첨가에 따른 집합조직의 열화를 막을 수 있다.(2) The present invention improves the problem of texture by adding Sn in large amounts of REM. That is, the REM lowers the degree of integration of the (100) and (110) planes, which are advantageous for the magnetism of the steel sheet, and increases the degree of integration of the (111) planes, which is disadvantageous for the magnetic. On the other hand, since Sn has a property of segregating at the grain boundary, it not only inhibits the development of the (111) plane preferentially nucleated at the grain boundary but also promotes the development of the (110) plane by promoting nucleation in the mouth. Therefore, when REM and Sn are added at the same time, it is possible to prevent deterioration of the texture due to the addition of REM.

이러한 원리에 의해 설계된 본 발명의 규소강슬라브는 REM, Sn이외에 C, Si, Al, Mn, P, S, N를 포함하여 구성되는데, 이들의 성분 한정이유를 설명하면 다음과 같다.Silicon steel slab of the present invention designed according to this principle is composed of C, Si, Al, Mn, P, S, N in addition to REM, Sn, when explaining the reasons for the limitation of these components are as follows.

상기 C는 열간압연과 소둔공정을 거치면서 0.005%정도 자연적으로 탈탄되고, 최종제품에 0.005%이상 함유되어 있으면 자성이 열화되므로 이를 고려하여 강슬라브에는 0.01%이하 함유되도록 한다.The C is decarburized about 0.005% naturally during the hot rolling and annealing process, and if it is contained in the final product more than 0.005%, the magnetic deterioration is taken into consideration so that the steel slab is contained less than 0.01%.

상기 Si는 비저항 증가에 의한 철손감소를 위하여 많이 넣을수록 좋으나, 본 발명이 Si함유량이 약 1.0%이하의 중저급재 무방향성 전기강판을 대상으로 하는 측면에서 1.0%이하로 한다.The Si is better to put a lot to reduce the iron loss due to the increase in the resistivity, but the present invention is less than 1.0% in terms of the medium-low grade non-oriented electrical steel sheet of about 1.0% or less.

상기 Al은 비저항을 증가시켜 철손을 낮추고, 미세한 AlN석출에 의해 결정립성장이 억제되는 형상을 제거하기 위하여 0.01%에서 1.0%범위로 한다.The Al is in the range of 0.01% to 1.0% to increase the specific resistance to lower the iron loss and to remove the shape in which grain growth is suppressed by fine AlN precipitation.

상기 Mn은 유화물 등의 비금속개재물을 형성하기 쉬우므로 종래는 무방향성전기강판의 자기적특성향상에 이용되지 않았지만 제강기술의 발전에 힘입어 고순도강 제조기술이 가능해지면서 그 이용이 가능하게 되었다. Mn은 비저항을 증가시켜 철손을 감소시킬 뿐만 아니라 자기적특성에 유리한(100),(110)면의 집적도를 높이는 반면에 자기적특성에 불리한(111)면의 집적도는 크게 감소시키고 결정립을 성장시키는 작용을 한다. 그러나 과도하게 함유될 경우 Sn의 작용을 소멸시키게 되므로 0.3%이하로 한다.Since Mn is easy to form non-metallic inclusions such as emulsions, conventionally, Mn has not been used to improve the magnetic properties of non-oriented electrical steel sheets, but with the development of steelmaking technology, high-purity steel manufacturing technology becomes possible, and thus its use is possible. Mn not only decreases iron loss by increasing resistivity, but also increases the degree of integration of (100) and (110) planes, which are beneficial to magnetic properties, while Mn greatly reduces the density of (111) planes, which is disadvantageous to magnetic properties, and increases grain size. It works. However, if excessively contained will destroy the action of Sn, so less than 0.3%.

상기 P은 타발작업성을 개선하기 위한 것으로, Si, Al등 합금원소의 함유량이 많은 경우에 P의 양이 많아wu 취성이 커지므로 0.03%이하로 한정한다.The P is for improving the punchability, and when the content of alloying elements such as Si and Al is large, the amount of P is large and wu brittleness is increased, so it is limited to 0.03% or less.

상기 S와 N은 자성에 유해한 비금속개재물을 생성시키므로 각각 0.01%이하와 0.006%이하로 한다.S and N are less than 0.01% and less than 0.006%, respectively, because they produce non-metallic inclusions that are harmful to magnetism.

상기 REM은 강종의 불순물로 존재하는 황화물, 질화물 및 산화물 등을 포함하여 결정립이 성장하는데 방해가 되는 요소들을 제거한다. 첨가량의 범위는 0.01-0.1%로 하는 것이 좋은데, 이는 0.01%이하는 그 효과가 미미하며, 0.1%이상은 Sn의 첨가에도 불구하고 강판의 자성이 열화된다. 이러한 REM은 미쉬메탈도 가능한데, 이는 세륨족 희토류 원소의 혼합물로 정련과정의 반성품이다. 그 성분은 통상 Ce:40-50%, La:20-40%를 포함하며, 이외에도 Nd:15-20%, Pr:3-6%가 함유될 수 있다. 이러한 미쉬메탈은 정련과정의 반성품이므로 희토류원소 보다 저렴하다. 특히, 희토류원소가 산소와의 친화력이 높아 용탕산화 및 증발에 의해 많은 회수손실이 발생할 수 있으나, 미쉬메탈은 정련과정의 반제품이어서 화학적으로 안정하여 제강공정의 성분관리가 용이하다는 장점이 있다.The REM removes elements that interfere with grain growth, including sulfides, nitrides, and oxides, which are present as impurities of steel grades. The amount of addition is preferably in the range of 0.01-0.1%, which is less than 0.01%, and the effect is less than 0.1%. These REMs can also be a mismetal, which is a mixture of cerium rare earth elements and is a reflection of the refining process. The component usually contains Ce: 40-50%, La: 20-40%, and may also contain Nd: 15-20% and Pr: 3-6%. Such a metal is cheaper than a rare earth element because it is a reflection of the refining process. In particular, the rare earth element has a high affinity with oxygen, which can cause a large recovery loss due to the oxidation and evaporation of the melt. However, since the metal is a semi-finished product in the refining process, it is chemically stable and easy to manage the composition of the steelmaking process.

상기 Sn은 결정립계에 편석하는 성질을 가지고 있으므로 결정립계에서 우선적으로 핵생성되는 (111)면의 발달을 억제할 뿐 아니라 입내에서의 핵생성을 조장하여(110)면의 발달을 촉진시켜 준다. 이러한 효과가 발휘되기 위해서는 0.005%이상이 필요한 반면 0.25%이상이 되어도 이러한 효과는 포화될 뿐만 아니라 냉간압연시 판파단이 발생하게 되고 제조원가도 상승하게 되므로 Sn은 0.005-0.25%범위가 적당하다.Since Sn has a property of segregating at the grain boundary, it not only inhibits the development of the (111) plane preferentially nucleated at the grain boundary but also promotes the development of the (110) plane by promoting nucleation in the mouth. To achieve this effect, 0.005% or more is required, but even if 0.25% or more, the effect is not only saturated, but also breakage occurs during cold rolling and manufacturing cost increases, so Sn is suitable in the range of 0.005-0.25%.

이하 본 발명의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of the present invention will be described.

상기와 같이 조성되는 슬라브를 통상의 방법으로 열간압연하는데, 이때의 마무리압연온도는 약 900℃이상에서 행할 수 있다. 이와 같이 열간압연하고 권취하는데, 이때의 권취온도는 통상과 같이 650℃이상도 좋으나 바람직하게는 고온권취하는 즉, 700-800℃의 온도에서 행하는 것이다. 고온권취한 다음, 압연판소둔을 생략하고 산세를 거쳐 1회의 냉간압연을 통하여 최종두께로 만든다. 최종 두께로 된 냉연판은 탈탄소둔하고, 연속소둔(최종소둔)하여 최종제품을 얻는다.The slab formed as described above is hot rolled by a conventional method, and the finish rolling temperature at this time can be performed at about 900 ° C or more. In this manner, hot rolling and winding are performed. The winding temperature at this time may be 650 ° C. or higher as usual, but preferably high temperature winding, that is, at a temperature of 700-800 ° C. After hot winding, the rolled sheet annealing is omitted and subjected to pickling to form a final thickness through one cold rolling. The cold rolled sheet having the final thickness is decarbonized and continuously annealed (final annealed) to obtain the final product.

최종제품의 자기적성질은 최종소둔온도에 따라 변화한다. 일반적으로 최종소둔온도는 800-1000℃사이에서 이루어지며, 이때 소둔온도가 높을수록 자기적 특성이 좋게 나타난다. 이는 소둔온도가 높을수록 결정립을 가지며 집합조직 또한 유리하게 형성되기 때문이다. 보다 바람직하게는 비산화성 분위기로 950-1100℃의 온도에서 30초-10분간 연속소둔하는 것이다. 이는 소둔온도가 950℃미만이면 결정립성장이 다소 미흡하고 1100℃보다 높으면 결정립은 크게 성장하나 집합조직이 자기적특성에 불리하게 발달되므로 소둔온도는 950-1100℃범위가 적당하다. 또한 소둔온도를 적절히 유지하더라도 소둔시간이 30초 미만이면 결정립성장이 미흡하고, 10분보다 길어지면 결정립은 커지나 집합조직은 오히려 자기적 특성에 불리해지므로 소둔시간은 30초-10분이 바람직하다.The magnetic properties of the final product change with the final annealing temperature. In general, the final annealing temperature is made between 800-1000 ℃, the higher the annealing temperature, the better the magnetic properties. This is because the higher the annealing temperature, the more grains are formed and the texture is advantageously formed. More preferably, it is continuous annealing at a temperature of 950-1100 ° C. for 30 seconds to 10 minutes in a non-oxidizing atmosphere. If the annealing temperature is less than 950 ℃ grain growth is somewhat inadequate and higher than 1100 ℃ grain growth is large, but the annealing temperature is developed adversely to the magnetic properties, so the annealing temperature range of 950-1100 ℃ is appropriate. In addition, even if the annealing temperature is properly maintained, if the annealing time is less than 30 seconds, the grain growth is insufficient. If the annealing time is longer than 10 minutes, the grain size becomes large, but the texture is rather disadvantageous to magnetic properties, so the annealing time is preferably 30 seconds to 10 minutes.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

아래 표 1과 같은 성분을 갖는 규소강슬라브를 1200℃에서 가열하여 두께 2.0mm로 열간압연하고 800℃의 온도에서 권취하였다. 이어 열연판소둔을 하지 않고 바로 산세를 거쳐 두께 0.5mm로 1회 냉간압연을 실시하였다. 이후 최종열처리를 950℃에서 5분간 실시하여 최종제품으로 제조하였다. 이때 REM을 희토류금속으로 미쉬메탈(misch matal)을 사용하였는데, 이 미쉬메탈은 주성분이 Ca:49중량%, La:25중량%, Nb:18중량%, Pr:5.4중량%로 이루어진 것이다.The silicon steel slab having the components shown in Table 1 below was heated at 1200 ° C., hot rolled to a thickness of 2.0 mm, and wound up at a temperature of 800 ° C. Subsequently, cold rolling was performed once with a thickness of 0.5 mm without pickling after hot roll annealing. After the final heat treatment was performed for 5 minutes at 950 ℃ to produce a final product. At this time, REM was used as a rare earth metal (misch matal), which is composed of the main component Ca: 49% by weight, La: 25% by weight, Nb: 18% by weight, Pr: 5.4% by weight.

상기와 같이 제조된 시편에 대하여 자기적특성을 측정하여 W15/50과 B50에 대하여 나타내었다. 나타낸 값은 강판의 압연방향과 압연직각 방향의 평균치이다.Magnetic properties of the specimens prepared as described above were measured and shown for W 15/50 and B 50 . The value shown is the average value of the rolling direction of a steel plate and a rolling right direction.

강번호Lecture number 강중 화학성분(중량%)Chemical composition in steel (% by weight) 자기적성질Magnetic properties 결정립크기(㎛)Crystal grain size (㎛) 비고Remarks CC SiSi AlAl MnMn PP SS REMREM SnSn W15/50 W 15/50 B50 B 50 1One 0.0050.005 0.820.82 0.230.23 0.260.26 0.0260.026 0.0080.008 -- -- 4.4744.474 1.6821.682 46.546.5 비교재Comparative material 22 0.0030.003 0.810.81 0.240.24 0.250.25 0.0270.027 0.0060.006 0.030.03 -- 4.2814.281 1.6751.675 48.148.1 비교재Comparative material 33 0.0040.004 0.820.82 0.250.25 0.250.25 0.0260.026 0.0080.008 0.060.06 -- 4.1394.139 1.6711.671 67.667.6 비교재Comparative material 44 0.0030.003 0.800.80 0.240.24 0.250.25 0.0270.027 0.0090.009 0.090.09 -- 4.1024.102 1.6891.689 75.575.5 비교재Comparative material 55 0.0030.003 0.800.80 0.240.24 0.240.24 0.0260.026 0.0050.005 0.120.12 -- 4.5044.504 1.6711.671 49.849.8 비교재Comparative material 66 0.0030.003 0.800.80 0.250.25 0.250.25 0.0250.025 0.0050.005 0.060.06 0.10.1 4.0204.020 1.7601.760 46.846.8 발명재Invention *W15/50:자속밀도 1.5Tesia, 주파수 50Hz에서의 철손값*B50:자장의 세기가5000A일 때의 자속밀도값* W 15/50 : Magnetic flux density at magnetic flux density of 1.5 Tesia and frequency of 50 Hz * B 50 : Magnetic flux density at magnetic field strength of 5000 A

표 1에서 보는 바와 같이, REM을 첨가하지 않은 강 보다 REM을 첨가한 강의 결정립이 모두 큰 것을 볼 수 있으며 철손 또한, 낮아지는 것을 볼 수 있다. REM을 0.09%첨가한 4번강의 경우 결정립이 가장 크며, 철손이 가장 낮게 나타났다. 그러나, 자속밀도는 비교재에 비하여 낮았다. 이는 열연판 소둔의 생략으로 인하여 자성에 유리한(100)과(110)면의 형성이 미흡하기 때문이다.As shown in Table 1, it can be seen that all the grains of REM-added steels are larger than those without REMs, and iron loss is also lowered. In case of steel 4 added with 0.09% REM, grain size was the largest and iron loss was the lowest. However, the magnetic flux density was lower than that of the comparative material. This is because the formation of the (100) and (110) surfaces favorable to the magnetism is insufficient due to the omission of the hot rolled sheet annealing.

상기 표 1에서 6번 강인 발명재는 REM을 0.06중량%를 첨가한 것에 Sn를 0.1중량%를 첨가 한 것이다. 자속밀도가 다른 것에 비하여 월등히 좋아졌으며, 또한 철손도 낮아진 것을 볼 수 있다.Inventive material ten times in Table 1 is the addition of 0.1% by weight of Sn to the addition of 0.06% by weight of REM. The magnetic flux density is much better than the others, and the iron loss is also lowered.

[실시예2]Example 2

중량%로 C:0.003%, Si:0.80%, Al:0.25%, Mn:0.25%, P:0.025%, S:0.005%, N:0.0050 % 및 REM:0.0061%, Sn: 0.1%이고 나머지 Fe 및 불가피하게 첨가되는 불순물로 이루어지는 규소강슬라브를 1200℃의 온도에서 재가열하고 열간압연한 다음, 730℃의 온도에서 권취하고 열연판소둔을 생략하고 산세후 최종두께까지 1회 냉간압연하여 최종소둔 700-1000℃까지 5분간 행하였다. 상기와 같이 제조된 시편에 대한 자기적특성을 도 1에 나타내었다. 나타낸 값은 강판의 압연방향과 압연직각 방향의 평균치이다.By weight C: 0.003%, Si: 0.80%, Al: 0.25%, Mn: 0.25%, P: 0.025%, S: 0.005%, N: 0.0050% and REM: 0.0061%, Sn: 0.1% and the remaining Fe And reheating and hot rolling the silicon steel slab made of impurities which are inevitably added at a temperature of 1200 ° C., followed by winding at a temperature of 730 ° C., omitting the hot rolled sheet annealing, and cold rolling once to the final thickness after pickling. It carried out for 5 minutes to -1000 degreeC. Magnetic properties of the specimens prepared as described above are shown in FIG. 1. The value shown is the average value of the rolling direction of a steel plate and a rolling right direction.

도 1에서 보는 바와 같이 최종소둔온도가 높을수록 자기적특성이 좋아지는 것으로 나타난다. 그러나, 1100℃이상에서는 오히려 자성이 나빠질 것으로 예상된다.As shown in FIG. 1, the higher the final annealing temperature, the better the magnetic properties. However, the magnetic properties are expected to worsen above 1100 ℃.

상술한 바와 같이, 본 발명은 열연판소둔을 생략하고도 자기적특성이 열연판소둔을 행하는 선행기술의 동등이상의 수준을 유지할 수 있는 효과가 있는 것이다.As described above, the present invention has the effect that the magnetic properties can be maintained at a level equal to or higher than that of the prior art in which the hot rolled sheet annealing is performed even if the hot rolled sheet annealing is omitted.

Claims (3)

중량%로, C:0.01%이하, Si:1.0%이하, Al:0.10-1.0%, Mn:0.3%이하, P:0.03%이하, S:0.01%이하, N:0.0060%이하 및 REM:0.01%-0.1%, Sn:0.005-0.25%이고 나머지 Fe 및 불가피하게 함유되는 불순물로 이루어지는 규소강슬라브를 열간압연한 후 열연판소둔을 생략하고 산세한 다음, 탈탄소둔하고 이어 최종두께까지 1회 냉간압연한 후 연속소둔하여 이루어지는 자기적특성이 우수한 무방향성 전기강판의 제조방법.By weight%, C: 0.01% or less, Si: 1.0% or less, Al: 0.10-1.0%, Mn: 0.3% or less, P: 0.03% or less, S: 0.01% or less, N: 0.0060% or less and REM: 0.01 Hot-rolled silicon steel slab consisting of% -0.1%, Sn: 0.005-0.25% and the remaining Fe and inevitable impurities, followed by hot-rolled sheet annealing, pickling, decarbonization annealing, and then cold once to final thickness Method for producing a non-oriented electrical steel sheet excellent in magnetic properties formed by continuous annealing after rolling. 제 1항에 있어서, 상기 REM은 Ce:40-50%, La:20-40%를 포함하는 미쉬메탈임을 특징으로 하는 제조방법.The method of claim 1, wherein the REM is a mischmetal including Ce: 40-50% and La: 20-40%. 제 1항에 있어서, 상기 연속소둔은 950-1100℃의 온도에서 30초-10분간 행함을 특징으로 하는 제조방법.The method of claim 1, wherein the continuous annealing is performed for 30 seconds to 10 minutes at a temperature of 950-1100 ° C.
KR10-1998-0057106A 1998-12-22 1998-12-22 A method of manufacturing non-oriented electrical steel sheet having superior magnetic properties KR100398389B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0057106A KR100398389B1 (en) 1998-12-22 1998-12-22 A method of manufacturing non-oriented electrical steel sheet having superior magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0057106A KR100398389B1 (en) 1998-12-22 1998-12-22 A method of manufacturing non-oriented electrical steel sheet having superior magnetic properties

Publications (2)

Publication Number Publication Date
KR20000041270A true KR20000041270A (en) 2000-07-15
KR100398389B1 KR100398389B1 (en) 2003-12-18

Family

ID=19564507

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0057106A KR100398389B1 (en) 1998-12-22 1998-12-22 A method of manufacturing non-oriented electrical steel sheet having superior magnetic properties

Country Status (1)

Country Link
KR (1) KR100398389B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530047B1 (en) * 2001-03-05 2005-11-22 주식회사 포스코 A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
CN117737594A (en) * 2024-02-19 2024-03-22 内蒙古矽能电磁科技有限公司 Rare earth-containing ultrathin oriented silicon steel and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215627A (en) * 1990-01-19 1991-09-20 Nippon Steel Corp Production of nonoriented silicon steel sheet
JP3430794B2 (en) * 1996-05-27 2003-07-28 Jfeスチール株式会社 Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
KR100345706B1 (en) * 1996-12-09 2002-09-18 주식회사 포스코 Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
KR100340548B1 (en) * 1997-11-26 2002-07-18 이구택 A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR100544417B1 (en) * 1998-12-16 2006-04-06 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530047B1 (en) * 2001-03-05 2005-11-22 주식회사 포스코 A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
CN117737594A (en) * 2024-02-19 2024-03-22 内蒙古矽能电磁科技有限公司 Rare earth-containing ultrathin oriented silicon steel and preparation method thereof
CN117737594B (en) * 2024-02-19 2024-05-07 内蒙古矽能电磁科技有限公司 Rare earth-containing ultrathin oriented silicon steel and preparation method thereof

Also Published As

Publication number Publication date
KR100398389B1 (en) 2003-12-18

Similar Documents

Publication Publication Date Title
EP3404124B1 (en) Non-oriented electrical steel sheet and production method thereof
EP3037564B1 (en) Non-oriented electrical steel sheet and hot-rolled steel sheet thereof
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
KR100398389B1 (en) A method of manufacturing non-oriented electrical steel sheet having superior magnetic properties
KR20000039855A (en) Method for producing non-oriented electric steel plate having excellent magnetism
KR100832342B1 (en) Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JPWO2020090156A1 (en) Manufacturing method of non-oriented electrical steel sheet
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR20000043790A (en) Method for producing non-oriented electric strip with low iron loss
KR19990033508A (en) Manufacturing method of non-oriented electrical steel sheet
WO2023149248A1 (en) Non-oriented electromagnetic steel sheet and method for producing same
KR910003880B1 (en) Making process for electrical sheet
WO2023149249A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
KR100368722B1 (en) Non-oriented electrical steel sheet with excellent magnetic properties and its manufacturing method
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
KR100237157B1 (en) The manufacturing method for non orient electric steel sheet with excellent high frequency property
KR100544610B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
JPH07216516A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JPH11293426A (en) Non-oriented silicon steel sheet excellent in fatigue property
KR100501000B1 (en) Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JPH1112700A (en) Non-oriented electrical sheet having low iron loss

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120821

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140828

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150902

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160905

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170904

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee