KR20000033455A - Method for manufacturing arrays of optoelectronic device by selective growth of carbon nanotube on silicon substrate - Google Patents

Method for manufacturing arrays of optoelectronic device by selective growth of carbon nanotube on silicon substrate Download PDF

Info

Publication number
KR20000033455A
KR20000033455A KR1019980050313A KR19980050313A KR20000033455A KR 20000033455 A KR20000033455 A KR 20000033455A KR 1019980050313 A KR1019980050313 A KR 1019980050313A KR 19980050313 A KR19980050313 A KR 19980050313A KR 20000033455 A KR20000033455 A KR 20000033455A
Authority
KR
South Korea
Prior art keywords
silicon substrate
conductive material
thin film
insulation film
insulating thin
Prior art date
Application number
KR1019980050313A
Other languages
Korean (ko)
Other versions
KR100303294B1 (en
Inventor
이영희
이철진
Original Assignee
이영희
이철진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이영희, 이철진 filed Critical 이영희
Priority to KR1019980050313A priority Critical patent/KR100303294B1/en
Publication of KR20000033455A publication Critical patent/KR20000033455A/en
Application granted granted Critical
Publication of KR100303294B1 publication Critical patent/KR100303294B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/88Mounting, supporting, spacing, or insulating of electrodes or of electrode assemblies
    • H01J1/96Spacing members extending to the envelope

Abstract

PURPOSE: A method for manufacturing arrays of optoelectronic device is provided to fabricate field emitting devices at relatively high pressure and to achieve high yield and reproducibility, wherein the field emitting device has a large field emitting area and generates a large emitting current at low supply voltage. CONSTITUTION: A method for manufacturing arrays of an optoelectronic device comprises forming electronic devices(2) on a silicon substrate(1), depositing an insulation film(3) on the electronic devices(2) at low temperature, planarizing the insulation film(3), opening vias(4) in the insulation film(3), filling the vias(4) with a conductive material(5), depositing a metal layer(6) on the insulation film(3) and conductive material(5), depositing another insulation film(7) on the metal layer(6) at low temperature, forming pinholes(8) in the insulation film(7), selectively growing carbon nanotubes(9) only on the metal layer(6) inside the pinholes(8) by CVD, filling the pinholes(8) with a liquid-phase insulating material(10), hardening the insulating material(10), attaching a conductive material(11) on the insulation film(7) and insulating material(10), and attaching a fluorescent material on the conductive material(11)

Description

실리콘 기판에서 탄소나노튜브의 선택적 성장을 이용한 광전자소자의 어레이 제작.Fabrication of Optoelectronic Devices Using Selective Growth of Carbon Nanotubes on Silicon Substrates.

본 발명은 실리콘 기판에서 탄소나노튜브의 선택적 성장을 이용한 광전자소자의 어레이 제작에 관한 것으로서, 특히 실리콘 기판에서 탄소나노튜브의 선택적 성장을 이용하여 전자소자의 상부에 FED를 고밀도로 집적화시키는 것이 가능하며, 또한 FED 제작시 진공이 필요하지 않는 광전자소자의 어레이 제작에 관한 것이다.The present invention relates to the fabrication of an array of optoelectronic devices using the selective growth of carbon nanotubes on a silicon substrate, and in particular, it is possible to integrate the FED on the top of an electronic device at a high density using the selective growth of carbon nanotubes on a silicon substrate. In addition, the present invention relates to fabrication of an array of optoelectronic devices in which no vacuum is required for fabricating an FED.

종래의 광전자소자는 실리콘 재료를 이용하여 전자소자와 광소자를 동시에 집적하는것이 매우 어렵기 때문에 주로 화합물반도체를 사용하여 제작하였다. 그러나 화합물반도체기판은 가격이 비쌀 뿐만아니라 결정성장시 결함이 많이 발생하고 또한 대면적 결정성장이 어렵기 때문에 기술적으로나 경제적으로나 소자제작시 많은 제약을 받아왔다. 또한 광전자소자를 집적시킬 때, 전자소자와 광소자를 수평적으로 배치함으로서 고밀도 집적화가 어려웠다. 기존의 실리콘 기판을 이용한 광소자로서, 실리콘 기판을 식각하는 방법에 의해 만들어진 실리콘 탐침을 이용하는 기존의 FED는 소자 제작공정에서 약10-9Torr의 고진공이 요구되고, 식각공정을 사용하여 약 1.5 nm 정도의 간격으로 양극과 음극을 분리해야하는 제조공정상의 어려움이 있고, 또한 고전류 방출에 의한 실리콘 탐침의 열화로 인하여 누설전류가 크고 소자의 신뢰성 및 성능저하가 발생하기 때문에 이러한 FED를 이용한 광전자소자의 제작은 거의 불가능한 것으로 인식되고 있다. 한편 이러한 실리콘 탐침을 이용한 FED의 문제점을 개선하기 위해서 제시된 탄소나노튜브를 이용한 기존의 FED는 탄소나노튜브를 전기방전법에 의해 성장시킨 후, 합성된 탄소나노튜브를 정제시킨 다음, 다공성 세라믹 필터위에 부어 필터의 기공에 탄소나노튜브를 주입시키고, 이어서 실리콘 기판위에 전도성 고분자를 부착시킨 후, 세라믹필터의 기공에 들어있는 탄소나노튜브를 상기 전도성 고분자위에 찍어 세운 다음, 상기 전도성 고분자위에 spacer를 넣고 그 위에 50 %개구율을 가진 그리드를 부착시킨 후, 약 10-7Torr 이상인 고진공을 유지하면서 상기 그리드 윗부분에 형광체를 부착시킨 다음, 상기 형광체위에 상부전극을 증착시킴으로서 제작된다. 이러한 구조의 탄소나노튜브를 이용한 FED는 상기 실리콘 탐침을 이용한 FED에비해 안정성이 뛰어나지만, 제조 공정상의 커다란 제약요인인 고진공을 여전히 유지해야하는 문제점을 가지고 있고, 탄소나노튜브의 정제과정이 어렵고 수율이 낮아 실용성이 떨어질 뿐만아니라 소자 적용시 제조공정이 복잡하여 응용에 어려움이 많았다.Conventional optoelectronic devices are mainly manufactured using compound semiconductors because it is very difficult to integrate electronic devices and optical devices simultaneously using silicon materials. However, compound semiconductor substrates are not only expensive but also have many defects in crystal growth, and large-area crystal growth is difficult. In addition, when integrating an optoelectronic device, it is difficult to integrate high density by placing the electronic device and the optical device horizontally. Conventional FED using a silicon probe made by a method of etching a silicon substrate as an optical device using a conventional silicon substrate requires a high vacuum of about 10 -9 Torr in the device fabrication process, about 1.5 nm using an etching process There are difficulties in the manufacturing process to separate the positive and negative electrodes at intervals, and because the leakage of the silicon probe due to the deterioration of the silicon probe due to the high current emission, and the reliability and performance of the device occurs, the fabrication of optoelectronic devices using such FED Is perceived as almost impossible. On the other hand, the conventional FED using carbon nanotubes proposed to improve the problem of the FED using the silicon probe, after growing the carbon nanotubes by the electric discharge method, purified the synthesized carbon nanotubes, and then on the porous ceramic filter After injecting carbon nanotubes into the pores of the filter, and then attaching a conductive polymer on the silicon substrate, the carbon nanotubes contained in the pores of the ceramic filter are dipped onto the conductive polymer, and then a spacer is placed on the conductive polymer. After attaching a grid having a 50% opening ratio thereon, a phosphor is attached to the upper portion of the grid while maintaining a high vacuum of about 10 −7 Torr or more, and then the upper electrode is deposited on the phosphor. FED using carbon nanotubes having such a structure is more stable than FED using silicon probes, but still has a problem of maintaining high vacuum, which is a big constraint in the manufacturing process, and the purification process of carbon nanotubes is difficult and the yield is high. Low practicality and low application complexity due to the complicated manufacturing process.

본 발명은 상기 문제점을 해결하기 위하여 창출한 것으로서, 광전자소자의 어레이는 실리콘 기판위에 먼저 전자소자를 만들고 상기 전자소자의 상부에 광소자인 FED를 만들어 구성하였으며, 하부에 위치한 전자소자와 상부에 위치하는 광소자는 via contact 공정을 사용하여 연결시켰다. 특히 본 발명에 의한 광전자소자의 어레이에서 광소자로 사용하는 FED는 소자 제작시 고진공을 유지시킬 필요가 없고, 제작방법이 매우 간단하면서도 넓은 전계방출 면적을 확보할 수 있으며, 낮은 인가전압으로 큰 방출전류를 얻을 수 있고, 단위면적당 매우 높은 밀도를 갖기 때문에 방출 전류의 값을 크게 높일 수 있으며, 또한 한개의 픽셀당 여러 개의 방출 탐침을 담을 수 있기 때문에 재현성 및 수율을 높일 수 있다.The present invention has been made to solve the above problems, an array of optoelectronic devices are first made of an electronic device on a silicon substrate and made of an optical device FED on top of the electronic device, the electronic device located on the bottom and Optical devices were connected using the via contact process. In particular, the FED used as an optical device in the array of optoelectronic devices according to the present invention does not need to maintain a high vacuum when manufacturing the device, the manufacturing method is very simple and can secure a large field emission area, a large emission current with a low applied voltage It can be obtained, and because of the very high density per unit area can greatly increase the value of the emission current, and also because it can contain several emission probes per pixel can be improved reproducibility and yield.

본 발명에 의하면 실리콘 기판위에 전자소자와 광소자를 수직으로 배치시킴으로써 고밀도의 광전자소자를 집적화시키는 것이 가능하고, 아울러 제작방법이 아주 간단하면서도 성능과 신뢰성이 우수한 FED를 전자소자의 상부에 제조함으로써 실리콘 기판위에서 성능이 우수한 고밀도 광전자소자의 구조와 이러한 광전자소자의 제작방법을 제공하는데 목적이 있다.According to the present invention, it is possible to integrate high-density optoelectronic devices by vertically arranging electronic devices and optical devices on a silicon substrate, and the FED is manufactured on the top of the electronic device by manufacturing a FED on the top of the electronic device, which has a very simple manufacturing method and excellent performance and reliability. An object of the present invention is to provide a structure of a high-density optoelectronic device having excellent performance and a method of manufacturing such an optoelectronic device.

도 1은 본 발명에 의한 실리콘 기판에서 탄소나노튜브의 선택적 성장을 이용한 광전자소자의 어레이에 대한 구조도이다.1 is a structural diagram of an array of optoelectronic devices using selective growth of carbon nanotubes in a silicon substrate according to the present invention.

상기 목적을 달성하기 위한 본 발명에 따른 탄소나노튜브의 선택적 성장을 이용한 광전자소자 어레이의 제조방법은 먼저 실리콘 기판(1)위에 전자소자(2)를 제작한 후, 상기 전자소자(2)의 상부에 저온에서 절연박막(3)을 퇴적시키고나서 상기 절연박막(3)을 평탄화시킨다. 이어서 상기 전자소자(2)와 광소자인 FED를 전기적으로 연결하기 위한 via contact 구멍(4)을 상기 절연박막(3)에 형성시킨 후, 상기 via contact 구멍(4)의 내부에 전도성 물질(5)을 채워 넣은 다음, 상기 절연박막(3) 및 전도성 물질(5)위에 촉매금속막(6)을 증착시킨다.In the method for manufacturing an optoelectronic device array using the selective growth of carbon nanotubes according to the present invention for achieving the above object, first fabricating the electronic device (2) on the silicon substrate (1), the upper portion of the electronic device (2) After the insulating thin film 3 is deposited at low temperature, the insulating thin film 3 is planarized. Subsequently, a via contact hole 4 is formed in the insulating thin film 3 for electrically connecting the electronic device 2 and the FED, which is an optical device, and then a conductive material 5 is formed in the via contact hole 4. After filling, the catalyst metal film 6 is deposited on the insulating thin film 3 and the conductive material 5.

이어서 상기 촉매금속막(6)위에 저온에서 절연박막(7)을 퇴적시킨 후, 상기 절연박막(7)에 미세 구멍(8)을 형성시킨 후, 화학기상증착법으로 상기 미세 구멍(8)내의 상기 촉매금속막(6)위에서만 탄소나노튜브(9)를 선택적으로 성장시킨다. 이어서 상기 미세 구멍(8)에 액상의 절연물질(10)을 주입시킨 후 경화시키고, 상기 절연박막(7) 및 상기 절연물질(10)위에 전도성 물질(11)을 부착시킨 후, 상기 전도성 물질(11)위에 형광체(12)를 부착시키는 것을 특징으로 한다. 도 1은 본 발명에 의한 탄소나노튜브의 선택적 성장을 이용한 광전자소자 어레이의 구조도이다.Subsequently, an insulating thin film 7 is deposited on the catalyst metal film 6 at a low temperature, a fine hole 8 is formed in the insulating thin film 7, and then the chemical hole deposition method is used to form the fine hole 8. The carbon nanotubes 9 are selectively grown only on the catalytic metal film 6. Subsequently, the liquid insulating material 10 is injected into the fine holes 8 and cured, and then the conductive material 11 is attached to the insulating thin film 7 and the insulating material 10, and then the conductive material ( 11) It is characterized in that the phosphor 12 is attached on. 1 is a structural diagram of an optoelectronic device array using the selective growth of carbon nanotubes according to the present invention.

이하 본 발명의 실시 예를 상세히 설명하기로 한다. 먼저 실리콘 기판(1)위에 전자소자(2)를 제작한 후, 상기 전자소자(2)의 상부에 저온에서 절연박막(3)을 300 ∼ 800 nm 두께정도로 퇴적시키고 나서 상기 절연박막(3)을 평탄화시킨다. 이어서 상기 전자소자(2)와 광소자인 FED를 전기적으로 연결하기 위한 via contact 구멍(4)을 상기 절연박막(3)에 직경이 1μm 이하로 형성시킨 후, 상기 via contact 구멍(4)의 내부에 알루미늄이나 텅스텐이나 티타늄등과 같은 전도성 물질(5)을 완전히 채워 넣은 다음, 상기 절연박막(3) 및 전도성물질(5)위에 니켈이나 코발트나 니켈-코발트 합금등과 같은 촉매금속막(6)을 50 ∼ 200 nm 두께정도로 증착시킨다. 이어서 상기 촉매금속막(6)위에 0.5 ∼ 2.0μm 두께 범위의 실리콘 산화막이나 실리콘 질화막과 같은 절연박막(7)을 저온에서 퇴적시킨다. 이어서 사진식각방법을 사용하여 상기 절연박막(7)에 직경이 1 μm 이하인 미세 구멍(8)을 약 1.0 ∼ 4.0 μm 간격으로 형성시킨다. 그리고 나서 아세틸렌이나 에틸렌이나 메탄등과 같은 가스원료로 화학기상증착법을 이용하여 상기 미세 구멍(8)의 바닥에 노출된 상기 촉매금속막(6)위에서만 탄소나노튜브(9)를 선택적으로 성장시킨다. 이 경우 상기 탄소나노튜브(9)의 길이는 상기 절연박막(7)의 두께보다 작아야 한다. 이어서 상기 절연박막(7)에 형성된 상기 미세 구멍(8)에 스핀코팅법을 사용하여 내열특성이 우수한 폴리아미드 또는 SOG(spin on glass)와 같은 액상의 절연물질(10)을 채워 넣은 후, 전기로에서 400。C 이하의 열처리를 실시하여 액상의 상기 절연물질(10)을 경화시킨다. 이어서 알루미늄막 또는 알루미늄 합금막등과 같은 전도성물질(11)을 상기 절연박막(7) 및 상기 절연물질(10)위에 부착시킨 후, 상기 전도성 물질(11)위에 형광체(12)를 직접 부착시킨다.Hereinafter, embodiments of the present invention will be described in detail. First, the electronic device 2 is fabricated on the silicon substrate 1, and then the insulating thin film 3 is deposited on the upper portion of the electronic device 2 at a low temperature to about 300 to 800 nm, and then the insulating thin film 3 is deposited. Planarize. Subsequently, a via contact hole 4 for electrically connecting the electronic device 2 and an FED, which is an optical device, is formed in the insulating thin film 3 to have a diameter of 1 μm or less, and then inside the via contact hole 4. After the conductive material 5 such as aluminum, tungsten or titanium is completely filled, the catalytic metal film 6 such as nickel, cobalt or nickel-cobalt alloy is placed on the insulating thin film 3 and the conductive material 5. It is deposited to a thickness of 50 to 200 nm. Subsequently, an insulating thin film 7 such as a silicon oxide film or a silicon nitride film in a thickness range of 0.5 to 2.0 μm is deposited on the catalyst metal film 6 at low temperature. Subsequently, fine holes 8 having a diameter of 1 μm or less are formed in the insulating thin film 7 at intervals of about 1.0 to 4.0 μm using a photolithography method. Then, carbon nanotubes 9 are selectively grown only on the catalytic metal film 6 exposed to the bottom of the micropores 8 using chemical vapor deposition using a gaseous material such as acetylene, ethylene or methane. . In this case, the length of the carbon nanotubes 9 should be smaller than the thickness of the insulating thin film 7. Subsequently, the micropore 8 formed in the insulating thin film 7 is filled with a liquid insulating material 10 such as polyamide or spin on glass (SOG) having excellent heat resistance by using a spin coating method, followed by an electric furnace. At 400 ° C. or less to cure the insulating material 10 in a liquid phase. Subsequently, a conductive material 11 such as an aluminum film or an aluminum alloy film is attached to the insulating thin film 7 and the insulating material 10, and then the phosphor 12 is directly attached to the conductive material 11.

상술한 바와 같은 본 발명은 실리콘 기판(1)위에 전자소자(2)를 제작한 후, 상기 전자소자(2)의 상부에 저온에서 절연박막(3)을 퇴적시키고 나서 평탄화시킨 다음, via contact 구멍(4)을 형성시킨 후, 상기 via contact 구멍(4)의 내부에 전도성 물질(5)을 채워 넣은 후, 이어서 상기 절연박막(3) 및 상기 전도성 물질(5)위에 촉매금속막(6)을 증착시키고, 상기 촉매금속막(6)위에 절연박막(7)을 퇴적시킨 후, 상기 절연박막(7)에 미세 구멍(8)을 형성시킨 다음, 화학기상증착법을 이용하여 상기 미세 구멍(8)내의 상기 촉매금속막(6)위에서만 탄소나노튜브(9)를 선택적으로 성장시킨 다음, 상기 미세 구멍(8)에 액상의 절연물질(10)을 주입시킨 후 경화시키고, 이어서 상기 절연박막(7) 및 상기 절연물질(10)위에 상기 전도성물질(11)과 형광체(12)를 부착시키는 방법을 사용함으로서 제작 방법이 간단하면서도 고밀도 집적화가 가능하며, 재현성과 수율이 높은 광전자소자를 제작할 수 있는 장점을 가지고 있다. 특히 전계방출 탐침역할을 하는 상기 탄소나노튜브(9)를 상기 미세 구멍(8)내의 상기 촉매금속막(6)위에서만 선택적으로 성장시키고 아울러 상기 탄소나노튜브(9)와 상부 금속전극인 상기 전도성 물질(11)사이의 간극을 수 nm 정도의 두께로 폴리아미드와 같은 액상의 상기 절연물질(10)로 채워 진공을 제거시킴으로서 공정을 단순화시킬 뿐만아니라 탄소나노튜브 탐침의 안정성을 높이는 역할도 하게 된다. 또한 상기 탄소나노튜브(9)의 직경이 대략 수십 nm 이하로 매우 작기 때문에 전계 집적도가 높아지게 되어서 작은 인가전압으로도 높은 전류를 방출할 수 있다. 본 발명에 의하면 단위 면적당 고밀도의 광전자소자를 제작할 수 있고, 또한 광소자인 FED의 방출 전류의 값을 크게 높일 수 있고, 한개의 픽셀당 여러 개의 방출 탐침을 갖게되기 때문에 재현성과 수율이 우수한 광전자소자를 제작하는 것이 가능하다.According to the present invention as described above, after the electronic device 2 is fabricated on the silicon substrate 1, the insulating thin film 3 is deposited on the electronic device 2 at a low temperature, and then planarized. After forming (4), the conductive material (5) is filled in the via contact hole (4), and then the catalytic metal film (6) is deposited on the insulating thin film (3) and the conductive material (5). After depositing, depositing an insulating thin film 7 on the catalyst metal film 6, and forming a fine hole (8) in the insulating thin film (7), and then using the chemical vapor deposition method the fine hole (8) After selectively growing carbon nanotubes 9 only on the catalytic metal film 6 in the inside, the liquid insulating material 10 is injected into the fine holes 8 and cured, and then the insulating thin film 7 ) And by attaching the conductive material 11 and the phosphor 12 on the insulating material 10 But the manufacturing method is simple, high-density integration is possible, and has the advantage of producing an optoelectronic device having high reproducibility and yield. In particular, the carbon nanotubes 9, which act as field emission probes, are selectively grown only on the catalytic metal film 6 in the fine holes 8, and the carbon nanotubes 9 and the upper metal electrodes are electrically conductive. The gap between the materials 11 is filled with the insulating material 10 in a liquid such as polyamide to a thickness of several nm to remove the vacuum, thereby simplifying the process and increasing the stability of the carbon nanotube probe. . In addition, since the diameter of the carbon nanotubes 9 is very small, about tens of nm or less, the electric field integration degree is increased, and high current can be emitted even at a small applied voltage. According to the present invention, a high-density optoelectronic device can be manufactured per unit area, and the value of the emission current of the FED, which is an optical device, can be greatly increased, and a plurality of emission probes are provided per pixel. It is possible to produce.

상술한 바와 같이 본 발명에 의하면 실리콘 기판에서 탄소나노튜브의 선택적 성장을 이용하여 고집적도의 광전자소자의 어레이를 간단한 방법으로 제작할 수 있고, 또한 광소자인 FED가 넓은 전계방출 면적을 확보할 수 있으며, 낮은 인가전압에도 높은 방출전류를 얻을 수 있을 뿐만 아니라 한 개의 픽셀안에 여러 개의 방출원을 갖고 있어서 단위 면적당 매우 높은 집적도를 갖는 광전자소자의 어레이를 제작할 수 있다. 따라서 본 발명은 이제까지 실리콘 소자가 가지고 있던 커다란 단점인 광방출능력을 실질적으로 구현하는 것으로써, 실리콘 소자를 광전자소자로 응용할 수 있는 방법을 제시했다는 관점에서 그 기술적 의미가 매우 크다.As described above, according to the present invention, an array of high-density optoelectronic devices can be manufactured by a simple method using selective growth of carbon nanotubes on a silicon substrate, and an FED, which is an optical device, can secure a large field emission area. Not only can a high emission current be obtained at a low applied voltage, but also several emission sources are provided in one pixel, thereby making an array of optoelectronic devices having a very high density per unit area. Therefore, the present invention is very significant in terms of presenting a method for applying a silicon device as an optoelectronic device by substantially implementing a light emitting capability, which is a major disadvantage of silicon devices.

Claims (3)

실리콘 기판에서 탄소나노튜브의 선택적 성장을 이용한 광전자소자의 어레이 제작.Fabrication of Optoelectronic Devices Using Selective Growth of Carbon Nanotubes on Silicon Substrates. 제1항에 있어서, 실리콘 기판(1)위에 전자소자(2)를 제작한 후 상기 전자소자(2)의 상부에 절연박막(3)을 퇴적시키는 제1공정과, 상기 절연박막(3)을 평탄화시키는 제2공정과, 상기 절연박막(3)에 via contact 구멍(4)을 형성시키는 제3공정과, 상기 via contact 구멍(4)의 내부에 전도성 물질(5)을 채워 넣는 제4공정과, 상기 절연박막(3) 및 상기 전도성 물질(5)위에 촉매금속막(6)을 증착시키는 제5공정과, 상기 촉매금속막(6)위에 저온에서 절연박막(7)을 퇴적시키는 제6공정과, 상기 절연박막(7)에 미세 구멍(8)을 형성시키는 제7공정과, 화학기상증착법으로 상기 미세 구멍(8)내의 상기 촉매금속막(6)위에서만 탄소나노튜브(9)를 선택적으로 성장시키는 제8공정과, 상기 미세 구멍(8)에 액상의 절연물질(10)을 주입시킨후 경화시키는 제9공정과, 상기 절연박막(7) 및 절연물질(10)위에 전도성 물질(11)을 부착시키는 제10공정과, 상기 전도성 물질(11)위에 형광체(12)를 부착시키는 제11공정을 구비하는 것을 특징으로하는 실리콘 기판에서 탄소나노튜브의 선택적 성장을 이용한 광전자소자의 어레이를 제조하는 방법.The method according to claim 1, further comprising depositing the insulating thin film (3) on top of the electronic device (2) after fabricating the electronic device (2) on the silicon substrate (1). A second step of planarization, a third step of forming a via contact hole 4 in the insulating thin film 3, a fourth step of filling a conductive material 5 in the via contact hole 4; A fifth step of depositing a catalytic metal film 6 on the insulating thin film 3 and the conductive material 5 and a sixth step of depositing the insulating thin film 7 on the catalytic metal film 6 at a low temperature. And the carbon nanotubes 9 are selectively formed only on the catalyst metal film 6 in the fine holes 8 by the seventh step of forming the fine holes 8 in the insulating thin film 7 and by chemical vapor deposition. An eighth process of growing a film, a ninth process of injecting a liquid insulating material 10 into the fine holes 8, and then hardening the insulating thin film 7 and an insulating material (10) a tenth step of attaching the conductive material (11) on, and an eleventh step of attaching the phosphor (12) on the conductive material (11) selective growth of carbon nanotubes on the silicon substrate Method of manufacturing an array of optoelectronic devices using. 제1항에 있어서, 실리콘 기판에서 탄소나노튜브 선택적 성장을 이용한 광전자소자의 어레이 제작시 실리콘 기판(1)위에 전자소자(2)를 제작한 후 상기 전자소자(2)의 상부에 광소자를 제작하거나 또는 실리콘 기판(1)위에 전자소자(2)와 광소자를 수평으로 배치하여 광전자소자의 어레이를 제조하는 방법.The method of claim 1, wherein when fabricating an array of optoelectronic devices using carbon nanotube selective growth on a silicon substrate, an electronic device 2 is fabricated on the silicon substrate 1, and then an optical device is fabricated on the electronic device 2. Or arranging an electronic device (2) and an optical device horizontally on a silicon substrate (1) to produce an array of optoelectronic devices.
KR1019980050313A 1998-11-24 1998-11-24 Method of manufacturing optoelectronic devices by using selective growth of the carbon nanotubes on the silicon substrate KR100303294B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980050313A KR100303294B1 (en) 1998-11-24 1998-11-24 Method of manufacturing optoelectronic devices by using selective growth of the carbon nanotubes on the silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980050313A KR100303294B1 (en) 1998-11-24 1998-11-24 Method of manufacturing optoelectronic devices by using selective growth of the carbon nanotubes on the silicon substrate

Publications (2)

Publication Number Publication Date
KR20000033455A true KR20000033455A (en) 2000-06-15
KR100303294B1 KR100303294B1 (en) 2001-11-22

Family

ID=19559400

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980050313A KR100303294B1 (en) 1998-11-24 1998-11-24 Method of manufacturing optoelectronic devices by using selective growth of the carbon nanotubes on the silicon substrate

Country Status (1)

Country Link
KR (1) KR100303294B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100372335B1 (en) * 1999-11-05 2003-02-17 일진나노텍 주식회사 Synthesis method for controlling diameter of carbonnanotubes using catalytic metal fine patterns
KR100490112B1 (en) * 2001-09-10 2005-05-17 캐논 가부시끼가이샤 Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
KR100822799B1 (en) * 2006-04-25 2008-04-17 삼성전자주식회사 Method of forming selectively a catalyst for nanoscale conductive structure and method of forming the nanoscale conductive structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451084B1 (en) * 2002-04-11 2004-10-02 학교법인 선문학원 Method for fabricating carbon nano tube gas sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100372335B1 (en) * 1999-11-05 2003-02-17 일진나노텍 주식회사 Synthesis method for controlling diameter of carbonnanotubes using catalytic metal fine patterns
KR100490112B1 (en) * 2001-09-10 2005-05-17 캐논 가부시끼가이샤 Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
KR100822799B1 (en) * 2006-04-25 2008-04-17 삼성전자주식회사 Method of forming selectively a catalyst for nanoscale conductive structure and method of forming the nanoscale conductive structure
US7659624B2 (en) 2006-04-25 2010-02-09 Samsung Electronics Co,., Ltd. Semiconductor device having a nanoscale conductive structure

Also Published As

Publication number Publication date
KR100303294B1 (en) 2001-11-22

Similar Documents

Publication Publication Date Title
US6325909B1 (en) Method of growth of branched carbon nanotubes and devices produced from the branched nanotubes
EP1102299A1 (en) Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof
US20060257565A1 (en) Method of preparing catalyst layer for synthesis of carbon nanotubes and method of synthesizing carbon nanotubes using the same
KR100852329B1 (en) Method for Manufacturing Diamond-Like Carbon Film
JPH09509005A (en) Diamond fiber field emitter
EP1102298A1 (en) Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof
JP2004127737A (en) Carbon nanotube conductive material and its manufacturing method
CN105810748A (en) N-type thin film transistor
KR100335385B1 (en) Method for manufacturing of field emission display device using carbon nanotube
KR100896109B1 (en) Field emission electrode, manufacturing method thereof, and electronic device
JP2009084746A (en) Method for producing electrically conductive fiber material
KR20000033455A (en) Method for manufacturing arrays of optoelectronic device by selective growth of carbon nanotube on silicon substrate
KR20020003782A (en) fabrication method of carbon nanotubes
KR20020001259A (en) Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
KR100376199B1 (en) Fabrication of the vertical switching device using carbon nanotubes.
KR100299869B1 (en) Manufacturing method of carbon nanotube field emission display (FED) device using selective growth
KR100362899B1 (en) Method for manufacturing field emission display device using carbon nanotube
CN105810749A (en) N-type thin film transistor
KR100376198B1 (en) Field emission display device using vertically aligned carbon nanotube and manufacturing method thereof
KR100299868B1 (en) Manufacturing method of carbon nanotube field emission display (FED) device using micropores
US11527378B2 (en) Carbon-metal structure and method for manufacturing carbon-metal structure
KR100839181B1 (en) Method for preparing triode type carbon nanotubes for field emission devices
KR20010039636A (en) Apparatus of white light source using carbon nanotubes and fabrication Method thereof
KR101124505B1 (en) Fabrication method of carbon fiber by metal organic chemical vapor deposition
JP3638264B2 (en) Cold cathode device manufacturing method, cold cathode device, and display device using the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130613

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140710

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee