KR20000031876A - Process for preparing an alloy plate for a lead battery improved in corrosion resistance and distortion resistance - Google Patents
Process for preparing an alloy plate for a lead battery improved in corrosion resistance and distortion resistance Download PDFInfo
- Publication number
- KR20000031876A KR20000031876A KR1019980048132A KR19980048132A KR20000031876A KR 20000031876 A KR20000031876 A KR 20000031876A KR 1019980048132 A KR1019980048132 A KR 1019980048132A KR 19980048132 A KR19980048132 A KR 19980048132A KR 20000031876 A KR20000031876 A KR 20000031876A
- Authority
- KR
- South Korea
- Prior art keywords
- alloy plate
- resistance
- preparing
- lead battery
- corrosion resistance
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/12—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of lead or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B2001/221—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
본 발명은 납축전지용 합금판의 내부식성 및 내변형성을 향상시키는 방법에 관한 것이다. 더욱 상세하게는 합금판을 냉간 압연(cold rolling)한 후 재결정하여 격자일치도가 향상된 결정립계를 형성시켜줌으로써 내부식성과 내변형성을 동시에 향상시킨 납축전지용 합금판의 제조 방법을 제공하는 것이다.The present invention relates to a method of improving the corrosion resistance and deformation resistance of the lead-acid battery alloy plate. More specifically, it is to provide a method for manufacturing an alloy plate for lead-acid battery which improves corrosion resistance and deformation resistance by cold crystal rolling and recrystallization to form a grain boundary with improved lattice uniformity.
시동 장치(Starting-Lighting-Ignition)(SLI)를 위한 납축전지의 전극 집전용 합금판에는 납-주석-칼슘 합금이 주로 사용되어진다.Lead-tin-calcium alloys are mainly used for the electrode collector alloy plates of lead-acid batteries for starting-lighting-ignition (SLI).
최근 OEM 업체의 요구 등으로 납축전지의 소형화, 경량화, 고수명화가 요구되고 있어 상기 집전용 합금판의 특성 향상이 필수적으로 요구된다.Recently, due to the demands of OEM companies, miniaturization, light weight, and high lifespan of lead-acid batteries are required, and thus improvement of characteristics of the current collector alloy plate is indispensable.
집전용 합금판에서는 결정립(grain) 간 계면의 국부 부식으로 인한 무게 감소와, 활성 물질의 전지 반응에 의한 수축과 팽창의 반복시 결정립계의 미끄러짐(grain boundary sliding)(고온·하중에 의해 서서히 진행되는 금속 재료의 변형)에 의한 변형이 크게 문제시되고 있다.In the current collector alloy plate, the weight decrease due to local corrosion at the grain-to-grain interface, and the grain boundary sliding (high temperature and load gradually progresses) during repeated shrinkage and expansion due to the cell reaction of the active material. Deformation due to deformation of the metal material) is a major problem.
기존에는 부식 문제를 해결하기 위해 Ag, Se, As 등의 합금화 원소를 첨가해 왔으나 이는 제조 비용을 증가시키고 내부 저항을 증대시킬 뿐만 아니라 오히려 내변형 특성은 약화시키는 문제점이 있다. 또한, 이들 합금 원소는 대부분 해외 유수 업체에 의한 특허로 묶여 있어 그 적용에 있어 상당한 제약을 받고 있다.Conventionally, alloying elements such as Ag, Se, and As have been added to solve the corrosion problem, but this increases the manufacturing cost and increases the internal resistance, but also has the problem of weakening the deformation resistance. In addition, most of these alloying elements are tied to patents by leading companies abroad, and are subject to considerable limitations in their application.
한편, 결정학적으로 잘못 배향되는(misorientation) 정도가 낮은, 즉 격자일치도가 높아 치밀한 구조를 갖는 결정립계는 원자 확산과 깨어짐, 부식, 결정립계에서의 미끄러짐 등에 대한 저항이 큰 것으로 보고되어져 왔다. 이처럼 격자일치도가 향상된 결정립계를 형성시켜줌으로써 내부식성과 내변형성을 동시에 향상시키는 방법이 최근 캐나다 업체에 의해 개발되어졌으나 그 방법이 아직 공개되어 있지 않다.On the other hand, grain boundaries having a dense structure with low crystallographic misorientation, that is, high lattice consistency have been reported to have high resistance to atomic diffusion and breaking, corrosion, and slipping at grain boundaries. The method of improving the corrosion resistance and the deformation resistance at the same time by forming a grain boundary with improved lattice uniformity has been recently developed by a Canadian company, but the method is not yet disclosed.
이에 본 발명은 금속학적 이론을 토대로 한 냉간 압연을 한 후 재결정에 의해 야기되는 우선배향(preferred orientation) 현상을 이용하여 격자일치도가 높은 결정립계 분율을 높여줌으로써 내부식성과 내변형성을 동시에 향상시킬 수 있는 방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention can improve the corrosion resistance and deformation resistance at the same time by increasing the grain boundary with high lattice consistency using the preferred orientation phenomenon caused by recrystallization after cold rolling based on metallurgical theory. It is an object to provide a method.
도 1은 합금판을 제조하기 위한 전체 공정을 나타내고;1 shows an overall process for producing an alloy plate;
도 2a는 주조 직후의 결정립의 배열 양상을 나타내며,2a shows an arrangement of grains immediately after casting,
도 2b는 냉간 압연을 한 다음 재결정 직후의 결정립의 배열 양상을 나타낸다(여기에서 화살표는 결정학적 특정 방위를 표시한다).FIG. 2B shows the arrangement of grains immediately after recrystallization after cold rolling (arrows indicate crystallographic specific orientations).
본 발명은 합금판을 냉간 압연하는 단계와 온도를 100 내지 170℃로 증가시킨 후 재결정하는 단계로 이루어지는 것을 특징으로 하는 납축전지용 합금판의 제조 방법이다.The present invention is a method of manufacturing an alloy plate for lead-acid battery, characterized in that consisting of the step of cold rolling the alloy plate and the step of recrystallization after increasing the temperature to 100 to 170 ℃.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에서의 합금판의 조성은 공지되어 있는 합금 조성을 그대로 사용할 수 있다.As the composition of the alloy plate in the present invention, a known alloy composition can be used as it is.
먼저, 도 1에 나타낸 바와 같이 최종으로 얻어지는 합금판의 두께 보다 두꺼운 합금판(11)을 상기의 조성으로 주조한다.First, as shown in FIG. 1, the alloy plate 11 thicker than the thickness of the alloy plate finally obtained is cast by said composition.
다음에 상기 합금판을 상온에서 냉간 압연하여 최종 두께의 합금판(12)으로 성형한다. 이때 합금판의 모양은 최종 디자인에 따라 그리드 유형(grid-type), 판 유형(plate-type) 또는 중공 유형(hollow-type) 등으로 성형되어 질 수 있고, 압연 전후의 합금판의 두께차이(압연비)는 납합금의 연성을 고려하여 내외부에 균열이 발생하지 않는 범위 내에서 최대한의 변형이 일어날 수 있도록 설정하여, 이후의 재결정 구동력과 이에 따른 결정립 우선배향 정도를 극대화할 수 있도록 한다.Next, the alloy plate is cold rolled at room temperature to form an alloy plate 12 having a final thickness. At this time, the shape of the alloy plate may be molded into a grid-type, plate-type or hollow-type according to the final design, and the thickness difference between the alloy plates before and after rolling ( Rolling ratio) is set in such a way that the maximum deformation can occur within the range where cracks do not occur inside and outside in consideration of the ductility of the lead alloy, thereby maximizing the subsequent recrystallization driving force and the degree of grain preferential orientation.
상기 합금판에 사용되는 납과 같이 면심입방 구조를 갖는 다결정 금속의 경우, 냉간 압연을 가할 경우 결정들의 배향은 결정학적 원자면 {110}이 압연 면에 평행해지고, 결정학적 방위 <112>는 압연 방향에 평형해지는 텍스쳐(texture) 구조가 형성되어진다. 이러한 결정학적 원자면 {110}과 결정학적 방위 <112>를 갖는 텍스쳐 구조는 교차 미끄러짐(cross-slip) 현상이 심한 합금계의 경우, 냉간 압연 시에 결정학적 원자면이 {112}이고 결정학적 방위가 <111>인 텍스쳐 구조로 변화한다.In the case of a polycrystalline metal having a surface-centered cubic structure such as lead used in the alloy plate, the orientation of crystals when cold rolling is applied is that the crystallographic atomic plane {110} is parallel to the rolling plane, and the crystallographic orientation is rolled. A texture structure is formed that is balanced in direction. The texture structure having the crystallographic atomic plane {110} and the crystallographic orientation <112> has a crystallographic atomic plane {112} at the time of cold rolling in the case of an alloy system with a high cross-slip phenomenon, The orientation changes to a texture structure of <111>.
다결정 금속의 경우는 상기와 같은 변형 구조가 일어날 경우, 결정립들이 자유로이 회전할 수 없으므로 결정립들이 구부러지거나 쪼개져 차후 재결정의 구동력으로 작용한다.In the case of the polycrystalline metal, when such a deformed structure occurs, the grains cannot be freely rotated, so that the grains are bent or split to act as driving force of the subsequent recrystallization.
냉간 압연이 끝난 후, 온도를 증가하여 다음 재결정(13)을 시킨다. 이때 온도는 원자 확산이 활발하여 결함 없는(defect-free) 재결정 핵의 성장 속도가 빠른 용해 온도의 1/3 내지 1/2 정도인 100 내지 170℃를 적용한다.After the cold rolling is finished, the temperature is increased to make the next recrystallization 13. In this case, the temperature is 100 to 170 ° C., which is about 1/3 to 1/2 of the melting temperature at which the atomic diffusion is active and the growth rate of the defect-free recrystallized nuclei is fast.
냉간 압연 후 재결정 할 경우, 변형에 의한 텍스쳐 배향을 그대로 갖는 결함 없는 결정핵이 성장하여 변형 텍스쳐 정도가 보다 심하면서도 결정립계와 결정립 내 결함이 없는 소위 재결정 텍스쳐가 형성되어진다.In the case of recrystallization after cold rolling, defect-free crystal nuclei having the texture orientation due to deformation are grown to form a so-called recrystallized texture having a higher degree of deformation texture but no grain boundaries and no defects in the grains.
도 2a는 주조 직후의 결정립 배열 양상을 나타내고, 도 2b는 냉간 압연 후 재결정 직후의 결정립의 배열 양상을 보여준다. 주조 직후에는 불규칙적이던 결정립의 방위가 압연 후 재결정에 의해 우선배향(텍스쳐 구조의 형성)되는 양상을 보여준다. 결정들이 우선배향되면 결정간의 계면에서 격자일치도가 증가한다.FIG. 2A shows the grain arrangement immediately after casting, and FIG. 2B shows the grain arrangement immediately after recrystallization after cold rolling. Immediately after casting, the orientation of the irregular grains is preferentially oriented (formation of texture structure) by recrystallization after rolling. When crystals are preferentially oriented, lattice consistency increases at the interface between the crystals.
결론적으로, 냉간 압연 후의 재결정을 진행시킨 합금판의 경우 결정립들이 일정면과 방위에 우선배향되는 텍스쳐 구조가 형성되어 격자일치도가 향상된 결정립계 분율이 높은 미세구조를 형성하게 된다.In conclusion, in the case of an alloy plate subjected to recrystallization after cold rolling, a texture structure in which grains are preferentially oriented in a predetermined plane and orientation is formed, thereby forming a fine structure having a high grain boundary fraction with improved lattice uniformity.
본 발명에 따라서 제조된 합금판은 기존의 합금 조성을 그대로 사용할 수 있고, 기존의 합금화 및 주조 장비를 그대로 이용할 수 있을 뿐만 아니라, 상용의 전해액 및 작동 체계, 제조 설비, 케이스 등을 변경할 필요 없이 제조되어 납축전지용 합금판의 내부식성과 내변형성을 동시에 향상시킬 수 있다.The alloy plate manufactured according to the present invention can be used as it is, the existing alloy composition, and can be used as it is, the existing alloying and casting equipment, as well as manufactured without changing the commercial electrolyte and operating system, manufacturing equipment, case, etc. Corrosion resistance and deformation resistance of the alloy plate for lead acid battery can be improved at the same time.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0048132A KR100497769B1 (en) | 1998-11-11 | 1998-11-11 | Manufacturing method of lead acid battery alloy plate with improved corrosion resistance and deformation resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0048132A KR100497769B1 (en) | 1998-11-11 | 1998-11-11 | Manufacturing method of lead acid battery alloy plate with improved corrosion resistance and deformation resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000031876A true KR20000031876A (en) | 2000-06-05 |
KR100497769B1 KR100497769B1 (en) | 2005-09-15 |
Family
ID=19557806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1998-0048132A KR100497769B1 (en) | 1998-11-11 | 1998-11-11 | Manufacturing method of lead acid battery alloy plate with improved corrosion resistance and deformation resistance |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100497769B1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200040961A (en) | 2018-10-10 | 2020-04-21 | 주식회사 한국아트라스비엑스 | Manufacturing method of ceramic coated separator using spin coating |
KR20210017160A (en) | 2019-08-07 | 2021-02-17 | 주식회사 한국아트라스비엑스 | Manufacturing method of PE Separator for lead acid battery using SiO2 |
KR102225207B1 (en) | 2019-09-18 | 2021-03-09 | 주식회사 한국아트라스비엑스 | Manufacturing method of PE Separator for lead acid battery using PVA coating |
KR20220148043A (en) | 2021-04-28 | 2022-11-04 | 한국앤컴퍼니 주식회사 | Method for manufacturing a plate for lead acid battery containing plasma-treated polyester nonwoven fabric |
KR20220148050A (en) | 2021-04-28 | 2022-11-04 | 한국앤컴퍼니 주식회사 | Method for manufacturing electrode plate for lead acid battery that improves ion mobility by applying porous polyester nonwoven fabric |
KR20230039345A (en) | 2021-09-14 | 2023-03-21 | 한국앤컴퍼니 주식회사 | Surface modification method of lead-acid battery electrode plate using nitrogen plasma and heat treatment |
KR20230044876A (en) | 2021-09-27 | 2023-04-04 | 한국앤컴퍼니 주식회사 | Electrode plate manufacturing method of lead-acid battery using carbon paper |
KR20230046115A (en) | 2021-09-29 | 2023-04-05 | 한국앤컴퍼니 주식회사 | Electrode plate manufacturing method of lead-acid battery containing highly crystalline colloidal nonwoven fabric to which syringeless electrospinning technique is applied |
KR20230046114A (en) | 2021-09-29 | 2023-04-05 | 한국앤컴퍼니 주식회사 | Electrode plate manufacturing method of lead-acid battery containing porous non-woven fabric |
KR20230159931A (en) | 2022-05-16 | 2023-11-23 | 한국앤컴퍼니 주식회사 | Electrode plate manufacturing method of lead acid battery containing non woven fabric with MoS2 added |
KR20240042999A (en) | 2022-09-26 | 2024-04-02 | 한국앤컴퍼니 주식회사 | Electrode plate manufacturing method of lead-acid battery containing carbon foam |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6043907B2 (en) * | 1980-03-07 | 1985-10-01 | 三菱マテリアル株式会社 | Manufacturing method of high-strength lead alloy plate material with high ductility |
JPS58107479A (en) * | 1981-12-22 | 1983-06-27 | Toshiba Corp | Heat treatment of lead alloy |
JPS58196149A (en) * | 1982-05-11 | 1983-11-15 | Furukawa Electric Co Ltd:The | Continuous production of lead or lead alloy plate or rod |
JPS609061A (en) * | 1983-06-28 | 1985-01-18 | Furukawa Battery Co Ltd:The | Manufacture of lead alloy plate for lead storage battery substrate |
JPS6010563A (en) * | 1983-06-30 | 1985-01-19 | Furukawa Battery Co Ltd:The | Manufacture of lead storage battery plate |
KR870011712A (en) * | 1986-05-26 | 1987-12-26 | 다니이 아끼오 | Manufacturing method of grid body for lead acid battery |
JPH06267544A (en) * | 1993-03-12 | 1994-09-22 | Matsushita Electric Ind Co Ltd | Electrode plate for lead-acid battery and lead-acid battery using the electrode plate |
-
1998
- 1998-11-11 KR KR10-1998-0048132A patent/KR100497769B1/en not_active IP Right Cessation
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200040961A (en) | 2018-10-10 | 2020-04-21 | 주식회사 한국아트라스비엑스 | Manufacturing method of ceramic coated separator using spin coating |
KR20210017160A (en) | 2019-08-07 | 2021-02-17 | 주식회사 한국아트라스비엑스 | Manufacturing method of PE Separator for lead acid battery using SiO2 |
KR102225207B1 (en) | 2019-09-18 | 2021-03-09 | 주식회사 한국아트라스비엑스 | Manufacturing method of PE Separator for lead acid battery using PVA coating |
KR20220148043A (en) | 2021-04-28 | 2022-11-04 | 한국앤컴퍼니 주식회사 | Method for manufacturing a plate for lead acid battery containing plasma-treated polyester nonwoven fabric |
KR20220148050A (en) | 2021-04-28 | 2022-11-04 | 한국앤컴퍼니 주식회사 | Method for manufacturing electrode plate for lead acid battery that improves ion mobility by applying porous polyester nonwoven fabric |
KR20230039345A (en) | 2021-09-14 | 2023-03-21 | 한국앤컴퍼니 주식회사 | Surface modification method of lead-acid battery electrode plate using nitrogen plasma and heat treatment |
KR20230044876A (en) | 2021-09-27 | 2023-04-04 | 한국앤컴퍼니 주식회사 | Electrode plate manufacturing method of lead-acid battery using carbon paper |
KR20230046115A (en) | 2021-09-29 | 2023-04-05 | 한국앤컴퍼니 주식회사 | Electrode plate manufacturing method of lead-acid battery containing highly crystalline colloidal nonwoven fabric to which syringeless electrospinning technique is applied |
KR20230046114A (en) | 2021-09-29 | 2023-04-05 | 한국앤컴퍼니 주식회사 | Electrode plate manufacturing method of lead-acid battery containing porous non-woven fabric |
KR20230159931A (en) | 2022-05-16 | 2023-11-23 | 한국앤컴퍼니 주식회사 | Electrode plate manufacturing method of lead acid battery containing non woven fabric with MoS2 added |
KR20240042999A (en) | 2022-09-26 | 2024-04-02 | 한국앤컴퍼니 주식회사 | Electrode plate manufacturing method of lead-acid battery containing carbon foam |
Also Published As
Publication number | Publication date |
---|---|
KR100497769B1 (en) | 2005-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2657359B1 (en) | Electrode current collector and manufacturing method thereof | |
EP1228544B1 (en) | Lead alloys, with enhanced creep and/or intergranular corrosion resistance, especially for lead-acid batteries and electrodes | |
US20050221191A1 (en) | Lead alloy and lead storage battery using it | |
KR100497769B1 (en) | Manufacturing method of lead acid battery alloy plate with improved corrosion resistance and deformation resistance | |
EP2658017B1 (en) | Aluminum alloy foil for electrode current collectors and manufacturing method thereof | |
EP1175704B1 (en) | A method for making positive grids and lead-acid cells and batteries using such grids | |
WO2013021969A1 (en) | Rolled copper foil for secondary battery collector and production method therefor | |
Jullian et al. | New lead alloys for high-performance lead–acid batteries | |
US20020182500A1 (en) | Silver-barium lead alloy for lead-acid battery grids | |
AU2008325589B2 (en) | Method for producing lead-base alloy grid for lead-acid battery | |
JPH10284085A (en) | Grid for lead-acid battery | |
JPH0147857B2 (en) | ||
Mao et al. | Recent Results on Lead‐Calcium Alloys as Grid Materials for Lead‐Acid Batteries | |
US20020148539A1 (en) | Aluminum anodes and method of manufacture thereof | |
JP2004200028A (en) | Manufacturing method of lead acid storage battery electrode grid | |
JPH10321236A (en) | Lead-acid battery | |
JP2005044760A (en) | Manufacturing method of lead-acid storage battery positive electrode plate lattice | |
JP3141426B2 (en) | Electrode plate for lead-acid battery and method of manufacturing the same | |
JP2001511587A (en) | Method for continuously producing a positive grid of a storage battery and a positive grid obtained by such a method | |
JP2001028267A (en) | Manufacture of lead-acid battery grid | |
JPH1154129A (en) | Lead-acid battery | |
JP2794745B2 (en) | Manufacturing method of grid for lead storage battery | |
JP2595809B2 (en) | Method of manufacturing base for lead-acid battery electrode plate | |
Giess et al. | The corrosion behavior of positive grids with lead calcium aluminum alloys in VRLA/AGM cells and monoblocs. Test results with up to 2% tin and 0.05% silver additions | |
JPH0580543B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20080527 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20110527 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |