KR20000026966A - Method for preventing oxidation of lower conductive layer generated from oxidation process of capacitor dielectric layer - Google Patents

Method for preventing oxidation of lower conductive layer generated from oxidation process of capacitor dielectric layer Download PDF

Info

Publication number
KR20000026966A
KR20000026966A KR1019980044735A KR19980044735A KR20000026966A KR 20000026966 A KR20000026966 A KR 20000026966A KR 1019980044735 A KR1019980044735 A KR 1019980044735A KR 19980044735 A KR19980044735 A KR 19980044735A KR 20000026966 A KR20000026966 A KR 20000026966A
Authority
KR
South Korea
Prior art keywords
insulating film
interlayer insulating
oxidation
forming
film
Prior art date
Application number
KR1019980044735A
Other languages
Korean (ko)
Inventor
김동환
임찬
김민수
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019980044735A priority Critical patent/KR20000026966A/en
Publication of KR20000026966A publication Critical patent/KR20000026966A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for preventing oxidation of a lower conductive layer generated from an oxidation process of a capacitor dielectric layer is provided to increase a reliability of elements by preventing oxidation of other layers. CONSTITUTION: A method for preventing oxidation of a lower conductive layer generated from an oxidation process of a capacitor dielectric layer relates to a method for forming an interlayer dielectrics for preventing an oxidation phenomena. The method for forming the interlayer dielectrics comprises the steps of: forming an interlayer dielectrics(3,5); and forming an insulating layer containing enough nitrogen on the interlayer dielectrics. The interlayer dielectrics is formed by any one of a middle temperature oxide, a tetraethylortho silicate glass, a plasma enhanced tetraethylortho silicate glass, an HDP, and a borophosphorous silicate glass, or a layer accumulated by two of them.

Description

캐패시터 유전막의 산화공정시 발생되는 하부전도층 산화방지방법Oxidation prevention method of lower conductive layer generated during oxidation process of capacitor dielectric film

본 발명은 고집적 메모리 소자 제조 방법에 관한 것으로, 특히 Si3N4/Oxide(N/O)를 캐패시터 유전물질로 사용하는 고 직접 메모리 소자에 있어서 N/O막의 산화 공정에서 발생할 수 있는 실리콘 웨이퍼 하부 산화를 방지하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for fabricating a highly integrated memory device, and particularly to a silicon wafer lower part that may occur in an oxidation process of an N / O film in a high direct memory device using Si 3 N 4 / Oxide (N / O) as a capacitor dielectric material. A method for preventing oxidation.

일반적으로, 소자의 집적도가 증가할수록, 캐패시터 저장 노드에 할당된 면적이 감소하게 된다. 결국, 소자동작에 충분한 충전용량을 확보하기 위하여는 첫째, 유전상수가 큰 물질 사용하거나, 저장 노드의 표면적을 증가시키거나, 셋째, 유전체의 두께를 감소시켜야 한다. 따라서 256M이상의 Si3N4/Oxide를 유전물질로 사용하는 고집적 메모리 소자에 있어서 충분한 충전용량을 확보하기 위하여 N/O의 질화막 즉, Si3N4의 두께를 감소시켜야 한다.In general, as the degree of integration of a device increases, the area allocated to the capacitor storage node decreases. As a result, in order to ensure sufficient charge capacity for device operation, first, a material having a high dielectric constant, or increasing the surface area of the storage node, or third, reducing the thickness of the dielectric. Therefore, in order to secure sufficient charge capacity in a highly integrated memory device using more than 256M of Si 3 N 4 / Oxide as a dielectric material, it is necessary to reduce the thickness of the nitride film of N / O, that is, Si 3 N 4 .

도 1은 폴리실리콘막과 폴리실리콘막 사이를 절연하는 층간절연막이 형성되는 메모리 소자의 일례를 도시한 것으로, 셀지역과 주변회로지역의 간단한 구조를 보여주고 있다. 또한, 도면에서 도면부호 1은 반도체 기판, 2는 게이트 전극, 3 및 5는 증간절연막, 4는 비트라인, 6은 전하저장노드를 각각 나타낸다.FIG. 1 illustrates an example of a memory device in which an interlayer insulating film is formed between the polysilicon film and the polysilicon film, and shows a simple structure of a cell region and a peripheral circuit region. In the drawings, reference numeral 1 denotes a semiconductor substrate, 2 a gate electrode, 3 and 5 an extra insulation film, 4 a bit line, and 6 a charge storage node.

도면에 도시된 바와 같이, 폴리실리콘막으로 이루어진 게이트 전극(2)과 비트라인(4) 각각을 상부 및 하부의 다른 폴리실리콘막과 절연을 시키기 위하여 PSG(phosphorous silicate glass), BPSG(borophosphorous silicate glass), MTO(middle temperature oxide) 또는 PE-TEOS(plasma enhanced tetraethylortho silicate glass)를 사용하고 있다.As shown in the figure, in order to insulate each of the gate electrode 2 and the bit line 4 made of a polysilicon film from other polysilicon films in the upper and lower portions thereof, phosphorous silicate glass (PSG) and borophosphorous silicate glass (BPSG) ), MTO (middle temperature oxide) or PE-TEOS (plasma enhanced tetraethylortho silicate glass) is used.

그러나, 고집적 메모리 소자에 있어서 충전용량을 증가시키기 위하여 상기 전하저장노드에 증착되는 질화막의 두께를 감소시키게 되면, 층간절연막에 위치하는 질화막의 두게 역시 감소하여 N/O 공정의 산화 분위기에서 발생되는 산소가 하부의 층간 절연막을 투과하여 그 하부에 비트라인 또는 기타 다른 폴리실리콘막을 산화시키게 된다.However, when the thickness of the nitride film deposited on the charge storage node is reduced in order to increase the charge capacity in the high-density memory device, the thickness of the nitride film positioned in the interlayer insulating film is also reduced, and oxygen generated in the oxidizing atmosphere of the N / O process is reduced. Penetrates the lower interlayer insulating film and oxidizes a bit line or other polysilicon film thereunder.

도 2는 층간절연막으로 BPSG + MTO, 도 3은 층간절연막으로 BPSG + PE-TEOS를 사용한 구조에서 금속콘택이 형성되는 주변회로 지역이 산화되어 실리콘 하부가 부풀어오르고, 마치 버즈비크(Bird's Beak)와 같이 산화현상이 발생한 것을 보여준다. 이 현상은 MTO 및 PE-TEOS의 두께를 100∼3000Å까지 변화한 경우에도 모두 발생하며, 이들 층간절연막 자체는 두께에 관계없이 산소의 충분한 베리어 역할을 하지 못한다.2 is a BPSG + MTO as an interlayer insulating film, Figure 3 is a BPSG + PE-TEOS structure of the peripheral circuit area where the metal contact is formed in the structure is oxidized swelling the bottom of the silicon, as if Burd's Beak (Bird's Beak) It shows that oxidation occurred. This phenomenon occurs even when the thickness of the MTO and PE-TEOS is changed from 100 to 3000Å, and these interlayer insulating films themselves do not function as a sufficient barrier of oxygen regardless of the thickness.

결국, 질화막의 두께가 감소함에 따라 N/O 산화공정에서의 질화막이 산소의 베리어역할을 충분히 수행하지 못하게 되어 실리콘 하부 웰(well)지역이 산화되는 현상이 발생한다. 특히, 그 하부 지역에 금속콘택이 형성되어 있을 경우 접촉저항의 증가로 인하여 소자가 제대로 동작하지 않는 문제점이 유발된다.As a result, as the thickness of the nitride film decreases, the nitride film in the N / O oxidation process does not sufficiently perform the role of oxygen, and thus a phenomenon in which the silicon well region is oxidized. In particular, when a metal contact is formed in the lower region thereof, a problem arises that the device does not operate properly due to an increase in contact resistance.

따라서, 상기 문제점을 해결하기 위하여 안출된 본 발명은 캐패시터의 유전막으로 사용되는 N/O의 산화공정시 산소 침투로 인하여 그 하부에 형성된 다른 층의 산화를 방지 함으로써 소자의 신뢰도를 향상시키는 산화 방지 방법을 제공하는 데 그 목적이 있다.Accordingly, the present invention devised to solve the above problems is an oxidation prevention method for improving the reliability of the device by preventing the oxidation of the other layer formed thereunder due to oxygen infiltration during the oxidation process of N / O used as the dielectric film of the capacitor The purpose is to provide.

도 1은 폴리실리콘막과 폴리실리콘막 사이를 절연하는 층간절연막이 형성되는 메모리 소자의 일례를 도시한 도면,1 is a view showing an example of a memory device in which an interlayer insulating film is formed between the polysilicon film and the polysilicon film;

도 2는 종래의 층간절연막(BPSG + MTO)을 사용한 구조에서 금속콘택이 형성되는 주변회로지역의 산화를 도시한 도면,2 is a view showing oxidation of a peripheral circuit region where a metal contact is formed in a structure using a conventional interlayer insulating film (BPSG + MTO),

도 3은 종래의 층간절연막(BPSG + PE-TEOS)을 사용한 구조에서 금속콘택이 형성되는 주변회로지역의 산화를 도시한 도면,3 is a view showing oxidation of a peripheral circuit region in which a metal contact is formed in a structure using a conventional interlayer insulating film (BPSG + PE-TEOS),

도 4는 본 발명에 따른 질소가 풍부한 SiON막을 층간절연막으로 사용한 주변회로지역의 실리콘 하부 모양을 나타낸 도면.Figure 4 is a view showing the bottom of the silicon in the peripheral circuit region using a nitrogen-rich SiON film according to the present invention as an interlayer insulating film.

*도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1: 반도체 기판 2: 게이트 전극1: semiconductor substrate 2: gate electrode

3,5: 증간절연막 4: 비트라인3,5: interlayer insulating film 4: bit line

6: 전하저장노드6: charge storage node

본 발명에서는 산소의 베리어 역할을 할 수 있는 층간절연막으로 질소를 풍부하게 함유하는 SiON막을 형성하거나, 이온주입을 통하여 PE-TEOS, TEOS, MTO등의 산화막내부로 질소를 침투시켜 산소가 투과하지 못하도록 함으로써 하부의 실리콘 산화 현상을 방지한다.In the present invention, to form a SiON film rich in nitrogen as an interlayer insulating film that can act as a barrier of oxygen, or to penetrate nitrogen into the oxide film such as PE-TEOS, TEOS, MTO through ion implantation so that oxygen does not permeate. This prevents the silicon oxidation phenomenon of the lower part.

또한, 본 발명은 반도체 메모리 소자의 층간절연막 제조 방법에 있어서, 층간을 절연하는 층간절연막을 형성하는 제 1 단계; 및 상기 층간절연막에 질소를 주입하여 질소가 풍부한 절연막으로 형성하는 제 2 단계를 포함한다.In addition, the present invention provides a method for manufacturing an interlayer insulating film of a semiconductor memory device, comprising: a first step of forming an interlayer insulating film for insulating an interlayer; And a second step of forming nitrogen-rich insulating film by injecting nitrogen into the interlayer insulating film.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. do.

먼저, 본 발명의 일 실시예에서는 이하의 공정 조건을 통해 층간절연막 SiON막을 100Å∼3000Å 증착한다.First, in an embodiment of the present invention, an interlayer insulating film SiON film is deposited from 100 kV to 3000 kV through the following process conditions.

1) 소스가스: SiH450∼100sccm, N2O 100∼300sccm, NH30∼300sccm;1) source gas: SiH 4 50-100 sccm, N 2 O 100-300 sccm, NH 3 0-300 sccm;

2) He 또는 N2캐리어 가스: 1500∼3000sccm;2) He or N 2 carrier gas: 1500-3000 sccm;

3) 챔버내 압력: 200 mTorr∼10 Torr;3) pressure in chamber: 200 mTorr-10 Torr;

4) 챔버내 샤워 헤드와 웨이퍼 척 거리: 5∼20mm;4) In-chamber shower head and wafer chuck distance: 5-20 mm;

5) 챔버온도: 상온 또는 500℃이하;5) Chamber temperature: below room temperature or 500 ° C;

6) 소스가스의 플라즈마 형성 RF: 50∼500W6) Plasma Formation of Source Gas RF: 50 ~ 500W

또한, 본 발명의 다른 일 실시예에서는 이하의 공정 조건을 통해 층간절연막에 질소를 이온주입 함으로써 산화 방지막을 형성한다. 특히, MTO, TEOS, PE-TEOS, HDP 또는 BPSG등의 층간절연막에 1∼10KeV의 에너지로 1×1014∼1×1016이온/cm-3의 질소를 주입한다.In another embodiment of the present invention, an oxide film is formed by ion implanting nitrogen into the interlayer insulating film through the following process conditions. In particular, nitrogen of 1 × 10 14 to 1 × 10 16 ions / cm −3 is injected into an interlayer insulating film such as MTO, TEOS, PE-TEOS, HDP, or BPSG at an energy of 1 to 10 KeV.

도 4는 질소가 풍부한 SiON막을 사용한 BPSG + SiON으로 구성된 층간절연막 구조에서 N/O 산화공정을 진행하였을 경우의 주변회로지역의 실리콘 하부 모양을 나타낸 것이다. 도면에서 보듯이 도 2와 도 3과는 달리 실리콘 하부로 부풀어오르는 현상도 발생하지 않았으며, 버즈비크모양도 생겨나지 않았음을 알 수 있다. .FIG. 4 shows the bottom surface of silicon in the peripheral circuit area when the N / O oxidation process is performed in the interlayer insulating film structure composed of BPSG + SiON using a nitrogen-rich SiON film. As shown in the figure, unlike in Figures 2 and 3 did not occur swelling to the bottom of the silicon, it can be seen that the appearance of the Buzz beak. .

또한, 유전체 바로 하부에 위치한 층간절연막을 MTO, TEOS, PE-TEOS 및 BPSG중 어느하나 또는 이들중 적어도 두 층이 적층된 막으로 형성한 후 질소를 주입시켜 비정질 상태의 층간절연막을 형성한 후 750℃ 이상의 열공정, 또는 850℃∼1050℃ 20초 정도의 RTP공정을 거치게 하면, N/O 산화공정에서 질화막을 투과한 산소의 확산을 방지할 수 있다. 이때 질소 주입량은 1×1014이상으로 하고 이온주입 에너지는 1∼5KeV로 한다.In addition, after forming an interlayer insulating layer directly under the dielectric as one of MTO, TEOS, PE-TEOS, and BPSG or at least two of them, nitrogen is injected to form an amorphous interlayer insulating layer. When the heat treatment is performed at a temperature higher than or equal to C or a RTP process at about 850 ° C to 1050 ° C for about 20 seconds, diffusion of oxygen that has passed through the nitride film in the N / O oxidation step can be prevented. At this time, the nitrogen injection amount is 1 × 10 14 or more and the ion implantation energy is 1-5KeV.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

본 발명은 층간절연막에 질소가 풍부한 산화막을 형성함으로써 ONO 유전막과 같은 캐패시터 유전체 산화 공정에서 하부의 실리콘산화를 방지함으로써, ONO의 질화막 두께를 감소시킬 수 없는 한계를 극복할 수 있다. 따라서 유전물질로 사용하는 질화막의 두께를 감소시킴으로써 충분한 충전용량을 확보할 수 있다.The present invention can overcome the limitation that the thickness of the nitride film of ONO can not be reduced by forming a nitrogen-rich oxide film in the interlayer insulating film, thereby preventing the silicon oxidation of the lower portion in the capacitor dielectric oxidation process such as the ONO dielectric film. Therefore, it is possible to secure sufficient charging capacity by reducing the thickness of the nitride film used as the dielectric material.

Claims (7)

반도체 메모리 소자의 층간절연막 제조 방법에 있어서,In the method of manufacturing an interlayer insulating film of a semiconductor memory device, 층간을 절연하는 층간절연막을 형성하는 제 1 단계; 및A first step of forming an interlayer insulating film insulating the interlayer; And 상기 층간절연막 상에 질소가 풍부한 절연막을 형성하는 제 2 단계Forming a nitrogen-rich insulating film on the interlayer insulating film 를 포함하여 이루어지는 것을 특징으로 하는 층간절연막 제조 방법.Method for manufacturing an interlayer insulating film comprising a. 제 1 항에 있어서,The method of claim 1, 상기 층간절연막은 MTO, TEOS, PE-TEOS, HDP 및 BPSG 중 어느 하나 또는 이들중 적어도 두 층이 적층된 것을 특징으로 하는 층간절연막 제조 방법.The interlayer insulating film is any one of MTO, TEOS, PE-TEOS, HDP and BPSG or at least two of them are laminated. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 제 2 단계는 50∼100sccm의 SiH4, 100∼300sccm의 N2O, 10∼300sccm의 NH3를 소스가스로 하는 것을 특징으로 하는 층간절연막 제조 방법.The second step is a method for producing an interlayer insulating film, characterized in that the source gas is SiH 4 of 50 to 100sccm, N 2 O of 100 to 300sccm, NH 3 of 10 to 300sccm. 제 3 항에 있어서,The method of claim 3, wherein 상기 소스가스가 증착되는 챔버내 압력은 200 mTorr∼10 Torr인 것을 특징으로 하는 층간절연막 제조 방법.And the pressure in the chamber in which the source gas is deposited is 200 mTorr to 10 Torr. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 제 2 단계는 상기 층간절연막에 1∼10KeV의 에너지로 1×1014∼1×1016이온/cm-3의 질소를 이온주입하여 이루어지는 것을 특징으로 하는 층간절연막 제조 방법.The second step is a method of manufacturing an interlayer insulating film, characterized in that by ion implantation of 1 × 10 14 ~ 1 × 10 16 ions / cm -3 nitrogen with an energy of 1 to 10 KeV in the interlayer insulating film. 제 5 항에 있어서,The method of claim 5, 상기 이온주입 후 상기 층간절연막을 750℃ 이상에서 열공정하는 단계를 더 포함하여 이루어지는 것을 특징으로 하는 층간절연막 제조 방법.And thermally processing the interlayer insulating film at 750 ° C. or higher after the ion implantation. 제 6 항에 있어서,The method of claim 6, 상기 열공정 후 상기 층간절연막을 850℃∼1050℃ 급속열처리하는 단계를 더 포함하여 이루어지는 것을 특징으로 하는 층간절연막 제조 방법.And performing rapid heat treatment of the interlayer insulating film after the thermal process at 850 ° C to 1050 ° C.
KR1019980044735A 1998-10-24 1998-10-24 Method for preventing oxidation of lower conductive layer generated from oxidation process of capacitor dielectric layer KR20000026966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980044735A KR20000026966A (en) 1998-10-24 1998-10-24 Method for preventing oxidation of lower conductive layer generated from oxidation process of capacitor dielectric layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980044735A KR20000026966A (en) 1998-10-24 1998-10-24 Method for preventing oxidation of lower conductive layer generated from oxidation process of capacitor dielectric layer

Publications (1)

Publication Number Publication Date
KR20000026966A true KR20000026966A (en) 2000-05-15

Family

ID=19555285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980044735A KR20000026966A (en) 1998-10-24 1998-10-24 Method for preventing oxidation of lower conductive layer generated from oxidation process of capacitor dielectric layer

Country Status (1)

Country Link
KR (1) KR20000026966A (en)

Similar Documents

Publication Publication Date Title
KR100282413B1 (en) Thin film formation method using nitrous oxide gas
US7206215B2 (en) Antifuse having tantalum oxynitride film and method for making same
US5786248A (en) Semiconductor processing method of forming a tantalum oxide containing capacitor
US6614082B1 (en) Fabrication of semiconductor devices with transition metal boride films as diffusion barriers
US7741671B2 (en) Capacitor for a semiconductor device and manufacturing method thereof
US20060275991A1 (en) Method of manufacturing a semiconductor integrated circuit device
KR19990045203A (en) Semiconductor device and manufacturing method thereof
KR100652426B1 (en) Capacitor of semiconductor device for preventing infiltration of dopants and method for fabricating the same
US8183109B2 (en) Semiconductor device and method of manufacturing the same
KR20020083773A (en) Method for fabricating capacitor of semiconductor device
KR100796724B1 (en) Capacitor and method of manufacturing the same
US7064052B2 (en) Method of processing a transistor gate dielectric film with stem
EP0926717B1 (en) Method of forming polysilicon capacitor electrode
KR100469775B1 (en) Semiconductor device and its manufacturing method
US7282407B1 (en) Semiconductor memory device and method of manufacturing for preventing bit line oxidation
KR100402943B1 (en) High dielectric capacitor and a method of manufacturing the same
KR20000026966A (en) Method for preventing oxidation of lower conductive layer generated from oxidation process of capacitor dielectric layer
KR100614576B1 (en) Method for forming capacitor
KR100575854B1 (en) A method of fabricating a capacitor
KR100329733B1 (en) Method for forming capacitor of semiconductor device
US20070173069A1 (en) Method of forming insulating layer of semiconductor device
JP2004179281A (en) Method of manufacturing semiconductor integrated circuit
KR100237022B1 (en) Forming method of dielectric film of capacitor
KR20000039607A (en) Method for fabricating capacitor of semiconductor device
KR100235973B1 (en) Manufacturing method of capacitor in the semiconductor device

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid