KR20000028290A - 나선형 첨선을 이용한 송전선 풍소음 저감장치 - Google Patents
나선형 첨선을 이용한 송전선 풍소음 저감장치 Download PDFInfo
- Publication number
- KR20000028290A KR20000028290A KR1019980046464A KR19980046464A KR20000028290A KR 20000028290 A KR20000028290 A KR 20000028290A KR 1019980046464 A KR1019980046464 A KR 1019980046464A KR 19980046464 A KR19980046464 A KR 19980046464A KR 20000028290 A KR20000028290 A KR 20000028290A
- Authority
- KR
- South Korea
- Prior art keywords
- wire
- spiral
- wind noise
- transmission line
- wires
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G7/00—Overhead installations of electric lines or cables
- H02G7/14—Arrangements or devices for damping mechanical oscillations of lines, e.g. for reducing production of sound
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G1/00—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
- H02G1/02—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables
- H02G1/04—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables for mounting or stretching
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G7/00—Overhead installations of electric lines or cables
- H02G7/20—Spatial arrangements or dispositions of lines or cables on poles, posts or towers
Landscapes
- Suspension Of Electric Lines Or Cables (AREA)
- Non-Insulated Conductors (AREA)
Abstract
본 발명은 송전선로의 풍소음 저감장치에 관한 것으로 더욱 구체적으로는 고공가설되는 초고압 송전선로에서 전선의 원주표면에서 발생되는 압력분포의 불균일에 의한 와류발생을 변화시켜 풍소음을 저감하도록 하는 나선형 첨선을 이용한 송전선 풍소음 저감장치에 관한 것이다.
765kV와 같은 초고압 송전선로에서는 전기적 절연거리와 지표면 전계강도의 유지 그리고 상당(相當)전선의 조수증가 등으로 철탑의 높이와 전선의 지상고가 높게 설계 가설되며, 따라서 송전선로 전선에 부딪치는 바람의 세기도 상공높이 올라 갈수록 빨라지는 바람의 특성에 따라 풍소음이 심하게 발생된다.
본 발명은 송전선로 전선의 원주표면에서 고공풍에 의한 와류현상으로 발생되는 풍소음을 줄이기 위하여 전선주위 와류가 형성되는 박리점 부근에 나선형 첨선을 취부하여 인위적인 요철을 만들어 규칙적인 와류의 발생을 방지하므로서 풍소음을 저감하도록 한 것으로 가공송전선(10)의 최외층과 동일한 피치로 전선의 직경에 따라 소정의 직경을 갖는 알미늄재질의 단선을 나선형으로 꼬아 밀착 취부한 나선형 첨선(20)을 부가 설치함을 특징으로 하는 나선형 첨선을 이용한 송전선 풍소음 저감장치임.
Description
본 발명은 송전선로의 풍소음 저감장치에 관한 것으로 더욱 구체적으로는 고공 가설되는 초고압 송전선로에서 전선의 원주표면에서 발생되는 압력분포의 불균일에 의한 와류발생을 변화시켜 풍소음을 저감하도록 하는 나선형 첨선을 이용한 송전선 풍소음 저감장치에 관한 것이다.
765 kV와 같은 초고압 송전선로에서는 전기적 절연거리와 지표면 전계강도의 유지 그리고 상당(相當)전선의 조수증가 등으로 철탑의 높이와 전선의 지상고가 높게 설계된다. 이에 따라 송전선로의 선로, 지지물, 부속물 등에 부딪치는 바람의 세기도 상공높이 올라 갈수록 빨라지는 바람의 특성에 따라 바람에 의한 미풍진동, Subspan Oscillation, Galloping등의 동역학적 현상들의 발생과 더불어 전선, 애자, 철탑 등에 강풍이 불시 불연속적인 충격음(Impulsive Noise)의 일종인 풍소음이 발생한다. 이러한 풍소음은 크게 전선 풍소음과 철탑을 포함한 애자 풍소음으로 구분되나, 애자 풍소음은 국부적이어서 점소음에 해당하여 감쇄특성이 큰 반면에 전선 풍소음은 전 송전선로에 걸쳐서 연속적인 선소음에 해당되어 감쇄특성이 적고 포괄적이므로 주로 전선 풍소음에 대하여 대책을 강구하고 있다. 특히 우리나라와 같이 국토가 좁아 송전선로 주변에 인가가 근접하게 되고, 점차적으로 증가되고 있는 송전선로에 대한 주민들의 민원에 대비하여 인가를 지나는 송전선로에 대하여는 설계시점부터 송전선로 운전시 발생이 우려되는 풍소음 저감 대책을 검토하여야 한다.
우리나라의 기후는 4 계절변화에 따라 많은 바람이 연중 불고 있으며, 특히 동절기의 계절풍은 송전선로 주변의 배경잡음이 낮은 관계로 송전선 풍소음이 특히 우려되며, 765 kV 송전선로가 건설되기도 전에 이미 154 kV의 복도체경우를 비롯한 345 kV까지의 기존설비에서 상당 전선수가 최대 4도체인 경우에도 송전선로에서 풍소음이 관찰되고 있으며, 765 kV 실증시험선로에서도 주로 풍속이 10 m/s를 초과할 경우 풍소음이 발생되나, 가끔씩 그 이하 풍속에서도 송전선로로부터 이음(異音)이 관찰되고 있다. 그러나 전력선에 의한 풍소음의 경우 발생시기나 조건이 불규칙하고, 발생개소의 파악이 어려워 아직까지 규명치 못하고 있으며, 따라서 저풍소음도체를 위한 기술은 현재까지 개발되어 있지 않은 실정이다.
이와 같은 문제점을 개선하기 위하여 본 발명에서는 풍소음을 줄이기 위한 방안으로 전선주위 와류가 형성되는 박리점 부근에 나선형 첨선을 취부하여 인위적인 요철을 만들어 규칙적인 와류의 발생을 방지하므로서 풍소음을 저감하도록 한 나선형 첨선을 이용한 송전선 풍소음 저감장치를 제공하는데 그 목적이 있다.
도 1은 본 발명 나선형 첨선이 취부된 전선의 구성도.
도 2는 본 발명의 실시예로서
(a)는 대각 2조 방식이고,
(b)는 밀착 2조 방식이며,
(c)는 대각밀착 4조 방식임.
도 3은 풍소음 발생 구조를 도시한 것임.
도 4는 무향풍동 시험설비의 배치도임.
도 5는 풍소음 측정을 위한 실험 구성도.
도 6은 토출구 풍속이 22.4㎧인 경우의 소음특성곡선.
〈도면의 주요부분에 대한 부호의 설명〉
10 : 가공송전선 20 : 나선형 첨선
21,22 : 알미늄 단선 100 : 측정실
110 : 무반사벽 120 : 토출구
상기의 목적을 달성하기 위하여 본 발명에서는 전기적 절연거리, 지표면 전계강도의 유지 및 상당(相當)전선의 조수증가를 감안하여 철탑의 높이와 전선의 기상고가 높게 가설되는 통상의 초고압 송전선로 전선의 원주표면에서 고공풍에 의한 와류현상으로 발생되는 풍소음을 방지하도록 가공송전선의 최외층과 동일한 피치로 전선의 직경에 따라 소정의 직경을 갖는 알미늄재질의 단선을 나선형으로 꼬아 밀착 취부한 나선형 첨선를 부가 설치하므로서 규칙적인 와류의 발생을 방지함을 특징으로 하는 것이다.
이하 첨부된 도면에 의거하여 본 발명을 상세히 설명한다.
본 발명에서 제시한 나선형 첨선(20)이란 일반 가공송전선(10)의 최외층과 동일한 피치로 전선의 직경에 따라 적당한 직경의 알미늄재질의 단선(單線)을 S 꼬임 및 Z 꼬임으로 전선에 밀착하여 취부하는 첨가선이다.
도 1은 본 발명 나선형 첨선의 구성도로서 전기적 절연거리, 지표면 전계강도의 유지 및 상당(相當)전선의 조수증가를 감안하여 철탑의 높이와 전선의 지상고가 높게 가설되는 초고압 송전선로 가공송전선(10)의 직경에 따라 소정의 직경을 갖는 알미늄재질의 단선을 나선형으로 꼬아 밀착 취부한 나선형 첨선(20)을 부가 설치한 것이다.
본 발명의 일실시예로서 345kV 및 765kV용으로 사용되는 480mm2도체용 Spiral Rod의 최적 취부조건을 위한 나선형 첨선(Spiral Rod) 피치, 굵기, 총 길이 및 재질의 산정조건은 다음에 의하여 정한다.
가. 나선형 첨선(20)을 전선(10)에 최대한 밀착시키므로써 전기적인 코로나(Corona) 발생을 저감시키기 위하여 480 mm2도체의 피치(P)인 330 mm에 나선형 첨선(Spiral Rod)의 피치를 일치시킨다.
나. 480mm2도체의 직경 30.42mm와 단면적 483mm2의 조건에서 최적돌출높이 시험에서 나선형 첨선(Spiral Rod)의 최적 직경(d)은 6.2mm로 정한다.
다. 483mm2도체에 밀착특성을 우수하도록 나선형 첨선(20)의 재질은 Al 합금 A6151 계열로 정하고, 나선형 첨선(Spiral Rod)의 개당 길이(L)는 작업성을 고려하여 2,550mm로 하였다.
도 2는 본 발명의 다양한 실시예를 확대 도시한 것으로서 도 2(a)는 대각 2조방식을 도시한 것이다.
상기 나선형 첨선(20)은 두 개의 단선(21)(22)을 각각 띄워 나선형으로 꼬아 밀착 취부하는 대각 2조방식으로 취부한 것이다.
도 2(b)는 밀착 2조방식을 도시한 것으로서 상기 나선형 첨선(20)은 두 개의 단선(21)(22)을 밀착시켜 나선형으로 꼬아 취부하는 밀착 2조방식으로 취부한 것이다.
상기 대각 2조방식과 밀착 2조방식은 우수한 저풍소음특성을 갖는 반면 전계집중에 의한 코로나특성에 있어 다수 불리한 결과가 실험을 통하여 알 수 있었다.
도 2(c)는 대각밀착 4조방식을 도시한 것으로서 상기 나선형 첨선(20)은 두 개의 단선(21)(22)을 나선형으로 꼬아 밀착하여 1조를 이루고, 상기 밀착 구성된 1조의 단선이 쌍을 이루도록 하여 각각 띄워 나선형으로 꼬아 밀착 취부하는 대각밀착 4조 방식으로 구성된 것이다.
상기 대각밀착 4조방식의 경우에는 우수한 풍소음특성과 전계집중이 완화되어 코로나 특성이 우수한 결과가 측정되었다.
나선형 첨선의 취부시 코로나방전을 최소화하기 위해서는 전선 최외층과 최대한 밀착하도록 취부하여 전선(10)과 나선형 첨선(20)간의 간극이 없도록 하여야 한다.
본 발명의 특성을 설명하기 위하여 먼저 풍소음 발생특성을 개략적으로 관찰하면 도 3에서와 같은 유체중에 전선이 놓여질 경우에 원주표면의 압력분포를 보면 도 3(a)에 도시된 바와 같이 유체가 전면으로부터 후면으로 감에 따라 속도는 증가하고 압력은 낮아져 90°부근에서 최소화되고 이후 압력은 역으로 상승하는 현상이 나타난다.
이러한 압력 상승에 의해 원주표면에 연하여 흐르는 유체는 점성 때문에 흐름이 방해되어 원주표면에서 박리에 의한 와류가 발생하며, 이때 풍소음이 발생한다. 본 발명은 이러한 풍소음을 줄이기 위하여 박리점 부근에 나선형 첨선(Spiral Rod)을 취부하여 인위적인 요철을 만들어 규칙적인 와류의 발생을 방지하므로서 풍소음을 저감하도록 하는 것이다.
본 발명에서는 평탄지역 및 계곡 횡단지역 등 송전선에 대하여 바람이 직각으로 불 경우 발생하는 풍소음의 저감효과는 극대화하고, 요철부분에 발생하기 쉬운 코로나 방전은 최소화하는 나선형 첨선(Spiral Rod)을 개발하여 기설 345 kV 송전선로 및 765kV 송전선로에 취부하므로서 송전선로에 의한 풍소음의 발생을 저감시키도록 한다.
본 발명의 풍소음 저감효과를 시험하기 위하여 무향풍동 시험설비를 이용한 기존의 전선과의 풍소음 비교시험을 수행하였다.
풍소음 비교시험을 위하여 도 4에 도시된 바와 같이 측정실(100)에는 소리반사를 줄이기 위한 무반사벽(110)이 설치된 무향풍동 시험설비를 이용하였고, 도 4에서와 같이 바람이 나오는 토출구(120)는 단면 40cm x 35cm, 최대풍속 65m/s이며, 풍동자체의 발생음과 반사되는 음도 머플러등과 흡음재로 처리하여 배경소음을 최대한 억제토록 설계되었다.
무향풍동시험설비의 토출구(120)에 전선(10)과 소음측정기는 도 5와 같이 배치하였다.
이와 같은 실험결과 도 6과 같은 결과를 측정할 수 있었다.
즉 도 6은 풍속 22.4m/s로 풍동설비의 토출구에서 전선에 풍속을 가할 때 일반전선(No Spiral)과 대각 2조방식(Case 1), 밀착 2조방식(Case 2), 대각밀착 4조 방식(Case 3)의 풍소음 발생특성을 나타내는 주파수 곡선이고, 표1은 풍속의 변화에 따른 나선형 첨선의 효과를 실험한 결과표이다.
표 1. 일반전선 및 나선형첨선 취부조건별 실험결과표
첨두소음치[dB(A)](첨두주파수[Hz]) | 전대역소음치합 [dB(A)] | |||||
풍속[m/s] | 22.4 | 26 | 29.7 | 22.4 | 26 | 29.7 |
일반전선 | 45.7(128) | 54.7(144.5) | 58(162.3) | 58.3 | 63.3 | 67.1 |
대각 2조방식 | 38.9(148.7) | 42.2(143) | 50(191) | 57.7 | 61.6 | 65.4 |
밀착 2조방식 | 39.6(128) | 46.6(144.5) | 50.7(145) | 58 | 62.1 | 65.7 |
대각밀착 4조 방식 | 37.9(187) | 41.5(146) | 48.2(145) | 57.8 | 61.6 | 65.5 |
본 실험의 결과에서와 같이 전반적인 속도영역에서 첨두소음치(Peak value)에서는 나선형 첨선 없는 일반전선과 비교할 때 8∼10dBA 정도의 감쇄가 관찰되었고, 전 주파수 대역의 소음치를 합한 값(OASPL)에서는 0.5∼2dBA정도의 감쇄가 관찰되었다.
3종류의 나선형 첨선 취부전선에 대한 소음 저감특성 평가는 case3(대각밀착 4조)이 첨두소음치 (Peak Value)와 전소음치(Overall Value)로 비교하였을 때 대체로 모든 속도 영역에서 첨두소음치와 전소음치가 가장 많이 저감되는 특성을 보였다.
따라서, 본 발명에 의하면 저주파로서 차폐 및 감쇄특성이 적고 사람들에게 신경질적이며 민감하게 들리는 험음특성을 나타내어 송전선로 소음 민원을 발생시키는 것으로 보고되고 있는 120 Hz 저주파 영역에서의 풍소음이 나선형 첨선(Spiral Rod)을 취부하므로서 크게 저감되는 효과를 확인 할 수 있었다.
즉 본 발명에서는 전선의 둘레에 인위적인 요철을 만들어 규칙적인 와류의 발생을 막으므로서 송전선로 주위의 풍소음에 의한 폐해를 최소화 할 수 있는 매우 유용한 기술인 것이다.
Claims (4)
- 전기적 절연거리, 지표면 전계강도의 유지 및 상당(相當)전선의 조수증가를 감안하여 철탑의 높이와 전선의 기상고가 높게 가설되는 초고압 송전선로 전선의 원주표면에서 고공풍에 의한 와류현상으로 발생되는 풍소음을 방지하도록 가공송전선(10)의 최외층과 동일한 피치로 전선의 직경에 따라 소정의 직경을 갖는 알미늄재질의 단선을 나선형으로 꼬아 밀착 취부한 나선형 첨선(20)을 부가 설치함을 특징으로 하는 나선형 첨선을 이용한 송전선 풍소음 저감장치.
- 제 1 항에 있어서,상기 나선형 첨선(20)은 두 개의 단선(21)(22)을 각각 띄워 나선형으로 꼬아 밀착 취부하는 대각 2조방식으로 취부함을 특징으로 하는 나선형 첨선을 이용한 송전선 풍소음 저감장치.
- 제 1 항에 있어서,상기 나선형 첨선(20)은 두 개의 단선(21)(22)을 밀착시켜 나선형으로 꼬아 취부하는 밀착 2조방식으로 취부함을 특징으로 하는 나선형 첨선을 이용한 송전선 풍소음 저감장치.
- 제 1 항에 있어서,상기 나선형 첨선(20)은 두 개의 단선(21)(22)을 나선형으로 꼬아 밀착하여 1조를 이루고, 상기 밀착 구성된 1조의 단선이 쌍을 이루도록 하여 각각 띄워 나선형으로 꼬아 밀착 취부하는 대각밀착 4조 방식으로 구성됨을 특징으로 하는 나선형 첨선을 이용한 송전선 풍소음 저감장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980046464A KR20000028290A (ko) | 1998-10-30 | 1998-10-30 | 나선형 첨선을 이용한 송전선 풍소음 저감장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980046464A KR20000028290A (ko) | 1998-10-30 | 1998-10-30 | 나선형 첨선을 이용한 송전선 풍소음 저감장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20000028290A true KR20000028290A (ko) | 2000-05-25 |
Family
ID=19556646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980046464A KR20000028290A (ko) | 1998-10-30 | 1998-10-30 | 나선형 첨선을 이용한 송전선 풍소음 저감장치 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20000028290A (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020032661A (ko) * | 2000-10-25 | 2002-05-04 | 이종훈 | 애자용 풍소음 저감 고무캡 및 그 고무캡을 이용한 애자연결방법 |
KR100653387B1 (ko) * | 2000-03-13 | 2006-12-01 | 다이메이 가부시키가이샤 | 케이블 가설공법 및 케이블 가설용 코일 |
-
1998
- 1998-10-30 KR KR1019980046464A patent/KR20000028290A/ko not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100653387B1 (ko) * | 2000-03-13 | 2006-12-01 | 다이메이 가부시키가이샤 | 케이블 가설공법 및 케이블 가설용 코일 |
KR20020032661A (ko) * | 2000-10-25 | 2002-05-04 | 이종훈 | 애자용 풍소음 저감 고무캡 및 그 고무캡을 이용한 애자연결방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Juette et al. | Radio noise, audible noise, and corona loss of EHV and UHV transmission lines under rain: predetermination based on cage tests | |
Wei-Gang | Study on conductor configuration of 500 kV Chang-Fang compact line | |
FI92773B (fi) | Päällystetty avojohto suurjännitteelle | |
CN211291345U (zh) | 一种分布式光纤覆冰监测模拟装置 | |
CN111431129B (zh) | 无避雷线输电线路 | |
Khan et al. | Calculation of audible noise and radio interference for unconventional high surge impedance loading (HSIL) transmission lines | |
KR20000028290A (ko) | 나선형 첨선을 이용한 송전선 풍소음 저감장치 | |
US7606017B2 (en) | Protection device: surge suppressing conductor | |
Zhao et al. | Altitude Correction Method for Audible Noise of±800 kV UHVdc Overhead Transmission Line and its Engineering Application | |
CN106711905B (zh) | 基于柔性复合材料的输电线路防风偏杆塔及其施工方法 | |
CN112580243A (zh) | 一种输电线路脱冰跳跃动力响应模拟分析方法 | |
KR200177446Y1 (ko) | 저풍소음 전선 | |
Abouelatta et al. | Analysis and mitigation of the lightning overvoltage in capacitively coupling grid connected offshore wind turbine | |
CN115912169A (zh) | 一种高海拔地区特高压直流输电线路电气设计方法及系统 | |
Phan | Reduction of the number of faults caused by lightning for transmission line | |
CN209200168U (zh) | 一种输电杆塔接地装置 | |
CN115099107A (zh) | 一种超高压交流输变电工程金具电晕起始场强预测方法 | |
Jing et al. | Research of Grading Ring for High Altitude 500 kV Compact Transmission Line | |
CN208596563U (zh) | 一种具有监测线的电缆 | |
CN111666662A (zh) | 一种10kV架空线路并联间隙的单相同线安装方法 | |
CN219696096U (zh) | 架空融冰地线 | |
Abdulkareem et al. | The electricity security in Nigeria: design and analysis of 750-kV mega grid | |
CN204680461U (zh) | 高压输电线路用低风阻电力绞线 | |
Chen et al. | Research on lightning overvoltage in Ecuador 230kV GIS substation based on EMTP-RV | |
Pokorny et al. | UHV tower insulation parameters determined by full-scale testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |