KR20000024647A - Composition for transparent conductive thin layers and method for preparing transparent conductive thin layers with low electric resistances using the same - Google Patents
Composition for transparent conductive thin layers and method for preparing transparent conductive thin layers with low electric resistances using the same Download PDFInfo
- Publication number
- KR20000024647A KR20000024647A KR1020000009486A KR20000009486A KR20000024647A KR 20000024647 A KR20000024647 A KR 20000024647A KR 1020000009486 A KR1020000009486 A KR 1020000009486A KR 20000009486 A KR20000009486 A KR 20000009486A KR 20000024647 A KR20000024647 A KR 20000024647A
- Authority
- KR
- South Korea
- Prior art keywords
- parts
- weight
- thin film
- transparent conductive
- conductive thin
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/14—Conductive material dispersed in non-conductive inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0026—Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
- H01B13/16—Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0036—Details
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing Of Electric Cables (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
본 발명은 투명도전성 박막용 조성물 및 이를 이용한 저저항 투명도전성 박막의 제조방법에 관한 것으로, 좀 더 구체적으로는 유리(Glass), 세라믹(Ceramic), 석재의 기판 또는 환형 비드(Bead: 입자크기 0.3mm이상)의 소재표면에 도전성 박막을 형성하여, 전파흡수 및 차폐, 발열체로써의 저저항, 화학적. 기계적 내구성을 갖는 투명도전성 박막용 조성물 및 이를 이용한 저저항 투명도전성 박막의 제조방법에 관한 것이다.The present invention relates to a composition for a transparent conductive thin film and a method for manufacturing a low resistance transparent conductive thin film using the same, and more specifically, glass, ceramic, stone substrate or annular bead (particle size 0.3) A conductive thin film is formed on the surface of the material (mm or more) to absorb and shield radio waves, and low resistance as a heating element, and chemically. It relates to a composition for a transparent conductive thin film having mechanical durability and a low resistance transparent conductive thin film using the same.
투명도전성 박막은 전파흡수 및 차폐, 박막 발열체로써 도전성 분말이나 도료, 대전방지 및 무정전 도전성 처리, 전파흡수 발열체 (전자레인지 용기), 전계발광 면상광원(EL Display & Lamp Panel), 평판 표시기(투명전극, 태양전지), 면상발열 히터, 무결로, 무열선 히터(자동차, 선박, 항공, 건축, 냉동 쇼-케이스(Show-Case)), 전파 흡수형 투명유리(안테나(Antenna), 보안기), 적외선 반사창 등 전기.전자부품 ,에너지 관련 산업등에 다방면으로 활용할 수 있다.Transparent conductive thin film is electric wave absorption and shielding, conductive powder or paint as a thin film heating element, antistatic and uninterruptible conductive treatment, electric wave absorption heating element (microwave container), electroluminescent surface light source (EL Display & Lamp Panel), flat panel display (transparent electrode) , Solar cell), surface heating heater, dew condensation, heatless heater (car, ship, aviation, architecture, refrigeration show-case), radio wave absorbing transparent glass (antenna, security device), infrared It can be used in various fields such as reflective windows, electrical and electronic parts, and energy related industries.
이러한 도전성 투명박막을 제조하기 위한 재료로는, 예를 들어, 산화인듐-산화주석, 산화주석-산화안티몬, 산화아연 등과 같은 금속 산화물과, 금, 백금, 은과 같은 금속, 칼코제나이드(chalcogennides), 붕소화란탄, 질소화티타늄과 같은 비산화물 등이 사용되고 있다.As a material for producing such a conductive transparent thin film, for example, metal oxides such as indium oxide-tin oxide, tin oxide-antimony oxide, zinc oxide, and the like, metals such as gold, platinum, silver, and chalcogenides ), Non-oxides such as lanthanum boride and titanium nitride are used.
예를 들어, 미국특허 제5,160,675호에서는 인듐산화물 및 주석산화물을 원료로 하여 발열박막의 형상을 몰딩하고, 소결하여 도전성 투명박막을 제조하는 방법을 개시하고 있다. 또한, 일본특허공고 평6-4400호에서는 도펀트(dopant)의 함유량이 다른 복수 종류의 박막재료를 동시에 증발시키거나, 또는 스퍼터링을 행하여 복수 종류의 박막재료의 증기 또는 스퍼터링 원자를 발생시키는 공정과, 상기 발생공정에서 발생한 증기 또는 스퍼터링 원자를 기판의 표면에 부착시켜 박막을 형성하는 부착공정을 포함하는 박막의 도판트의 함유량이 부분적으로 다른 도전성 박막의 형성방법을 제시하고 있다. 한국특허 제171971호에서는 염화제2주석, 플루오르, 안티몬 및 나머지는 증류수로 이루어진 금속박막 발열체를 개시하고 있다. 아울러, 일본특허공고 소63-52404호에서는 안티몬을 주성분으로 하고, 나머지가 산화주석으로 구성되며, 이를 무기염을 용해시킨 수용액중에 용해시켜 분무법으로 유리기판상에 도포시키는 방법을 개시하고 있다.For example, U. S. Patent No. 5,160, 675 discloses a method of manufacturing a conductive transparent thin film by molding and sintering the shape of the exothermic thin film using indium oxide and tin oxide as raw materials. In addition, Japanese Patent Application Laid-open No. Hei 6-4400 discloses a process of simultaneously evaporating or sputtering a plurality of kinds of thin film materials having different dopant contents to generate steam or sputtering atoms of the plurality of thin film materials; A method of forming a conductive thin film in which the content of a dopant of a thin film is partially different, including an attaching process of attaching vapor or sputtering atoms generated in the generating step to a surface of a substrate to form a thin film. Korean Patent No. 171971 discloses a metal thin film heating element consisting of ditin, fluorine, antimony and distilled water. In addition, Japanese Patent Publication No. 63-52404 discloses a method in which antimony is a main component and the remainder is composed of tin oxide, which is dissolved in an aqueous solution in which an inorganic salt is dissolved and applied onto a glass substrate by spraying.
그러나, 진공증착, 스퍼터링 등을 이용한 종래의 기술은 균질도는 뛰어나나, 고가 장비에 따른 생산단가가 높고 대면적을 생산하기 매우 어려우며, 막의 성장속도가 느리다. 또한 종래의 분무법과 CVD 등은 균질도와 성장시 발생하는 가스로 인한 문제와 충분히 만족할 만한 막을 얻을 수가 없다는 문제점을 지니고 있다. 따라서, 기존의 방법들은 시공상의 저가격화, 대면적의 대량 생산화, 고온발열의 내열성등 효율적 성능과 경제적으로 개선해야 할 점을 갖고 있다.However, the conventional technique using vacuum deposition, sputtering, etc. is excellent in homogeneity, high production cost according to expensive equipment, very difficult to produce large area, and slow growth rate of the film. In addition, the conventional spraying method and CVD has problems such as problems caused by the homogeneity and the gas generated during growth and a problem that a satisfactory film cannot be obtained. Therefore, the existing methods have the point to improve the efficiency and economical efficiency such as low cost in construction, mass production of large area, heat resistance of high temperature heat generation.
이와 같이, 종래의 방법은 진공장치의 한계로 대면적을 생산하기 어려우며, 생산하더라도 고가의 가격이고, 대량생산에 한계를 가져올 수 밖에 없다. 이러한 문제를 해결하기 위해 본 발명에서는 증착방법을 분부 열분해법(Spray Pyrolysis)으로 하여 대면적(2M×2.5M)도포와 막의 성장속도(0.4∼4초)를 현저히 증가시켰고, 분무법의 취약점인 균일한 도포에 있어서도 초음파 진동자를 이용한 분무실의 구성으로 정해진 범위내의 일정한 균일성을 갖게 하였다. 또한, 종래의 주석화합물로 이루어진 박막의 경우, 특히 내산성이 약하거나 큐리점(Curie Point)이 낮은 온도에서 발생하여 발열시의 최대온도가 200∼350℃이하였으나, 본 발명에 따른 조성물은 융점이 높은 주석과 인듐의 화합물(SnCl4및 InBr3)에 적정한 불순물(SbCl3, NaOH)을 화합하고 환원제와 산화제로 황산철과 불소를 첨가하여 고융점에 안정하고 접착성, 융착성이 높아 내식성을 증가시킨 재료에 높은 전도율과 전기음성도가 큰 성분을 화합하였다.As described above, the conventional method is difficult to produce a large area due to the limitation of the vacuum apparatus, and even if the production is expensive, inevitably brings a limitation to mass production. In order to solve this problem, the present invention significantly increased the large area (2M × 2.5M) coating and film growth rate (0.4 to 4 seconds) by using a spray pyrolysis method, and uniformity, which is a weak point of the spraying method. Also in one application | coating, the structure of the spray chamber which used the ultrasonic vibrator provided constant uniformity within the defined range. In addition, in the case of a thin film made of a conventional tin compound, the maximum temperature at the time of exotherm occurs especially at low temperatures due to weak acid resistance or low Curie Point, but the composition according to the present invention has a melting point. Suitable impurities (SbCl 3 , NaOH) are mixed with high tin and indium compounds (SnCl 4 and InBr 3 ) and iron sulfate and fluorine are added as reducing and oxidizing agents to ensure high melting point, high adhesion and adhesion, and high corrosion resistance. High conductivity and high electronegativity were combined with the increased material.
따라서, 본 발명의 목적은 박막 성장시 내열성이 뛰어나 고열 발열시에도 종래의 막과는 비교할 수 없는 우수한 접착성, 융착성이 높아 내식성을 증가된 막을 얻을 수 있는 투명도전성 박막용 조성물을 제공하는데 있다.Accordingly, an object of the present invention is to provide a transparent conductive thin film composition which is excellent in heat resistance at the time of thin film growth and obtains a film having increased corrosion resistance due to excellent adhesiveness and fusion resistance, which cannot be compared with a conventional film even at high heat generation. .
본 발명의 다른 목적은 기존의 생산공정에 비하여 경제적 효율성과 수입대체효과를 가지고, 대면적 도포의 대량화 및 우수한 발열성 및 내구성으로 갖는 상기 투명도전성 박막용 조성물을 이용한 저저항 투명도전성 박막의 제조방법을 제공하는데 있다.Another object of the present invention is a method of manufacturing a low-resistance transparent conductive thin film using the composition for transparent conductive thin film having economic efficiency and import substitution effect compared to the existing production process, having a large area of application and excellent heat generation and durability. To provide.
상기 목적을 달성하기 위한 본 발명의 조성물은 HCl 80∼120중량부, SnCl415∼46중량부, SbCl30.5∼1.5중량부, InBr30.15∼1.10중량부, NaOH 0.5∼4.5중량부, HF 10∼28중량부, FeSO40.25∼1.5중량부 및 증류수 100중량부로 구성된다.The composition of the present invention for achieving the above object is HCl 80-120 parts by weight, SnCl 4 15-46 parts by weight, SbCl 3 0.5-1.5 parts by weight, InBr 3 0.15-1.10 parts by weight, NaOH 0.5-4.5 parts by weight, HF 10 to 28 parts by weight, FeSO 4 0.25 to 1.5 parts by weight and distilled water 100 parts by weight.
상기 다른 목적을 달성하기 위한 본 발명의 저저항 투명도전성 박막의 제조방법은 분무법을 이용하여 투명도전성 박막을 제조하는 방법에 있어서, HCl 80∼120중량부, SnCl415∼46중량부, SbCl30.5∼1.5중량부, InBr30.15∼1.10중량부, NaOH 0.5∼4.5중량부, HF 10∼28중량부, FeSO40.25∼1.5중량부 및 증류수 100중량부로 구성된 박막용 조성물을 제공하는 단계; 상기 조성물을 초음파 진동자를 통하여 무화시키는 단계; 및 상기 무화된 조성물을 노즐의 공기압을 4∼6kgf/cm2으로 유지하면서 1∼15cc/sec의 범위로 소재표면에 분무시키는 단계를 포함한다.Method for producing a low-resistance transparent conductive thin film of the present invention for achieving the above another object is a method for producing a transparent conductive thin film using a spray method, HCl 80 to 120 parts by weight, SnCl 4 15 to 46 parts by weight, SbCl 3 Providing a thin film composition comprising 0.5 to 1.5 parts by weight, InBr 3 0.15 to 1.10 parts by weight, 0.5 to 4.5 parts by weight of NaOH, 10 to 28 parts by weight of HF, 0.25 to 1.5 parts by weight of FeSO 4 and 100 parts by weight of distilled water; Atomizing the composition through an ultrasonic vibrator; And spraying the atomized composition on the surface of the material in the range of 1 to 15 cc / sec while maintaining the air pressure of the nozzle at 4 to 6 kgf / cm 2 .
도 1은 본 발명에 따라 투명전도성 박막을 형성시키기 위한 개략적인 공정도이다.1 is a schematic process diagram for forming a transparent conductive thin film according to the present invention.
도 2는 본 발명에 사용되는 전기로의 개략적인 단면도이다.2 is a schematic cross-sectional view of an electric furnace used in the present invention.
도 3은 본 발명에 따라 소재표면에 박막 처리한 상태를 나타내는 개략도이다.3 is a schematic view showing a state where a thin film is treated on a material surface according to the present invention.
도 4는 본 발명에 따라 박막 처리한 부분에 전압을 인가시킨 발열체를 개략적으로 나타낸 평면도이다.4 is a plan view schematically illustrating a heating element in which a voltage is applied to a portion of a thin film processed according to the present invention.
※ 도면의 주요 부분에 대한 부호의 설명 ※※ Explanation of code about main part of drawing ※
1. 증발기 2. 초음파 진동자1. Evaporator 2. Ultrasonic Oscillator
3. 밸브 4. MFC(Mass Flow Controller)3. Valve 4. Mass Flow Controller
5. 가열히터 6. 분무노즐5. Heating heater 6. Spray nozzle
7. 소재(coating) 8. 블로어(blower)7. Coating 8. Blower
9. 히터 10. 발생기(generator)9. Heater 10. Generator
이하 본 발명을 첨부된 도면을 참조하여 좀 더 구체적으로 살펴보면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
본 발명에 따른 투명도전성 박막용 조성물은 주석 화합물을 주성분으로 한다. 본 발명에 있어서, 주석 화합물의 가장 중요한 요소는 도펀트(Dopant)의 종류와 막의 형성방법인데, 전자에 있어 염산에 4염화주석을 사용하여 주석 화합물을 만든뒤, 안티몬(Antimony), 인듐(Indium), 브롬(Bromine), 나트륨(Sodium), 불소(Fluorine), 황산철(Ferrous Sulfate), 및 증류수(Distilled Water)를 혼합시킨다.The transparent conductive thin film composition according to the present invention contains a tin compound as a main component. In the present invention, the most important element of the tin compound is a type of dopant and a method of forming a film. In the former, tin tetrachloride is used to form tin compound in hydrochloric acid, followed by antimony and indium. Bromine, sodium, sodium, fluorine, ferrous sulfate, and distilled water are mixed.
본 발명은 화학적 성장 방법이므로 진공 장치를 이용한 용체보다는 화학적 반응이 큰 용액에서의 화합물이 보다 유리하여, 본 발명에 따른 조성물의 조성시 우선 진한 염산보다는 증류수를 혼합하여 묽게 만들어 주석을 화합하였다. 막의 성장시 출발물질을 염화주석(IV)을 사용하여 산화주석이나 염화주석(II)등 다른 주석 화함물 보다 증착속도를 증가시켰고, 낮은 저항값과 주석의 역변환을 방지하기 위하여 안티몬을 첨가하였다. 주석화합물의 함량이 46%이상이 될때는 오히려 자유전자 농도를 필요이상으로 증가시켜 적외선 반사율을 저하시켰고, 안티몬의 함량도 필요이상으로 많아지면 가시광 투과율이 저하되었다. 또한, 투과율을 높이기 위해서 불소의 함량도 주석에 비하여 낮지 않도록 비등하게 유지하여야 했다. 따라서 제조시 용도에 따라 용액의 조성비는 달라 질 수 있으나, 본 발명에 따른 조성물의 구체적인 혼합비는 HCl 80∼120중량부, SnCl415∼46중량부, SbCl30.5∼1.5중량부, InBr30.15∼1.10중량부, NaOH 0.5∼4.5중량부, HF 10∼28중량부, FeSO40.25∼1.5중량부 및 증류수 100중량부로 구성된다. 이때, SnCl4의 사용량이 15중량부 미만이면 도핑효율을 떨어드려 저항값이 높아지고, SbCl3의 사용량이 0.5중량부 미만이면 물질의 전기적 성질중 전기전도도를 작게하여 전기전도성을 저하시킨다.Since the present invention is a chemical growth method, a compound in a solution having a larger chemical reaction is more advantageous than a solution using a vacuum apparatus. In the composition of the composition according to the present invention, first, distilled water is mixed with dilute water rather than concentrated hydrochloric acid to synthesize tin. The growth rate of the film was increased by using tin chloride (IV) to increase the deposition rate than other tin compounds such as tin oxide or tin chloride (II), and antimony was added to prevent the reverse conversion of tin and low resistance. When the content of tin compound is more than 46%, the free electron concentration is increased more than necessary to decrease the infrared reflectance, and when the amount of antimony is more than necessary, the visible light transmittance is lowered. In addition, in order to increase the transmittance, the content of fluorine had to be kept boiling so that it was not lower than that of tin. Therefore, the composition ratio of the solution according to the manufacturing purposes, but can be different, and specific mixing ratio of the composition according to the invention is 80~120 parts by weight of HCl, SnCl 4 15~46 parts by weight, SbCl 3 0.5~1.5 parts by weight, InBr 3 0.15 ~1.10 parts by weight, and 0.5~4.5 parts by weight of NaOH, HF 10~28 parts by weight of FeSO 4 constituted by 0.25~1.5 parts by weight of distilled water and 100 parts by weight. At this time, when the amount of SnCl 4 is less than 15 parts by weight, the doping efficiency is lowered to increase the resistance value. When the amount of SbCl 3 is less than 0.5 parts by weight, the electrical conductivity of the material is reduced to lower the electrical conductivity.
전술한 바와 같이, 상기 조성물의 구성에 따른 특징으로 염화주석(IV)은 Cl2나 산화주석(II) 등 다른 주석종보다 실험결과 도핑(Doping)효율을 증가시켜 불순물과의 자유전자 농도를 활발히하여 보다 낮은 저항값과 높은 투명도를 얻을 수 있었다. 또한, 발열체로써 고열 발열시 막이 깨어지는 문제를 고융점의 인듐을 첨가하고 전자 친화도를 높이기 위해 불소를 첨가한 결과 기존의 문제를 방지할 수 있었다. 또한 종래의 박막 조성물과 비교하여 동일한 쉬트(Sheet) 저항에서 발열시 나트륨을 첨가하여 전기 전도도를 높이고, 환원을 돕기 위해 황산철을 첨가하였다.As described above, tin chloride (IV) is characterized by the composition of the composition as compared to other tin species such as Cl 2 or tin oxide (II) results in an increase in the doping (doping) efficiency of the experiment results in active free electron concentration with impurities Lower resistance and higher transparency could be obtained. In addition, as a heating element, the problem of breaking a film during high heat generation was prevented by adding indium of high melting point and fluorine to increase electron affinity. In addition, compared with the conventional thin film composition, sodium sulfate was added at the same sheet resistance when exothermic to increase electrical conductivity, and iron sulfate was added to assist reduction.
이러한 기초용액은 산소가 결핍된 진공상태의 막성장이 아니라 산소와 결합하여 만들어질 수 있는 기상에서 분무시켜 성장시킨다. 균일한 막의 분포를 위해 초음파 진동자를 이용하여 무화시킨후 노즐을 통한 공기를 가열하여 분무한다. 이때의 가열온도는 255∼355℃로 유지시키는 것이 증착속도를 증가시켜 이상적인 표면반응 측면에서 바람직하다. 분무실의 구성과 전기로의 전반적 구성은 도 1 및 도 2에 도시하였다.This basic solution is grown by spraying in a gaseous phase that can be combined with oxygen, rather than a film of oxygen-deficient vacuum. After atomization using an ultrasonic vibrator for uniform film distribution, air is sprayed by heating through the nozzle. The heating temperature at this time is preferably maintained at 255 ~ 355 ℃ in terms of the ideal surface reaction by increasing the deposition rate. The configuration of the spray chamber and the overall configuration of the electric furnace are shown in FIGS. 1 and 2.
도 1은 본 발명에 따라 투명전도성 박막을 형성시키기 위한 개략적인 공정도이고, 도 2는 본 발명에 사용되는 전기로의 개략적인 단면도이다. 아울러, 도 3은 본 발명에 따라 소재표면에 박막 처리한 상태를 나타내는 개략도이고, 도 4는 본 발명에 따라 박막 처리한 부분에 전압을 인가시킨 발열체를 개략적으로 나타낸 평면도이다.1 is a schematic process diagram for forming a transparent conductive thin film according to the present invention, Figure 2 is a schematic cross-sectional view of an electric furnace used in the present invention. In addition, Figure 3 is a schematic diagram showing a state of a thin film treatment on the surface of the material according to the present invention, Figure 4 is a plan view schematically showing a heating element applying a voltage to the thin film portion according to the present invention.
한편, 본 발명에서는 분무 열분해(Spray Pyrolysis)법을 이용하여 저저항 투명도전성 박막을 제조한다. 상기 분무 열분해법의 기본적인 화학반응은 화학증착법(CVD)과 동일하나 증착하고자 하는 물질의 원소를 친화성 있는 용매에 용해시킨 후 미세한 액적(Droplet)으로 가열된 소재 위에 분무하여 열분해 산화반응을 일으킨다. 우선, 박막을 형성하기 위해 소재를 가열하는데, 고온일수록 부반응을 억제하고, 결정성장을 촉진하나, 본 발명은 기존에 알려진 내열성 및 연화점에 제약을 받아 소재에 한계가 있는 분무(Spray)법과는 달리 저온(약 200℃)에서도 실시가 가능하다. 가열온도는 소재에 따라 200∼650℃로 하고, 박막의 분무성장 시간은 0.5∼4초로 한다. 이때, 박막의 분무성장 시간이 0.5초 미만이면 용액의 산화반응이 미약하고, 4초를 초과하면 가시광 투과성이 저하되는 경향이 있다.Meanwhile, in the present invention, a low resistance transparent conductive thin film is manufactured by spray pyrolysis. The basic chemical reaction of the spray pyrolysis method is the same as chemical vapor deposition (CVD), but the element of the material to be deposited is dissolved in an affinity solvent and then sprayed onto a material heated with fine droplets to cause pyrolysis oxidation. First, the material is heated to form a thin film, but the higher temperature inhibits side reactions and promotes crystal growth, but the present invention is different from the spray method in which the material is limited due to limitations in heat resistance and softening point. It can be implemented at low temperature (about 200 ° C). The heating temperature is 200 to 650 ° C. depending on the material, and the spray growth time of the thin film is 0.5 to 4 seconds. At this time, if the spray growth time of the thin film is less than 0.5 seconds, the oxidation reaction of the solution is weak, and if it exceeds 4 seconds, the visible light transmittance tends to be lowered.
전술한 바와 같이, 본 발명에 따른 조성물은 열분해시 산소의 관여로 분해 생성물이 고분자화하여 액상에 부생성물을 생성하는 일이 극히 미약해 성장시 열분해와 산소제거에서 질소, 아르곤과 같은 불활성 가스를 사용하지 않으며, 도포후의 막의 안정화를 위한 어닐링(Anneling) 공정도 취하지 않고, 급속 냉각시켜도 무방하다. 분무법중 가장 중요한 막의 균일성은 초음파 진동자(2)를 이용하여 용액을 무화시킨 다음, 분무시킨다. 이때, 초음파 단위(Unit)는 다주파(20KHz∼70KHz)를 사용하고, 음강도는 10-1W/In2이하가 바람직하다. 또한, 유동성 패턴(Flow Pattern)으로 용액을 전달하기 위해선 무화된 용액의 분사시 히터(9)로 가열하고, 블로어(8)로 분무 노즐(6)의 공기 송풍량을 조절하여야 한다. 이때 노즐의 공기압은 4∼6kgf/cm2의 범위가 바람직하며, 분무량은 1∼15cc/sec의 범위가 바람직하다. 다만, 흐림(Haze)현상으로 인한 투명성 유지를 위해 배기용 후드(Hood)를 설치한다. 이렇게 성장시킨 도전성 박막은 기존의 방법에서 기대할 수 없었던 대면적(최대크기 2,000×2,500mm)의 투명도전성 박막을 양산할 수 있다.As described above, the composition according to the present invention is extremely weak to produce by-products in the liquid phase by polymerizing the decomposition products due to the involvement of oxygen during pyrolysis, so that inert gases such as nitrogen and argon are used in pyrolysis and oxygen removal during growth. No annealing step for stabilization of the film after coating is performed, and rapid cooling may be performed. The most important film uniformity of the spraying method is to atomize the solution using an ultrasonic vibrator 2 and then to spray. At this time, the ultrasonic unit (Unit) uses a multi-frequency (20KHz ~ 70KHz), the sound intensity is preferably 10 -1 W / In 2 or less. In addition, in order to deliver the solution in the flow pattern (Flow Pattern), the injection of the atomized solution must be heated by the heater (9), the blower (8) to adjust the air blowing amount of the spray nozzle (6). At this time, the air pressure of the nozzle is preferably in the range of 4 to 6 kgf / cm 2 , and the spray amount is preferably in the range of 1 to 15 cc / sec. However, in order to maintain transparency due to the haze phenomenon, an exhaust hood is installed. The grown conductive thin film can mass-produce a transparent conductive thin film having a large area (maximum size 2,000 × 2500 mm), which was not expected by the conventional method.
본 발명에 따라 제조된 박막은 내열성이 우수하여 전압 인가시 유리, 세라믹, 석재의 기판 또는 환형 비드(입자크기 0.3mm이상) 등의 소재에 따라 발열온도는 상온∼980℃까지 발열하고, 전파 흡수형 발열체(주파수범위/2,450MHz)로써 발열시는 최대 530℃까지 발열한다. 그리하여 면상 발열체(Hot Plate)와 전자레인지를 이용한 발열용기 및 전파흡수 발열 피막을 형성할 수 있는 탁월한 효과가 있다. 발열체로 사용시 선택적 부분에만 발열성질을 도포해야 할 때 종래의 방법은 국부적 부분가열로 성장시키거나 도포 후에 에칭을 하였으나, 본 발명에 따른 제조방법은 미리 소재에 막성장 부분을 뺀 나머지 부분을 실크인쇄하고 막성장 후 인쇄 물감을 세척한다. 그 뒤에 전압 인가시 필요한 은 페이스트(Silver Paste)를 인쇄하여 소성한다.The thin film manufactured according to the present invention has excellent heat resistance, and according to a material such as glass, ceramic, or stone substrate or annular beads (particle size of 0.3 mm or more) when voltage is applied, the exothermic temperature generates heat from room temperature to 980 ° C., and absorbs radio waves. It is a type heating element (frequency range / 2,450MHz) that generates heat up to 530 ℃ during heat generation. Thus, there is an excellent effect of forming a heat generating vessel and a radio wave absorption heat generating film using a hot plate and a microwave oven. When it is necessary to apply the exothermic property only to the selective part when used as a heating element, the conventional method is grown by local partial heating or etched after application, the manufacturing method according to the present invention silk-printed the remaining portion except the film growth portion in advance in the material And wash the print after the film growth. Subsequently, silver paste necessary for voltage application is printed and fired.
이하 실시예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the following examples.
실시예 1Example 1
HCl 100중량부, SnCl420중량부, SbCl31.0중량부, InBr30.5중량부, NaOH 2중량부, HF 15중량부, FeSO41.0.중량부 및 증류수 100중량부로 구성된 용액을 이용하여 도 1과 같은 장치에서 500×500×3mm의 유리 플레이트에 분무하여 투명 도전성 박막을 얻었다. 전기로의 구성은 소재표면의 온도를 550℃, 소재의 이송속도는 약 250mm/sec, 노즐의 공기압을 약 5kgf/cm, 상기 용액의 분무시 가열온도는 300℃로 유지하고, 분무량은 약 7cc/sec로 하였다. 막의 두께는 2000Å이었고, 사용된 초음파 단위는 약 50KHz로, 음강도는 약 10-1W/In2이하로 유지하였다. 저항 측정계는 평판 유리용용 MD:CMT-SR3000L을 사용하여 소재에 따른 도전성을 측정하였고, 그 결과를 하기 표 1에 기재하였다.HCl 100 parts by weight, SnCl 4 20 parts by weight, SbCl 3 1.0 parts by weight, InBr 3 0.5 parts by weight, NaOH 2 parts by weight, HF 15 weight parts, FeSO 4 1.0. FIG using a solution-part parts by weight of distilled water and 100 parts by weight It sprayed on the glass plate of 500x500x3mm in the apparatus similar to 1, and obtained the transparent conductive thin film. The electric furnace is composed of a temperature of 550 ° C on the surface of the material, a feed rate of about 250mm / sec, a pressure of about 5kgf / cm for the nozzle, a heating temperature of 300 ° C when spraying the solution, and a spray amount of about 7cc / It was set to sec. The thickness of the film was 2000 Hz, and the ultrasonic unit used was about 50 KHz, and the sound intensity was maintained at about 10 −1 W / In 2 or less. The resistance measuring system measured the conductivity according to the material using MD: CMT-SR3000L for flat glass, and the results are shown in Table 1 below.
실시예 2Example 2
HCl 100중량부, SnCl440중량부, SbCl31.5중량부, InBr31.0중량부, NaOH 2.5중량부, HF 35중량부, FeSO41.5중량부 및 증류수 100중량부로 구성된 용액을 이용하여 도 1과 같은 장치에서 Φ300㎛의 유리 및 세라믹 비드에 분무하여 투명 도전성 박막을 얻었다. 전기로의 구성은 소재표면의 온도를 400℃, 소재의 이송속도는 약 250mm/sec, 노즐의 공기압을 약 5kgf/cm, 상기 용액의 분무시 가열온도는 300℃로 유지하고, 분무량은 약 6cc/sec로 하였다. 막의 두께는 1000Å이었고, 사용된 초음파 단위는 약 70KHz로, 음강도는 약 10-1W/In2이하로 유지하였다. 저항 측정계는 평판 유리용용 MD:CMT-SR3000L을 사용하여 소재에 따른 도전성을 측정하였고, 그 결과를 하기 표 1에 기재하였다.HCl 100 parts by weight, SnCl 4 40 part by weight, SbCl 3 1.5 parts by weight, InBr 3 1.0 parts by weight, NaOH 2.5 part by weight, HF 35 part by weight, FeSO 4 1.5 parts by weight of distilled water and 100 parts by weight of also using the configured Solution 1 Spraying on glass and ceramic beads of Φ 300㎛ in the same device to obtain a transparent conductive thin film. The composition of the electric furnace is 400 ℃ temperature of the material surface, the feed speed of the material about 250mm / sec, the air pressure of the nozzle about 5kgf / cm, the heating temperature is maintained at 300 ℃ when spraying the solution, the spray amount is about 6cc / It was set to sec. The thickness of the film was 1000 Hz, and the ultrasonic unit used was about 70 KHz, and the sound intensity was maintained at about 10 −1 W / In 2 or less. The resistance measuring system measured the conductivity according to the material using MD: CMT-SR3000L for flat glass, and the results are shown in Table 1 below.
실시예 3Example 3
HCl 100중량부, SnCl440중량부, SbCl31.5중량부, InBr31.0중량부, NaOH 2.5중량부, HF 35중량부, FeSO41.5중량부 및 증류수 100중량부로 구성된 용액을 이용하여 도 1과 같은 장치에서 Φ300㎛의 세라믹 접시에 분무하여 투명 도전성 박막을 얻었다. 전기로의 구성은 소재표면의 온도를 450℃, 소재의 이송속도는 약 200mm/sec, 노즐의 공기압을 약 5.5kgf/cm, 상기 용액의 분무시 가열온도는 300℃로 유지하고, 분무량은 약 5cc/sec로 하였다. 막의 두께는 2000Å이었고, 사용된 초음파 단위는 약 50KHz로, 음강도는 약 10-1W/In2이하로 유지하였다. 저항 측정계는 평판 유리용용 MD:CMT-SR3000L을 사용하여 소재에 따른 도전성을 측정하였고, 그 결과를 하기 표 1에 기재하였다.HCl 100 parts by weight, SnCl 4 40 parts by weight, SbCl 3 1.5 parts by weight, InBr 3 1.0 parts by weight, NaOH 2.5 part by weight, HF 35 weight parts, FeSO 4 1.5 parts by weight of distilled water and 100 parts by weight of also using the configured Solution 1 Spraying on a ceramic plate of Φ300㎛ in the same device to obtain a transparent conductive thin film. The electric furnace is composed of 450 ℃ of material surface, conveying speed of material about 200mm / sec, air pressure of nozzle about 5.5kgf / cm, heating temperature is 300 ℃ when spraying the solution, spray amount is about 5cc It was / sec. The thickness of the film was 2000 Hz, and the ultrasonic unit used was about 50 KHz, and the sound intensity was maintained at about 10 −1 W / In 2 or less. The resistance measuring system measured the conductivity according to the material using MD: CMT-SR3000L for flat glass, and the results are shown in Table 1 below.
상기 실시예 1과 같이 유리 표면에 성장시킨 박막은 균질성이 높고 낮은 저항값을 가졌으며 전자파 차폐 실험에서도 측정기 EFM200-ELF, VLF로 TCO99규격을 만족하였고, 실시예 2 및 3과 같이 비드와 접시 등을 전파(2,450MHz) 흡수 발열체로 사용시에도 각각 5분만에 425℃ 및 528℃까지 발열하였다. 또한 도 4와 같이 전압을 인가하여 발열체로 사용시 박막 분포 면적이 650㎠것을 사용하여 6분만에 620℃ 발열하였다.The thin film grown on the glass surface as in Example 1 had high homogeneity and low resistance value, and even in the electromagnetic shielding experiment, the TCO99 standard was met by measuring instruments EFM200-ELF and VLF. When used as a radio wave (2,450MHz) absorption heating element, respectively, it generated heat to 425 ° C and 528 ° C in 5 minutes, respectively. In addition, when the voltage is applied as shown in Figure 4 when using as a heating element using a thin film distribution area of 650cm 2 it was heated to 620 ℃ in 6 minutes.
종래의 CVD등 진공 증착방법은 증착시간이 1분에서 수시간까지 걸렸으나, 본 발명은 0.5초에서 4초 정도에 막을 성장시켜 대량상산에 적합하여 경제성이 우수하고, 박막의 물성 또한 우수함을 확인할 수 있었다. 박막의 염산과 염소에 대한 내성 실험에서도 기존의 박막은 1분에서 30분정도였으나, 본 발명에 따른 박막은 4∼6시간까지 견딜 수 있는 강인한 막을 얻었다. 소재에 크기에 있어서 진공 챔버 크기에 제약을 받지 아니하고 3배 정도의 크기를 성장시킬 수 있으며 기존에 비하여 생산능력이 같은 시간내에 7배에서 많게는 40배정도의 경제적 효율과 대량생산을 할 수 있었다. 박막의 활용분야로 적외선 반사창이나 전파흡수 및 차폐에 있어서도 제조단가나 효과면에서 우월하였고, 전파흡수 발열체와 전압인가 발열체는 발열온도에 있어서 기존의 박막들은 300℃미만이었으나, 본 발명에 따른 박막은 상온에서 최대 980℃까지 발열하였다.In the conventional vacuum deposition method such as CVD, the deposition time took from 1 minute to several hours, but the present invention is suitable for mass production by growing the film in about 0.5 seconds to 4 seconds. Could. In the experiment of resistance to hydrochloric acid and chlorine of the thin film, the conventional thin film was about 1 to 30 minutes, but the thin film according to the present invention obtained a robust film that can withstand 4 to 6 hours. The size of the material is not limited by the vacuum chamber size, it can grow up to 3 times the size, and compared with the existing production capacity in the same time 7 to as much as 40 times the economic efficiency and mass production was possible. The application field of the thin film was excellent in the manufacturing cost or effect in the infrared reflecting window, radio wave absorption and shielding, and the existing thin film was less than 300 ℃ in the heating temperature of the radio wave absorbing heating element and the voltage applied heating element, but the thin film according to the present invention Heated up to 980 ° C. at room temperature.
전술한 바와 같이, 본 발명은 분무법에 적합한 안정된 조성물을 이용하여 종래의 화합물보다 경제적인 효율성과 기존에 양산할 수 없었던 대면적 소재표면에 도포의 성장 및 저가격화를 실현했고, 막의 성능면에서도 내산성, 저저항과 막의 안정화로 고온 발열성 등을 나타내었다.As described above, the present invention realizes the economical efficiency and the cost reduction of the coating on the large-area material surface that could not be mass-produced by using a stable composition suitable for the spraying method, and the acid resistance in terms of the performance of the film. The low resistance and the stabilization of the film showed high temperature exothermicity.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000009486A KR100322850B1 (en) | 2000-02-25 | 2000-02-25 | Composition for transparent conductive thin layers and method for preparing transparent conductive thin layers with low electric resistances using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000009486A KR100322850B1 (en) | 2000-02-25 | 2000-02-25 | Composition for transparent conductive thin layers and method for preparing transparent conductive thin layers with low electric resistances using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000024647A true KR20000024647A (en) | 2000-05-06 |
KR100322850B1 KR100322850B1 (en) | 2002-02-09 |
Family
ID=19650195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000009486A KR100322850B1 (en) | 2000-02-25 | 2000-02-25 | Composition for transparent conductive thin layers and method for preparing transparent conductive thin layers with low electric resistances using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100322850B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102336187B1 (en) * | 2018-09-21 | 2021-12-09 | 동국대학교 산학협력단 | Atomization type thin film deposition method of layered structure material and apparatus thereof |
KR102279537B1 (en) | 2020-09-28 | 2021-07-21 | 주식회사 그린머테리얼솔루션 | Composition for transparent thin film heating element |
-
2000
- 2000-02-25 KR KR1020000009486A patent/KR100322850B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR100322850B1 (en) | 2002-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4727355B2 (en) | Deposition method | |
TWI307920B (en) | Transparent conductive layer forming method, transparent conductive layer formed by the method, and material comprising the layer | |
US4859499A (en) | Method for coating a substrate with an electrically conductive layer | |
US20040211941A1 (en) | Composition for forming a transparent conducting film, solution for forming a transparent conducting film and method of forming a transparent conducting film | |
JP2002146536A (en) | Low-temperature deposition method for thin film of tin oxide | |
US20100129533A1 (en) | Conductive Film Formation On Glass | |
JP4730768B2 (en) | Method for forming transparent conductive film and transparent conductive film | |
KR102495458B1 (en) | Substrate process processing heater | |
KR100322850B1 (en) | Composition for transparent conductive thin layers and method for preparing transparent conductive thin layers with low electric resistances using the same | |
Blandenet et al. | Thin layers deposited by the pyrosol process | |
KR20110025385A (en) | F-dopped tin oxide film with low resistivity and high transmittance and method thereof | |
EP0336574A1 (en) | Producing a layer of transparent conductive zinc oxide | |
JP4705340B2 (en) | Method for producing indium oxide film | |
KR100613405B1 (en) | Preparation method for clear metal composite films by using a pulsed DC bias coupled plasma enhanced chemical vapor deposition system | |
RU2661166C2 (en) | Method for creating transparent conductive composite nano-coatings (options) | |
JPH01189815A (en) | Manufacture of transparent conductive film | |
JP2003117404A (en) | Method for preparing photocatalyst and photocatalyst | |
KR100384513B1 (en) | Composition for transparent conductive double thin layers with low electric resistances, preparing method thereof and product including the same | |
KR930005825B1 (en) | Process for producing a transparent polymer film having a electrical conductivity | |
JPH0586605B2 (en) | ||
Kumar | Indium tin oxide films: State-of-the-art in synthesis and properties | |
JPS62228484A (en) | Production of thin titania film | |
JPH1167676A (en) | Manufacture of stannous sulfide film | |
JP2021159811A (en) | Visible light responsive composite thin film photocatalytic material, and method for manufacturing visible light responsive composite thin film photocatalytic material | |
KR20110113292A (en) | Method for manufacturing low resistivity and high transparent f-doped tin oxide heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20100114 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |