JPS6010563A - Manufacture of lead storage battery plate - Google Patents
Manufacture of lead storage battery plateInfo
- Publication number
- JPS6010563A JPS6010563A JP58118977A JP11897783A JPS6010563A JP S6010563 A JPS6010563 A JP S6010563A JP 58118977 A JP58118977 A JP 58118977A JP 11897783 A JP11897783 A JP 11897783A JP S6010563 A JPS6010563 A JP S6010563A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- lead
- lead alloy
- maintenance
- battery plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/82—Multi-step processes for manufacturing carriers for lead-acid accumulators
- H01M4/84—Multi-step processes for manufacturing carriers for lead-acid accumulators involving casting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、機械加工方式による鉛蓄電池月極板基板の製
造方法に関する0
鉛蓄電池極板は、個々の仏子基板に活物質を充填して製
造されるが、従来の格子基板は,sbを4〜7%(以下
%は質且チを表わす)3有したpb−sb系合金を鋳造
方式で形成している。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a lead-acid battery monthly plate substrate by a machining method.A lead-acid battery plate is manufactured by filling an active material into an individual lattice substrate. The substrate is formed by casting a pb-sb alloy having an sb content of 4 to 7% (hereinafter % represents quality).
ところで近時、電池のメンテナンスフリー化が要求され
ると共に、電池の軽量化、高容量化ならびに長寿命化が
要求されるようになった。Recently, there has been a demand for batteries to be maintenance-free, as well as for batteries to be lighter in weight, higher in capacity, and longer in life.
しかし従来の鉛合金は、Sbを多く含有するため、長寿
命化の点で問題がある。壕だ鋳造方式のため格子基板を
薄くすることが難かしく、電池の軽量化、高容量化を図
ることができない。However, since conventional lead alloys contain a large amount of Sb, there is a problem in extending the service life. Because of the trench casting method, it is difficult to make the grid substrate thinner, making it impossible to reduce the weight and increase the capacity of the battery.
このことからsbを全く含有しないPb−Ca系合金,
pb−Sr系合金等のメンテナンスフリー用鉛合金薄
板を作製し、これを打抜きあるいはエクスパント゛方式
などの機械加工方式で格子基板を製造する方法が開発さ
れ実用化されている。From this, Pb-Ca alloys containing no sb,
A method has been developed and put into practical use in which a maintenance-free lead alloy thin plate such as a pb-Sr alloy is produced and a grid substrate is manufactured by punching or machining such as an expander method.
しかしメンテナンスフリー用鉛合金体、機械的強度が弱
い。このためこの鉛合金から格子基板を製造した場合、
活物質の充填中に格子基板が容易に変形する。またこの
基板から得られた極板を電池として組立て、使用してい
る間に活物質の膨張,又は格子骨の腐食などycより゛
C極板が伸び、その結果、格子基板と活物質との密着性
が阻害されたシ、あるいは短絡を起こして電池の寿命を
早めるなど、重大な問題を引きおこしている。However, the lead alloy body for maintenance-free use has weak mechanical strength. Therefore, when a grid substrate is manufactured from this lead alloy,
The grating substrate is easily deformed during filling with active material. In addition, while the electrode plate obtained from this substrate is assembled and used as a battery, the active material expands or the lattice ribs corrode, causing the ゛C electrode plate to elongate from yc, resulting in the contact between the lattice substrate and the active material. This causes serious problems such as poor adhesion or short circuits, which shortens battery life.
本発明は、この問題を解消すべくなされたもので、その
目的とするところはメンテナンスフリー用鉛合金の機械
加工方式を改良することによシ亀鉛合金の機械的強度を
向上して、軽量化、高容量化とともに長寿命化を図るこ
とができる鉛蓄電池用極板基板の製造方法を得んとする
ものである。The present invention has been made to solve this problem, and its purpose is to improve the mechanical strength of lead alloys for maintenance-free use by improving the machining method for lead alloys, and to improve the mechanical strength of lead alloys, making them lightweight. The object of the present invention is to provide a method for manufacturing an electrode plate substrate for a lead-acid battery, which can increase the battery capacity, increase the capacity, and extend the service life.
すなわち本発明は、メンテナンスフリー用鉛合金体に加
熱硬化処理を施した後、加工変形し、次いでこの加工変
形体からエクス・ぐンドシートを形成して格子基板とす
ることを特徴とする。That is, the present invention is characterized in that a maintenance-free lead alloy body is subjected to heat hardening treatment, then processed and deformed, and then an X-Gund sheet is formed from this processed and deformed body to form a lattice substrate.
以下本発明方法を詳細に説明する〇
本発明は、まずPb−Ca系合金、 Pb−8r系合金
。The method of the present invention will be explained in detail below. The present invention first deals with a Pb-Ca alloy and a Pb-8r alloy.
pb−低Sb系合金などのメンテナンスフリー用鉛合金
を鋳造あるいは機械加工して鉛合金体を連続的おるいは
不連続的に製造する。この鉛合金体は最終的に得んとす
る格子基板の寸法よシ大きい寸法とする。Lead alloy bodies are manufactured continuously or discontinuously by casting or machining maintenance-free lead alloys such as pb-low Sb alloys. The size of this lead alloy body is larger than the size of the grid substrate to be finally obtained.
次いでこの鉛合金体に加熱硬化処理を施こす。Next, this lead alloy body is subjected to heat hardening treatment.
この処理は、鉛合金体から粒子を析出し、結晶粒を調整
することにより、硬化させるもので、その加熱温度は合
金組成によっても異なるがpb−Ca系合金の場合通常
70〜150℃である。またpb−低Sb系合金の場合
は200℃以上で加熱後急冷して硬化処理する。This treatment hardens particles by precipitating particles from the lead alloy body and adjusting the crystal grains.The heating temperature varies depending on the alloy composition, but in the case of pb-Ca alloys, it is usually 70 to 150 degrees Celsius. . In the case of a pb-low Sb alloy, it is hardened by heating at 200° C. or higher and then rapidly cooling.
更に加熱硬化した鉛合金体に圧延等の加工変形を施こし
て薄くし、所望の厚さとする。この処理は鉛合金体を加
工硬化させるもので、その加工変形温度は機械的強度を
より高めるために20〜120℃とくに好寸しくけ40
〜100Cが適当である。Further, the heat-hardened lead alloy body is subjected to processing deformation such as rolling to make it thinner and have a desired thickness. This treatment is to work harden the lead alloy body, and the work deformation temperature is 20 to 120 degrees Celsius to further increase the mechanical strength.
~100C is appropriate.
この場合鉛合金体を加工変形してから加熱硬化処理を施
こすことは不適当である。加工変形して得られた組織が
加熱硬化処理時に軟化して機械的強度があまり高くなら
ないためである。In this case, it is inappropriate to process and deform the lead alloy body before subjecting it to heat hardening treatment. This is because the structure obtained through processing deformation becomes soft during the heat hardening treatment, and the mechanical strength does not become very high.
次に加工変形後の鉛合金体からエクス・ぐンド方式によ
シエクスパンドシートを得、このシートから格子基板を
形成し、この格子基板に活物質を充填して鉛蓄電池極板
を製造する。Next, an expanded sheet is obtained from the processed and deformed lead alloy body by the Ex-Gund method, a lattice substrate is formed from this sheet, and the lattice substrate is filled with an active material to produce a lead-acid battery electrode plate.
この方法によれば、加熱硬化処理に加えて加工変形によ
シ強度を高くするので、組立時、使用時電池極板の伸び
が抑えられ、電池の長寿命化を図ることができる。According to this method, the strength is increased by processing deformation in addition to heat curing treatment, so that elongation of the battery electrode plate during assembly and use is suppressed, and the life of the battery can be extended.
次に本発明の実施例について説明する0実施例I
Caを0.08%、Snを0.45%含有するpb−C
a−Sn合金の溶湯から、連続鋳造によシ厚さ2朧のメ
ンテナンスフリー用鉛合金体を作シ、これを120℃で
1時間加熱硬化処理した後、冷間圧延して0.9 mm
の加工変形体を得た。この試料と従来法で得た試料とを
室温で引張試験を行った。その結果、下記第1表に示す
ように本発明に係る加工変形体の機械的強度が従来のも
のに比べて優れていることがわかる。Next, examples of the present invention will be described Example I pb-C containing 0.08% Ca and 0.45% Sn
A maintenance-free lead alloy body with a thickness of 2 mm was produced from the molten a-Sn alloy by continuous casting, and after heat hardening at 120°C for 1 hour, it was cold rolled to a thickness of 0.9 mm.
A processed deformed body was obtained. A tensile test was conducted on this sample and a sample obtained by the conventional method at room temperature. As a result, as shown in Table 1 below, it can be seen that the mechanical strength of the processed deformed body according to the present invention is superior to that of the conventional one.
第 1 表
次にこの加工変形体からエクスパンドシートを形成して
格子基板を作製し、これを用いて公称溶量50Ah/
20 HRの電池を作った。この電池についてJIS寿
命試験を50サイクル行ない、極板の上下方向の伸びを
調べだ。その結果を従来のものと比較して第2表に示す
。Table 1 Next, an expanded sheet was formed from this processed deformed body to prepare a lattice substrate, and this was used to prepare a nominal solubility of 50Ah/
I made a 20 HR battery. This battery was subjected to a JIS life test for 50 cycles, and the elongation of the electrode plates in the vertical direction was investigated. The results are shown in Table 2 in comparison with conventional results.
第 2 衣
上表から本発明方法で得られた極板の伸びが少なく、長
寿命を図れることがわかる。It can be seen from the second coating table that the electrode plate obtained by the method of the present invention has little elongation and can have a long life.
実施例2
実施例1のメンテナンスフリー用鉛合金体(厚さ一2叫
)を120℃で1時間加熱硬化処理した後、冷間圧延し
て1消の加工変形体を得た。Example 2 The maintenance-free lead alloy body (12 cm thick) of Example 1 was heated and hardened at 120° C. for 1 hour, and then cold rolled to obtain a processed deformed body of 1 inch.
各工程における引張強度(σ。、2)の変化を調べた結
果、加熱硬化処理前の鉛合金体が2kgf/τ2゜加熱
硬化処理後の鉛合金体が3kgf/mm、冷間圧延後の
加工変形体が4.5 kgf / ran であった。As a result of examining the change in tensile strength (σ., 2) in each process, the lead alloy body before heat hardening is 2 kgf/τ2°, the lead alloy body after heat hardening is 3 kgf/mm, and after cold rolling. The deformed body was 4.5 kgf/ran.
これと比較するため、上記鉛合金体を冷間圧延して1m
の加工変形体を得、これを120℃で1時間加熱硬化処
理した。各工程における引張強度(σ。、2)の変化を
調べた結果、冷間圧延後の加工変形体が3 k17f
/rrs2.加熱硬化処理後が3、5 kFlf/關
と低かった。For comparison, the above lead alloy body was cold-rolled to 1 m
A processed deformed body was obtained, and this was heat-hardened at 120° C. for 1 hour. As a result of investigating the change in tensile strength (σ., 2) in each process, the processed deformed body after cold rolling was 3k17f
/rrs2. 3.5 kFlf/cc after heat curing treatment
It was low.
この結果から加熱硬化処理後加工変形する必要があり、
逆の工程で製j告することは適当でないことがわかった
。From this result, it is necessary to process deformation after heat hardening treatment.
It was found that it was not appropriate to manufacture the product using the reverse process.
実施例3
Caを0.08%、Snを0.6%含有するpb金合金
溶湯から連続鋳造法によって厚さ1.6箇のメンテナン
スフリー粗鉛合金体全作製し、これを120℃で60分
間加熱硬化処理を施した後、樺々の温度で圧延加工して
厚さ約0.85+++mの加工変形体を得た。その引張
強度[4べ、図面の曲線Aに示す。また比較のため従来
法のもの(連続鋳造法で得られたものをそのまま槙々の
温度T (C)で圧延したもの)についてもその引張強
度を調べ、第1図の曲線Bに示す。図中縦軸は、室温で
の引張試駆で得られた材料の降伏強度σ。、2(T)と
σ。、2(20)との比で、σ。、2 (Telは圧延
温度T (C)で圧延加工した試料の降伏強度を示し、
σ。、2(20)は連続鋳造法で得られた壕まの板厚1
.6關の室温引張試験における降伏強度である。Example 3 A maintenance-free crude lead alloy body with a thickness of 1.6 points was manufactured by continuous casting from a molten Pb gold alloy containing 0.08% Ca and 0.6% Sn, and this was heated at 120°C for 60°C. After heat-hardening for a minute, it was rolled at a birch temperature to obtain a processed deformed body with a thickness of about 0.85+++ m. Its tensile strength [4B] is shown in curve A of the drawing. For comparison, the tensile strength of the conventional method (obtained by the continuous casting method and directly rolled at a temperature T (C)) was also investigated and is shown in curve B in FIG. The vertical axis in the figure is the yield strength σ of the material obtained by tensile testing at room temperature. , 2(T) and σ. , 2(20), σ. , 2 (Tel indicates the yield strength of the sample rolled at the rolling temperature T (C),
σ. , 2 (20) is the trench plate thickness 1 obtained by continuous casting method.
.. This is the yield strength in a 6-way room temperature tensile test.
図から本発明の賜金、従来法の場合よシ強度が高く、好
ましくは20〜120℃、特に好ましくは40〜140
℃で袈形加工するのがよいことがわかる。As can be seen from the figure, the strength of the present invention is higher than that of the conventional method, preferably at 20 to 120°C, particularly preferably at 40 to 140°C.
It can be seen that it is better to process the kekata at ℃.
次にこの方法で得られた本発明及び従来法で得られた加
工変形体(加工温度100℃で圧延した厚さ1.1圏の
条)からエクスパンド基体を作製し、これを用いて公称
容ta 50 Ah/ 20HRの電池を作製した。こ
れら電池についてJIS寿命試験80サイクル行ない、
極板の上下方向の伸び%を調べた。その結果を第3表に
示す。Next, an expanded substrate was prepared from the processed deformed body obtained by this method and the conventional method (a strip with a thickness of about 1.1 mm rolled at a processing temperature of 100°C), and this was used to produce an expanded substrate with a nominal capacity. A battery of ta 50 Ah/20 HR was produced. These batteries were subjected to 80 cycles of JIS life test.
The percent elongation of the electrode plate in the vertical direction was examined. The results are shown in Table 3.
第 3 表
以上説明したように本発明によれば、カロ熱硬化処理後
に加工変形して基板の機械的強度を1句上するので、こ
の基板に活物質を充填して電池極板を製造する際、及び
電池使用時−極板のイ中びを小さく抑えることができ、
長寿命イヒを図ることができる顕著な効果を奏する。Table 3 As explained above, according to the present invention, the mechanical strength of the substrate is increased by processing and deforming after the thermosetting treatment, and therefore, the active material is filled into this substrate to manufacture battery plates. During battery operation and when using batteries, the damage to the electrode plate can be kept to a minimum.
It has a remarkable effect of increasing the lifespan.
図面は本発明に係る基板の圧延加工県度による降伏強度
比を従来のものと比較して示す図である。The drawing is a diagram showing the yield strength ratio according to the rolling degree of the substrate according to the present invention in comparison with that of the conventional substrate.
Claims (2)
を施した後加工変形し、次いでこの加工変形体からエク
ス・ぐンドシートを形成して格子基板とすることを特徴
とする鉛蓄電池極板基板の製造方法。(1) A lead-acid battery electrode plate substrate characterized in that a maintenance-free lead alloy body is heat-hardened and then processed and deformed, and then an X-Gund sheet is formed from this processed and deformed body to form a lattice substrate. Production method.
とする特許請求の範囲第1項記ヰ1/.の鉛蓄電池用極
板基板の製造方法。(2) Claim 1, Item 1/., characterized in that the processing deformation temperature is 20 to 120°C. A method for manufacturing an electrode plate substrate for a lead-acid battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58118977A JPS6010563A (en) | 1983-06-30 | 1983-06-30 | Manufacture of lead storage battery plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58118977A JPS6010563A (en) | 1983-06-30 | 1983-06-30 | Manufacture of lead storage battery plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6010563A true JPS6010563A (en) | 1985-01-19 |
JPH0429191B2 JPH0429191B2 (en) | 1992-05-18 |
Family
ID=14749959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58118977A Granted JPS6010563A (en) | 1983-06-30 | 1983-06-30 | Manufacture of lead storage battery plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6010563A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100497769B1 (en) * | 1998-11-11 | 2005-09-15 | 한국타이어 주식회사 | Manufacturing method of lead acid battery alloy plate with improved corrosion resistance and deformation resistance |
-
1983
- 1983-06-30 JP JP58118977A patent/JPS6010563A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100497769B1 (en) * | 1998-11-11 | 2005-09-15 | 한국타이어 주식회사 | Manufacturing method of lead acid battery alloy plate with improved corrosion resistance and deformation resistance |
Also Published As
Publication number | Publication date |
---|---|
JPH0429191B2 (en) | 1992-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4805277A (en) | Process for producing a grid for use in lead acid batteries | |
US4939051A (en) | Grid for use in lead acid batteries and process for producing same | |
US20020088515A1 (en) | Thermo-mechanical treated lead and lead alloys especially for current collectors and connectors in lead-acid batteries | |
US20040112486A1 (en) | Thermo-mechanical treated lead and lead alloys especially for current collectors and connectors in lead-acid batteries | |
US6802917B1 (en) | Perforated current collectors for storage batteries and electrochemical cells, having improved resistance to corrosion | |
US6749950B2 (en) | Expanded grid | |
AU2003235944A1 (en) | Method of Manufacturing Lead or Lead Alloy Plate Lattice for Lead-Acid Battery and Lead-Acid Battery | |
US5401278A (en) | Method of making battery plates for lead acid storage batteries | |
US4109358A (en) | Method for making storage battery grid from lead-tin-zinc alloy | |
JP6049528B2 (en) | Method for producing positive grid substrate | |
JPS6010563A (en) | Manufacture of lead storage battery plate | |
EP0252189A2 (en) | Process for producing a grid for use in lead acid batteries | |
JP5313633B2 (en) | Manufacturing method of lead acid battery substrate | |
AU2002243237A1 (en) | Thermo-mechanical treated lead alloys | |
US4035556A (en) | Lead base alloy for use in a storage battery grid | |
JPH0147857B2 (en) | ||
JPH0326905B2 (en) | ||
JP3252443B2 (en) | Manufacturing method of lead alloy sheet for expanded grid of lead-acid battery | |
JP2004311110A (en) | Method for manufacturing storage battery grid and storage battery | |
JPS6010562A (en) | Manufacture of lead storage battery grid | |
JPH03245462A (en) | Manufacture of latticed plate for lead-acid battery | |
JP3141426B2 (en) | Electrode plate for lead-acid battery and method of manufacturing the same | |
JPS6010561A (en) | Manufacture of lead storage battery plate | |
JPH10162834A (en) | Lead-acid battery | |
JPH0326906B2 (en) |