KR20000026113A - Air quantity sensor using minute heating unit - Google Patents

Air quantity sensor using minute heating unit Download PDF

Info

Publication number
KR20000026113A
KR20000026113A KR1019980043498A KR19980043498A KR20000026113A KR 20000026113 A KR20000026113 A KR 20000026113A KR 1019980043498 A KR1019980043498 A KR 1019980043498A KR 19980043498 A KR19980043498 A KR 19980043498A KR 20000026113 A KR20000026113 A KR 20000026113A
Authority
KR
South Korea
Prior art keywords
metal layer
silicon wafer
predetermined thickness
nitride film
air quantity
Prior art date
Application number
KR1019980043498A
Other languages
Korean (ko)
Other versions
KR100383648B1 (en
Inventor
이승환
Original Assignee
밍 루
주식회사 만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 밍 루, 주식회사 만도 filed Critical 밍 루
Priority to KR10-1998-0043498A priority Critical patent/KR100383648B1/en
Priority to CN 99119307 priority patent/CN1251404A/en
Publication of KR20000026113A publication Critical patent/KR20000026113A/en
Application granted granted Critical
Publication of KR100383648B1 publication Critical patent/KR100383648B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Micromachines (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: Air quantity sensor using a minute heating unit forms a temperature sensor to right and left sides of the heating unit, senses a resistance variation of right and left sides according to air flow and air quantity, calculates the sensed resistance variation as a temperature, and detects air quantity. CONSTITUTION: Air quantity sensor using a minute heating unit(16) includes a nitride layer(20,24), a first metal layer, double metal layer, and electrode part. The nitride layer is formed by low pressure chemical vapor deposition method at a predetermined temperature on a silicon wafer(10). The first metal layer is formed as a first predetermined thickness on the silicon wafer. The second metal layer is formed as a second predetermined thickness on the silicon wafer. The second predetermined thickness is thicker than the first predetermined thickness. The double metal layer is made of the second metal layer. The nitride layer formed by a sputtering method on the patterned double metal layer and some part of the nitride layer are selectively etched, thereby making a contact hole. The electrode part is formed in the contact hole. Thereby, air quantity sensor forms a temperature sensor to right and left sides of the heating unit, senses a resistance variation of right and left sides according to air flow and air quantity, calculates the sensed resistance variation as a temperature, and detects air quantity.

Description

미세 발열체를 이용한 공기량 센서Air volume sensor using micro heating element

본 발명은 미세발열체를 이용한 공기량 센서에 관한 것으로, 특히 다량 공기 흐름센서에 응용가능한 미세발열체와 이를 이용한 상온온도센서와, 발열부온도센서 와, 미세발열체의 제조방법을 이용한 공기량 센서에 관한 것이다.The present invention relates to an air mass sensor using a micro heating element, and more particularly, to a micro heating element applicable to a large amount of air flow sensors, a room temperature temperature sensor using the same, a heating unit temperature sensor, and an air mass sensor using a method of manufacturing a micro heating element.

일반적으로 실리콘 미세가공기술의 발전에 따라 공조용 가스센서를 실리콘 반도체 기술과 접목시켜 개발하는 경향이 많다. 현재까지 알려져 있는 발열체의 제조공정을 살펴보면, 실리콘 웨이퍼의 양면위에 고온의 온도에서 산화막을 성장시키고, 그 위에 저압화학증착법(Low Pressure Chemical Vapor Deposition)에 의해 질화막을 형성한다.In general, with the development of silicon micromachining technology, there is a tendency to develop the air conditioning gas sensor by combining with silicon semiconductor technology. Looking at the manufacturing process of a heating element known to date, an oxide film is grown on both surfaces of a silicon wafer at a high temperature, and a nitride film is formed thereon by low pressure chemical vapor deposition.

그리고, 실리콘 웨이퍼 표면위에 질화막 상부에 상압 또는 플라즈마 화학 증착법에 의해 산화막을 형성한 후, 발열체용 금속물질인 백금/탄탈륨 혹은 니켈철 및 니켈 크롬등을 증착한다Then, an oxide film is formed on the surface of the silicon wafer by the atmospheric pressure or plasma chemical vapor deposition method, and then platinum / tantalum or nickel iron and nickel chromium, which are metal materials for the heating element, are deposited.

게속해서, 온도센서 및 발열체의 제작을 위하여 소저의 마스크를 이용하여 패터닝을 행한 후, 전기적,열적 절연을 위한 패시베이션용 절연막인 산화막 혹은 질화막을 증착한다. 이후는 전기적 접속을 위한 전극부 및 배선가공등의 공정을 거쳐서 발열체를 완성한다.Subsequently, after the patterning is performed by using a mask for the production of the temperature sensor and the heating element, an oxide film or a nitride film, which is an insulating film for passivation for electrical and thermal insulation, is deposited. Thereafter, the heating element is completed through a process such as an electrode part and wiring processing for electrical connection.

상기와 같이 구성된 발열체는 전극부를 통하여 전원이 인가되면 일정두께의 발열체에 의해 열이 발생하게 된다. 이때 발생하는 열은 열전도도가 낮은 절연막내에 집중되고, 발열체를 포함하는 소정 면적에서 인가전원의 대소에 따라 일정온도의 값을 갖게 된다.The heating element configured as described above generates heat by the heating element having a predetermined thickness when power is applied through the electrode portion. Heat generated at this time is concentrated in the insulating film having low thermal conductivity, and has a constant temperature value depending on the magnitude of the applied power source in a predetermined area including the heating element.

상기 온도센서는 발열체 자체의 온도에 따른 저항변화에 의해 발열부위의 온도를 직접 검출하는 대신에 온도센서용 금속의 저항변화에 의해 발열체의 온도를 측정 보상아는 역할을 하게 된다.The temperature sensor serves to measure and compensate the temperature of the heating element by the resistance change of the metal for the temperature sensor instead of directly detecting the temperature of the heating portion by the resistance change according to the temperature of the heating element itself.

종래의 발열체는 산화막의 성장,질화막의 형성, 상압 또는 플라즈마상태에서의 화학 증착법에 의한 산화막의 증착, 발열체용 금속의 증착, 소정의 저항값을 확보하기 위한 패터닝, 절연막의 증착, 전극부의 형성 및 열섬의 형성등의 다단 공정을 거펴 형성되므로 제조공정이 복잡하고, 제조단가가 비싸다는 문제점이 있었다.Conventional heating elements include oxide film growth, nitride film formation, deposition of an oxide film by chemical vapor deposition in atmospheric pressure or plasma, deposition of metal for heating elements, patterning to ensure a predetermined resistance value, deposition of an insulating film, formation of electrode portions, and the like. Since it is formed through a multi-step process such as the formation of heat islands, there is a problem that the manufacturing process is complicated and the manufacturing cost is expensive.

따라서, 상기와 같은 문제점을 해결하기 위한 방법으로서 국내특허출원 제 95-47468호가 출원된 바 있으나, 이는 종래의 기술과 비교하여 공정수를 줄이고, 특성의 안정화를 시키고, 안정적인 열원을 제공하고자 하였던 것이다.Therefore, the Korean Patent Application No. 95-47468 has been filed as a method for solving the above problems, but this is to reduce the number of processes, stabilize the characteristics, and provide a stable heat source compared to the prior art .

그러나, 상기와 같은 제조방법은 그 공정을 단축하여 제조원가를 저렴하게 할 수 있었으나, 열적 안정성 및 발열체의 특성을 안정화시키는 부분에 있어서는 뚜렷한 효과가 나타나지 않는 단점이 있었다.However, the manufacturing method as described above was able to shorten the process to reduce the manufacturing cost, but there was a disadvantage in that the apparent stability in the part of stabilizing the thermal stability and characteristics of the heating element.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로서, 발열체이 좌우측에 온도센서를 형성하여 공기의 흐름 및 공기량에 따라 좌우측의 저항변화를 감지하고, 그 감지된 저항의 변화를 온도로 환산하여 공기량을 검출하는 미세발열체를 이용한 공기량 센서를 제공하는 것을 그 목적으로 한다.Therefore, the present invention has been devised to solve the above problems, the heating element forms a temperature sensor on the left and right sides to detect the resistance change of the left and right according to the flow of air and the amount of air, and converts the change in the sensed resistance into temperature It is an object of the present invention to provide an air mass sensor using a micro heating element for detecting the air volume.

도 1 은 본 발명의 미세발열체를 이용한 공기량 센서의 평면도.1 is a plan view of an air mass sensor using a micro heating element of the present invention.

도 2 는 본 발명의 단면도.2 is a cross-sectional view of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 실리콘 웨이퍼 12 정렬키10 Silicon Wafer 12 Alignment Key

14 상온온도센서 16 미세발열체14 Room temperature sensor 16 Micro heating element

18,19 발열부 온도센서 20,24 질화막18,19 Heating part Temperature sensor 20,24 Nitride film

22 금속층22 metal layer

본 발명의 미세발열체를 이용한 공기량 센서는 실리콘 웨이퍼의 위에 소정의 온도에서 형성된 질화막과; 상기 실리콘 웨이퍼의 전면에 제 1의 소정두께로 형성된 제 1금속층과, 상기 실리콘 웨이퍼의 전면에 상기 제 1금속층의 두께보다 두꺼운 제 2의 소정두께로 형성된 제 2금속층으로 이루어지는 이중 금속층과; 소정의 패턴으로 패터닝된 이중 금속층 위에 형성된 질화막 및 상기 질화막의 일부를 에칭하여 접촉홀내에 형성된 전극부 및 이면식각을 이용하여 형성된 멤브레인 구조를 구비하는 것을 특징으로 한다.An air mass sensor using the micro heating element of the present invention comprises: a nitride film formed on a silicon wafer at a predetermined temperature; A double metal layer comprising a first metal layer formed on a front surface of the silicon wafer with a first predetermined thickness and a second metal layer formed on a front surface of the silicon wafer with a second predetermined thickness thicker than the thickness of the first metal layer; And a membrane structure formed using a nitride film formed on the double metal layer patterned in a predetermined pattern, an electrode portion formed in the contact hole by etching a portion of the nitride film, and a backside etching.

이하, 첨부된 도면을 참조하여 본 발명의 미세발열체를 이용한 공기량 센서에 대하여 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings will be described with respect to the air mass sensor using a micro heating element of the present invention.

실리콘 웨이퍼(10)의 위에 소정의 온도에서 형성된 질화막(20)과; 상기 실리콘 웨이퍼(10)의 전면에 제 1의 소정두께로 형성된 제 1금속층과, 상기 실리콘 웨이퍼의 전면에 상기 제 1금속층의 두께보다 두꺼운 제 2의 소정두께로 형성된 제 2금속층으로 이루어지는 이중 금속층(22)과; 소정의 패턴으로 패터닝된 이중 금속층(22) 위에 형성된 질화막(24) 및 상기 질화막(24)의 일부를 에칭하여 접촉홀내에 형성된 전극부 및 이면식각을 이용하여 형성된 멤브레인 구조를 구비하는 것을 특징으로 한다.A nitride film 20 formed on the silicon wafer 10 at a predetermined temperature; A double metal layer including a first metal layer formed on the entire surface of the silicon wafer 10 with a first predetermined thickness, and a second metal layer formed on the entire surface of the silicon wafer with a second predetermined thickness thicker than the thickness of the first metal layer ( 22); It characterized in that it comprises a nitride film 24 formed on the double metal layer 22 patterned in a predetermined pattern and a portion of the nitride film 24 by etching the electrode portion formed in the contact hole and the membrane structure formed using the back surface etching. .

상기 제 1금속층은 크롬층이고, 상기 제 2금속층은 배금층으로 형성된다. 더욱이 상기 백금/크롬의 이중 금속층(22)을 이용한 미세발열체와, 이를 이용한 발열부 온도센서 및 상온온도센서를 동일 실리콘 웨이퍼 위에 형성하는 것을 특징으로 한다.The first metal layer is a chromium layer, and the second metal layer is formed of a plating layer. Furthermore, the micro heating element using the double metal layer 22 of platinum / chromium, and the heating part temperature sensor and the room temperature temperature sensor using the same are formed on the same silicon wafer.

도 1 은 본 발명의 미세발열체를 이용한 공기량 센서의 평면도이고, 도 2 는 본 발명의 단면도이다.1 is a plan view of an air mass sensor using the micro heating element of the present invention, Figure 2 is a cross-sectional view of the present invention.

도면부호 (10)은 센서부와 신호처리를 동시에 내장할 수 있도록 된 실리콘 웨이퍼이고, (12)는 패턴의 형성을 위한 노광공정시에 진행될 몇종의 마스크를 정확한 위치에 정렬시키기 위한 정렬키(alignment key)이며, (14)는 금속의 일반적인 성질인 온도의 증가에 따른 저항값의 증가를 이용해 제품이 설치되는 부분의 온도를 측정하기 위한 상온온도센서이다. 그리고, (16)은 얇은 피막인 멤브레인(membrane)에 매설되어 외부전원에 의하여 일정의 온도로 승온시키기 위한 미세발열체이고, (18,19)는 발열부 주위에 매설되어 공기의 유동이 있을 때 상기 미세발열체(16)에서 승온시킨 온도차를 측정하기 위한 발열부 온도센서이다.Reference numeral 10 denotes a silicon wafer capable of embedding the sensor portion and signal processing at the same time, and reference numeral 12 denotes an alignment key for aligning several masks to be precisely positioned in the exposure process for forming a pattern. key), and (14) is a room temperature temperature sensor for measuring the temperature of the part where the product is installed by increasing the resistance value with the increase of the temperature, which is a general property of metals. And, 16 is a micro heating element embedded in a thin film membrane (membrane) to increase the temperature to a predetermined temperature by an external power source, (18, 19) is embedded around the heat generating portion when there is a flow of air It is a heat generating unit temperature sensor for measuring the temperature difference raised in the fine heating element (16).

상기 상온온도센서(14)는 실리콘 웨이퍼(10)상에 매설됨으로써 발열부의 영향을 배제시킬수 있다.The room temperature temperature sensor 14 may be embedded on the silicon wafer 10 to eliminate the influence of the heat generating unit.

이때, 상온온도센서(14)는 외부유체의 온도에 비교적 덜 민감하기 때문에 유속이 존재하는 영역에서의 유체 및 분위기중의 온도를 측정할 수 있으며, 상기 미세발열체(16) 및 발열부 온도센서(18,19)는 외부 유속 및 유량에 의존하여 발열특성 및 저항값이 변화하기 때문에 다량공기흐름센서(Mass Air Flow sensor)에 응용이 가능하다.At this time, since the room temperature temperature sensor 14 is relatively less sensitive to the temperature of the external fluid, it can measure the temperature in the fluid and the atmosphere in the region in which the flow rate exists, and the micro heating element 16 and the heating unit temperature sensor ( 18, 19) can be applied to a mass air flow sensor because the heat generation characteristics and the resistance value change depending on the external flow rate and flow rate.

도 2에 나타낸 바와 같이, 먼저, 열적 단열을 위해 780℃에서 감압화학 기상증착법에 의해 실리콘 웨이퍼(10) 위에 0.2㎛의 질화막(20)을 형성한 후, 실리콘 웨이퍼(10)이 전면에 크롬층을 약 200 - 300Å의 두께로 증착한다.As shown in FIG. 2, first, a nitride film 20 having a thickness of 0.2 μm is formed on the silicon wafer 10 by a reduced pressure chemical vapor deposition at 780 ° C. for thermal insulation, and then a chromium layer is formed on the entire surface of the silicon wafer 10. Is deposited to a thickness of about 200-300 mm 3.

이어서, 실리콘 웨이퍼(10)의 전면에 백금 재질이 발열체 금속을 2000Å의 두께로 증착한 후, 발열체와 온도센서의 제작을 위해 패터닝을 행한다. 그 후 이면의 질화막은 전면 접촉홀 에칭단계에서 식각된다. 이에 따라 실리콘 웨이퍼(10) 표면의 질화막(20) 위에 크롬층과 백금층으로 이루어진 백금/크롬 이중금속층(22)이 형성된다.Subsequently, a platinum material deposits a heating element metal with a thickness of 2000 kPa on the entire surface of the silicon wafer 10, and then patterning is performed to produce the heating element and the temperature sensor. The nitride film on the back side is then etched in the front contact hole etching step. As a result, a platinum / chromium bimetal layer 22 including a chromium layer and a platinum layer is formed on the nitride film 20 on the surface of the silicon wafer 10.

다음으로, 열적 단열 및 전기적 절연을 위해 스퍼터링 방법으로 질화막(24)을 증착한다. 이어, 상기 질화막(24)의 일부를 선택적으로 에칭하여 접촉홀을 형성한 후, 이면의 실리콘 식각 및 칩절단 후 와이어 본딩함으로써 본 발명의 미세발열체를 완성한다.Next, the nitride film 24 is deposited by a sputtering method for thermal insulation and electrical insulation. Subsequently, a part of the nitride film 24 is selectively etched to form a contact hole, and then the wire is bonded after silicon etching and chip cutting on the back surface to complete the micro heating element of the present invention.

본 발명의 미세발열체와 온도센서의 그 공정흐름도는 실리콘 웨이퍼의 세정, 감압 화학 기상증착법에 의해 질화막(20)의형성, 백금/크롬 증착후 열처리, 포코리소그래피(photolithography), 백금/크롬 이중금속층 에칭, 스퍼터링법에 의한 질화막(24)의 형성, 포코리소그래피에 의한 식각홀 형성, 백사이드 에칭, 웨이퍼 절단, 와이어본딩 등의 공정을 거쳐 형성된다.The process flow chart of the micro heating element and the temperature sensor of the present invention can be used for cleaning the silicon wafer, forming the nitride film 20 by vacuum chemical vapor deposition, heat treatment after platinum / chromium deposition, photolithography, and platinum / chromium double metal layer etching. And the formation of the nitride film 24 by the sputtering method, the etching hole formation by the photolithography, the backside etching, the wafer cutting, and the wire bonding.

이상에서 살펴본 바와 같이, 본 발명의 미세발열체를 이용한 공기량 센서는 발열체 좌,우측에 온도센서를 이용하여 공기의 흐름 및 공기량에 따라 저항변화를 감지하여 공기량을 검출하므로서 센서의 열적 특성을 안정화시킬 수 있는 이점이 있다.As described above, the air amount sensor using the micro heating element of the present invention can stabilize the thermal characteristics of the sensor by detecting the air amount by detecting a change in resistance according to the flow of air and the air amount using a temperature sensor on the left and right sides of the heating element. There is an advantage to that.

Claims (4)

실리콘 웨이퍼 위에 소정의 온도에서 감압 화학 기상증착버에 의해 형성된 질화막과, 상기 실리콘 웨이퍼의 전면에 제 1의 소정두께로 형성된 제 1금속층과, 상기 실리콘 웨이퍼의 전면에 상기 제 1의 소정두께보다 두꺼운 제 2의 소정두께로 형성된 제 2금속층으로 이루어진 이중 금속층과, 소정의 패턴으로 패터닝된 이중 금속층 위에 스퍼터링법에 의해 형성된 질화막 및 상기 질화막의 일부를 선택적으로 에칭제거하여 된 접촉홀내에 형성된 전극부를 구비한 것을 특징으로 하는 미세발열체를 이용한 공기량 센서.A nitride film formed by a reduced pressure chemical vapor deposition burr on a silicon wafer at a predetermined temperature, a first metal layer formed with a first predetermined thickness on the front surface of the silicon wafer, and thicker than the first predetermined thickness on the front surface of the silicon wafer. A double metal layer comprising a second metal layer formed to a second predetermined thickness, a nitride film formed by sputtering on a double metal layer patterned in a predetermined pattern, and an electrode portion formed in a contact hole formed by selectively etching away a portion of the nitride film; Air mass sensor using a fine heating element, characterized in that. 제 1항에 있어서, 상기 제 1금속층은 크롬층이고, 상기 제 2금속층은 백금층인 것을 특징으로 하는 미세발열체를 이용한 공기량 센서.The air volume sensor of claim 1, wherein the first metal layer is a chromium layer, and the second metal layer is a platinum layer. 실리콘 웨이퍼 위에 소정의 온도에서 습식산화법에 의해 질화막을 형성하는 공정과, 상기 실리콘 웨이퍼의 전면에 제 1이 소정두께로 제 1금속층을 형성하고, 상기 실리콘 웨이퍼의 전면에 상기 제 1의 소정두께보다 두꺼운 제 2의 소정두께로 제 2금속층을 형성함으로써 이중 금속층을 형성하는 공정과, 상기 이중 금속층을 소정의 패턴으로 패터닝함과 더불어 그 위에 스퍼터링법에 의해 질화막을 형성하는 공정 및 상기 질화막의 일부를 선택적으로 에칭제거하여 된 접촉홀내에 전극부를 형성하는 공정을 구비하여 이루어진 것을 특징으로 하는 미세발열체를 이용한 공기량 센서의 제조방법.Forming a nitride film on the silicon wafer by a wet oxidation method at a predetermined temperature, and forming a first metal layer having a first predetermined thickness on the entire surface of the silicon wafer, and forming a first metal layer on the entire surface of the silicon wafer than the first predetermined thickness. Forming a double metal layer by forming a second metal layer with a thick second predetermined thickness, patterning the double metal layer in a predetermined pattern, forming a nitride film thereon by a sputtering method, and a part of the nitride film A method of manufacturing an air mass sensor using a micro heating element, comprising the step of forming an electrode part in a contact hole selectively etched away. 제 3항에 있어서, 상기 제 1금속층은 크롬층이고, 상기 제 2금속층은 백금층인 것을 특징으로 하는 미세발열체를 이용한 공기량 센서의 제조방법.4. The method of claim 3, wherein the first metal layer is a chromium layer and the second metal layer is a platinum layer.
KR10-1998-0043498A 1998-10-17 1998-10-17 Air flow sensor using micro heating element KR100383648B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-1998-0043498A KR100383648B1 (en) 1998-10-17 1998-10-17 Air flow sensor using micro heating element
CN 99119307 CN1251404A (en) 1998-10-17 1999-09-08 Building block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0043498A KR100383648B1 (en) 1998-10-17 1998-10-17 Air flow sensor using micro heating element

Publications (2)

Publication Number Publication Date
KR20000026113A true KR20000026113A (en) 2000-05-06
KR100383648B1 KR100383648B1 (en) 2003-08-30

Family

ID=19554385

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0043498A KR100383648B1 (en) 1998-10-17 1998-10-17 Air flow sensor using micro heating element

Country Status (1)

Country Link
KR (1) KR100383648B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759325B1 (en) * 2006-11-02 2007-09-17 한국에너지기술연구원 A micro anemometer and fabrication method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759325B1 (en) * 2006-11-02 2007-09-17 한국에너지기술연구원 A micro anemometer and fabrication method therefor

Also Published As

Publication number Publication date
KR100383648B1 (en) 2003-08-30

Similar Documents

Publication Publication Date Title
EP2762864B1 (en) Membrane-based sensor device and method for manufacturing the same
EP0393141A1 (en) Silicon-based mass airflow sensor.
JP3754678B2 (en) Corrosion-resistant metal thermal mass flow sensor and fluid supply equipment using the same
JP4903029B2 (en) Pirani vacuum gauge and pressure measuring method
JP2009300381A (en) Heat conduction type vacuum gage, and pressure measuring method
KR101078187B1 (en) Micro Gas Sensor And Method of manufacturing the same
JP2001324398A (en) Corrosion resistant vacuum sensor
KR100383648B1 (en) Air flow sensor using micro heating element
JP5528006B2 (en) Manufacturing method of sensor chip
JPH0721736B2 (en) Micro Valve / Mass Flow Controller
JP3598217B2 (en) Flow rate detecting element, flow rate sensor, and method of manufacturing flow rate detecting element
JPH10332455A (en) Flow sensor and its manufacture
KR100489297B1 (en) Orifice type Gas Sensor using CVD DLC Thin Film and Fabrication Method for the same
US6619130B1 (en) Pressure sensor
JP4590791B2 (en) Sensor manufacturing method
JPH0758346A (en) Micro flow sensor and its manufacture
KR0178155B1 (en) Method for manufacturing micro-heating unit of gas sensor
KR100504177B1 (en) Semiconductor gas sensor and Method for manufacturing the same
KR0184803B1 (en) Automobile air-condition heater and its manufacturing method
JP3686398B2 (en) Manufacturing method of flow sensor
JP2003017711A (en) Method of manufacturing semiconductor sensor
JP3734626B2 (en) Manufacturing method of micro bridge sensor
KR19980021926A (en) Micro heating element and its manufacturing method and use
KR20160147161A (en) Method of manufacturing for flux and pressure detection board
WO2020158156A1 (en) Method for forming detection element and detection device

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee