KR20000014023A - Fabricating method of acceleration sensor - Google Patents

Fabricating method of acceleration sensor Download PDF

Info

Publication number
KR20000014023A
KR20000014023A KR1019980033220A KR19980033220A KR20000014023A KR 20000014023 A KR20000014023 A KR 20000014023A KR 1019980033220 A KR1019980033220 A KR 1019980033220A KR 19980033220 A KR19980033220 A KR 19980033220A KR 20000014023 A KR20000014023 A KR 20000014023A
Authority
KR
South Korea
Prior art keywords
wafer
oxide film
silicon
acceleration sensor
etching
Prior art date
Application number
KR1019980033220A
Other languages
Korean (ko)
Other versions
KR100375970B1 (en
Inventor
서임춘
Original Assignee
밍 루
주식회사 만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 밍 루, 주식회사 만도 filed Critical 밍 루
Priority to KR10-1998-0033220A priority Critical patent/KR100375970B1/en
Publication of KR20000014023A publication Critical patent/KR20000014023A/en
Application granted granted Critical
Publication of KR100375970B1 publication Critical patent/KR100375970B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE: A method for fabricating an acceleration sensor is provided to improve other axis sensitivity by increasing a sectional ratio of a minute mechanical structure. CONSTITUTION: The method comprises the steps of preparing a silicon direct bonding wafer; forming an oxide layer on the silicon direct bonding wafer; patterning a structure on the oxide layer to form a pattern; etching the structure according to the structure; etching the oxide layer disposed under a mass body; and forming an electrode, wherein the silicon wafer is anisotropically etched down to a top surface of the oxide layer to be a sacrifice layer formed between the silicon wafers to be the structure and the substrate using a reactive ion etching process.

Description

가속도 센서의 제조방법Manufacturing method of acceleration sensor

본 발명은 가속도 센서의 제조방법에 관한 것으로, 상세하게는 실리콘 다이렉트 본딩 웨이퍼를 이용하여 가속도센서를 제조함으로서 미세 기계구조물 스프링의 단면비를 향상시켜 타축감도특성을 향상시키고 또한 하나의 마스크에 주요 구조물을 포함시켜 가속도 센서를 제조함으로서 공정수율을 높일 수 있는 가속도 센서의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an acceleration sensor, and in particular, by manufacturing an acceleration sensor using a silicon direct bonding wafer, the cross-sectional ratio of the spring of the microstructure of the microstructure is improved to improve the axial sensitivity and also the main structure of one mask. It relates to a method of manufacturing an acceleration sensor that can increase the process yield by manufacturing an acceleration sensor including.

가속도 센서는 관성센서의 일종으로서 연구, 군사용 등의 특수요도 시장과 더불어 최근에는 자동차 및 가전 제품의 성능향상이나 신 기능 추가의 요구에 따라서 그 적용 분야가 확대되고 있다.Accelerometer is a kind of inertial sensor and its field of application is expanding in accordance with the special demand market such as research, military use, etc., in recent years with the improvement of performance of automobiles and home appliances and the addition of new functions.

근래에 들어서는 집적 회로 기술을 기반으로 하여 물리량 감지를 위한 미세 구조물과 감지회로의 보정, 증폭처리를 위한 전자회로를 하나의 칩으로 집적시킨 가속도 센서가 개발되고 있다.In recent years, based on integrated circuit technology, acceleration sensors have been developed that integrate microstructures for physical quantity sensing, electronic circuits for correction and amplification of sensing circuits into one chip.

종래의 가속도 센서의 제작공정은 다음과 같다.The manufacturing process of the conventional acceleration sensor is as follows.

먼저, 엔(n)형 실리콘 기판(1)을 준비한다(도1a의 a).First, an n-type silicon substrate 1 is prepared (a in FIG. 1A).

그리고 준비된 엔(n)형 실리콘 기판(1)에 절연막과 보호막을 형성하기 위하여 1마이크로미터(㎛) 두께의 산화실리콘(2)을 증착 시킨다(도1a의 b).Then, silicon oxide 2 having a thickness of 1 micrometer (µm) is deposited on the prepared n-type silicon substrate 1 to form an insulating film and a protective film (b in FIG. 1A).

실리콘 기판(1)에 산화실리콘(2)을 증착 시키고 나면 형성된 산화실리콘(2) 위에 질화실리콘(Si3N4)(3)을 형성시킨다(도1 b). 이때에는 저압화학기상증착(Low Pressure Chemical Vapor Deposition, LPCVD)의 방법으로 약 0.2마이크로미터(㎛) 두께의 질화실리콘(3) 막을 형성시킨다(도1a의 b).After the silicon oxide 2 is deposited on the silicon substrate 1, silicon nitride (Si 3 N 4 ) 3 is formed on the formed silicon oxide 2 (FIG. 1B). At this time, a silicon nitride (3) film having a thickness of about 0.2 micrometer (µm) is formed by a low pressure chemical vapor deposition (LPCVD) method (b in FIG. 1A).

질화실리콘(3)을 형성시킨 후에는 마스크를 이용하여 접지전극을 정의하고 정의된 접지전극의 패턴에 따라서 질화실리콘(3)과 산화실리콘(2)을 에칭(가)하여 접지전극을 형성시킨다(도1a의 c).After the silicon nitride 3 is formed, the ground electrode is defined using a mask, and the silicon nitride 3 and the silicon oxide 2 are etched according to the pattern of the defined ground electrode to form the ground electrode. C) of FIG.

공정(도1a c)후에는 공진자 하부의 전극층을 형성하기 위하여 0.3마이크로미터(㎛)의 폴리실리콘(4)을 저압화학기상증착으로 증착시킨다(도1a의 d). 그리고 나서 폴리실리콘(4)을 마스크를 이용하여 정의를 하고 정의된 패턴을 에칭한다(도1a의 e).After the process (Fig. 1a c), 0.3 micrometer (μm) of polysilicon 4 is deposited by low pressure chemical vapor deposition to form an electrode layer under the resonator (d in Fig. 1a). Then, polysilicon 4 is defined using a mask and the defined pattern is etched (e in Fig. 1A).

폴리실리콘(4)을 에칭하여 전극을 형성한 후에는 희생층이 될 PSG(5)를 3마이크로미터(㎛) 두께로 증착하고 평탄화를 위하여 질소(N2) 분위기에서 섭씨 950도로 어닐링을 한다(도1의 f). 어닐링 후에는 닻(anchor)을 형성하기 위하여 마스크를 사용하여 PSG(5)에 닻을 정의하고 정의된 패턴에 따라서 PSG(5)를 에칭(나)한다(도1의 g).After etching the polysilicon 4 to form an electrode, the PSG 5 to be a sacrificial layer is deposited to a thickness of 3 micrometers (µm) and annealed at 950 degrees Celsius in a nitrogen (N 2 ) atmosphere for planarization ( F) of FIG. After annealing, an anchor is defined in the PSG 5 using a mask to form an anchor and the PSG 5 is etched (b) according to the defined pattern (g in FIG. 1).

그리고 그 위에 구조물층(structural layer)으로 사용될 폴리실리콘(6)을 약 7.5마이크로미터(㎛) 두께로 저압화학기상증착방법으로 증착한다. 그리고 다시 그 위에 1.5마이크로미터(㎛) 두께의 PSG(7)를 증착한다(도1b의 h).Then, polysilicon 6, which will be used as a structural layer, is deposited by low pressure chemical vapor deposition to a thickness of about 7.5 micrometers (µm). And again depositing a 1.5 micrometer (μm) thick PSG 7 (h in FIG. 1B).

그런 다음 폴리실리콘(6) 박막의 잔류응력을 감소시키고 PSG(7)로부터 인을 폴리실리콘 박막에 도핑 시키기 위하여 질소 분위기에서 섭씨 975도로 약 1시간동안 어닐링한다.It is then annealed for about 1 hour at 975 degrees Celsius in a nitrogen atmosphere to reduce the residual stress of the polysilicon 6 thin film and to dope the phosphorus from the PSG 7 to the polysilicon thin film.

어닐링이 끝나면 구조물을 정의하고 정의된 패턴에 따라서 에칭을 한다(도1b의 I). 그리고 폴리실리콘(6) 위에 있는 PSG(7)와 닻을 형성하기 위하여 증착되었던 PSG(5)를 에칭하여 제거한다(도1b의 j).After annealing, the structure is defined and etched according to the defined pattern (I in FIG. 1B). Then, the PSG 7 on the polysilicon 6 and the PSG 5 which have been deposited to form the anchor are etched and removed (j in FIG. 1B).

구조물이 완성되면 와이어 본딩을 하기 위하여 알루미늄 패드를 형성하는데 먼저 알루미늄(9)을 1마이크로미터(㎛)의 두께로 증착(sputtering)을 한다(도1b의 k).When the structure is completed, the aluminum pad is formed to wire bond, and then aluminum 9 is sputtered to a thickness of 1 micrometer (μm) (k of FIG. 1B).

알루미늄(9) 증착 후에는 마스크를 사용하여 알루미늄 패드를 정의한다. 알루미늄 패드(10)를 형성시키고 나면 패키지를 한다. 패키지과정은 다음과 같다.After aluminum 9 deposition, a mask is used to define the aluminum pads. After the aluminum pad 10 is formed, it is packaged. The package process is as follows.

먼저 웨이퍼에서 완성된 가속도 센서 칩을 분리하여 알루미늄 패드와 세라믹 케이스의 핀을 와이어 본딩을 하여 패키징을 한다.First, the completed acceleration sensor chip is removed from the wafer and packaged by wire bonding the aluminum pad and the pin of the ceramic case.

그런데 전술한 종래의 가속도 센서는 폴리실리콘으로 이루어진 미세 기계구조물 스프링의 단면비(aspect ratio)가 작아서 감지해야할 방향의 힘과 다른 방향의 힘에 의한 오류가 발생할 우려가 있으며 폴리 실리콘으로 이루어진 스프링의 기계적 성질이 불균일 하고 강성이 약한 문제점이 있었다.However, the above-described conventional acceleration sensor has a small aspect ratio of the microstructure spring made of polysilicon so that an error due to a force in a direction to be detected and a force in a different direction may occur. There was a problem of non-uniformity and weak stiffness.

그에 따라서 타축감도가 저하되고 또한 다수의 마스크를 이용하여 공정을 진행함에 따라서 공정 수율이 저하되어 생산성이 떨어지는 문제점이 있었다.Accordingly, there is a problem in that the yield is lowered as the process sensitivity is lowered and the process is progressed using a plurality of masks, thereby lowering the productivity.

본 발명은 전술한 문제를 해결하기 위하여, 실리콘 직접접합 웨이퍼를 이용하여 미세 기계구조물 스프링의 단면비를 향상시켜 타축감도를 향상시키고 소수의 마스크를 사용하여 가속도 센서를 제조함으로서 공정 수율을 높일 수 있는 가속도 센서의 제조방법을 제공하는데 있다.In order to solve the above problem, the silicon direct bonding wafer can be used to improve the cross-sectional ratio of the microstructure spring to improve the axial sensitivity and to manufacture the acceleration sensor using a few masks to increase the process yield. It is to provide a method of manufacturing an acceleration sensor.

도 1a는 종래의 가속도 센서의 제조방법의 공정도이다.1A is a process chart of a conventional method for manufacturing an acceleration sensor.

도 1b는 종래의 가속도 센서의 제조방법의 공정도이다.1B is a process diagram of a manufacturing method of a conventional acceleration sensor.

도 2a는 본 발명에 따른 가속도 센서의 제조방법의 공정도이다.Figure 2a is a process chart of the manufacturing method of the acceleration sensor according to the present invention.

도 2b는 본 발명에 따른 가속도 센서의 제조방법의 공정도이다.Figure 2b is a process chart of the manufacturing method of the acceleration sensor according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10:실리콘 직접접합 웨이퍼 15:닻 16:질량체 18:알루미늄전극DESCRIPTION OF SYMBOLS 10 Silicon direct bonding wafer 15 Anchor 16: Mass 18 Aluminum electrode

상기 목적을 달성하기 위한 본 발명은, 가속도 센서의 제조방법에 있어서, 실리콘 직접접합 웨이퍼를 준비하는 웨이퍼 준비단계, 웨이퍼 준비단계에서 준비된 실리콘 직접접합 웨이퍼에 산화막을 형성시키는 산화막형성단계, 산화막형성단계에서 형성된 상기 산화막에 구조물을 패터닝하는 패턴형성단계, 패턴형성단계에서 형성된 패턴에 따라서 에칭을 하는 구조물에칭단계, 에칭단계후 구조물중 질량체 부분 하부에 있는 산화막을 에칭하는 산화막에칭단계, 산화막에칭단계에서 산화막에칭단계가 종료하면 전극을 형성시키는 전극형성단계를 포함하는 것을 특징으로 하는 방법이다.The present invention for achieving the above object, in the manufacturing method of the acceleration sensor, an oxide film forming step, an oxide film forming step of forming an oxide film on the silicon direct bonded wafer prepared in the wafer preparation step, the wafer preparation step for preparing a silicon direct bonded wafer In the pattern forming step of patterning the structure on the oxide film formed in the step, the structure etching step of etching according to the pattern formed in the pattern forming step, the oxide film etching step of etching the oxide film in the lower part of the mass after the etching step, the oxide film etching step And forming an electrode when the oxide film etching step is completed.

이하에서는 첨부한 도면을 참조하여 양호한 실시 예를 상세하게 설명하겠다.Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings.

도 2a는 본 발명에 따른 가속도 센서의 제조방법의 공정도이다.Figure 2a is a process chart of the manufacturing method of the acceleration sensor according to the present invention.

도 2b는 본 발명에 따른 가속도 센서의 제조방법의 공정도이다.Figure 2b is a process chart of the manufacturing method of the acceleration sensor according to the present invention.

먼저, 실리콘웨이퍼를 준비한다. 이때 사용하는 실리콘웨이퍼는 산화막(SiO2)이 형성되어 있는 실리콘웨이퍼에 다른 실리콘 웨이퍼를 산화막(SiO2)위에 접합을 한 실리콘 직접접합 웨이퍼(Silicon Direct Bonding wafer, SDB wafer)이다.First, prepare a silicon wafer. The silicon wafer used here is a silicon direct bonding wafer (SDB wafer) in which another silicon wafer is bonded onto the oxide film (SiO 2 ) on a silicon wafer on which an oxide film (SiO 2 ) is formed.

실리콘 직접접합 웨이퍼는 다음과 같다.The silicon direct bonded wafer is as follows.

기판이 되는 기판 실리콘 웨이퍼(11)을 준비한다(도2a의 a). 그리고 준비된 기판 실리콘웨이퍼(11)에 실리콘 산화막(SiO2)(12)을 형성시킨다(도2a의 b).A substrate silicon wafer 11 serving as a substrate is prepared (a in Fig. 2A). Then, a silicon oxide film (SiO 2 ) 12 is formed on the prepared substrate silicon wafer 11 (b in FIG. 2A).

기판 실리콘웨이퍼(11) 위에 실리콘 산화막(12)을 형성시키고 나면 그 위에 원하는 구조물의 두께만큼의 두께(40~60마이크로미터)를 가지는 상부 실리콘웨이퍼(13)를 접합시킨다(도2a c). 그러면 실리콘 직접접합 웨이퍼(10)가 완성된다.After the silicon oxide film 12 is formed on the substrate silicon wafer 11, the upper silicon wafer 13 having a thickness (40 to 60 micrometers) corresponding to the thickness of the desired structure is bonded thereto (FIG. 2Ac). Then, the silicon direct bonding wafer 10 is completed.

그런 다음 준비된 실리콘 직접접합 웨이퍼(SDB wafer)(10)를 산화로에서 산화시켜 상부 실리콘웨이퍼의 위에 실리콘 열 산화막(14)을 성장시킨다.Then, the prepared silicon direct bonded wafer (SDB wafer) 10 is oxidized in an oxidation furnace to grow a silicon thermal oxide film 14 on the upper silicon wafer.

실리콘 열 산화막(14)을 성장시킨 후에는 구조물 패턴을 이용하여 실리콘 열 산화막에 질량체와 닻의 구조물을 정의하고 정의된 패턴에 따라서 에칭을 한다(도2a의 d).After the growth of the silicon thermal oxide film 14, the structure of the mass and the anchor is defined in the silicon thermal oxide film using the structure pattern, and etching is performed according to the defined pattern (d in FIG. 2A).

구조물을 정의한 후에는 반응성 이온 에칭(Reactive Ion Etching)으로 상부 실리콘 웨이퍼(13)를 이방성 에칭한다. 이때 실리콘 산화막(12) 희생층이 나타날 때까지 상부 실리콘웨이퍼(13)를 에칭한다. 그에 따라서 구조물에서 닻(15)이 되는 부분과 질량체(16)가 되는 부분이 형성된다(도2b의 e)After defining the structure, the top silicon wafer 13 is anisotropically etched by reactive ion etching. At this time, the upper silicon wafer 13 is etched until the sacrificial layer of the silicon oxide film 12 appears. As a result, a portion of the structure, which becomes the anchor 15 and the mass 16, is formed (e in FIG. 2B).

구조물 즉, 닻(15)과 질량체(16)가 형성되고 난 후에는 플르오르화수소(HF) 용액으로 상부 산화막(14)을 제거한다. 또한 실리콘 직접접합 웨이퍼의 중간층이었던 산화막(12) 중에서 형성된 질량체(16) 밑에 있는 산화막을 제거한다(도2b의 f).After the structure 15, the anchor 15 and the mass 16, is formed, the upper oxide layer 14 is removed with a hydrogen fluoride (HF) solution. In addition, the oxide film under the mass 16 formed in the oxide film 12 which was the intermediate layer of the silicon direct bonding wafer is removed (f in Fig. 2B).

그에 따라서 구조물이 완성되는데 구조물이 완성된다.As a result, the structure is completed and the structure is completed.

완성된 구조물의 스프링은 단면비(aspect ratio)가 높다. 단면비가 높으면 다음과 같은 장점이 있다.The spring of the finished structure has a high aspect ratio. Higher cross-sectional ratios have the following advantages:

스프링의 단면비가 높으면 두꺼운 쪽은 잘 휘어지지 않으며 면이 얇은 쪽은 탄성력을 가진다. 즉, 가속도 센서가 가속도에 반응해야할 방향으로 탄성력을 가지므로 타축으로부터 인가되는 힘에 의한 오차를 배제할 수 있다. 또한 폴리실리콘으로 구조물 스프링을 형성하였을 때보다 스프링의 기계적 성질이 우수하다.If the cross section ratio of the spring is high, the thick side does not bend well and the thin side has elastic force. That is, since the acceleration sensor has an elastic force in a direction that should respond to acceleration, an error due to a force applied from the other axis can be excluded. In addition, the mechanical properties of the spring are better than when the structure spring is formed of polysilicon.

한편 구조물이 완성되고 나면 전극을 형성시키기 위하여 알루미늄을 스퍼터(Sputter) 혹은 증발기(Evaporator)를 이용하여 알루미늄을 증착시킨다.Meanwhile, after the structure is completed, aluminum is deposited using a sputter or an evaporator to form an electrode.

알루미늄이 증착되고 나면 사진공정을 이용하여 전극패턴을 패터닝한다. 전극패턴을 패터닝한 후 에칭을 하면 전극패턴(18)이 형성되고 웨이퍼 단위의 공정은 완료된다.After aluminum is deposited, the electrode pattern is patterned using a photolithography process. When the electrode pattern is patterned and then etched, the electrode pattern 18 is formed, and the wafer unit process is completed.

웨이퍼 단위의 공정이 종료하면 웨이퍼를 잘라서 칩(chip)으로 분리한다. 웨이퍼에서 분리된 칩은 세라믹 케이스에 본딩을 한다.When the wafer unit process is completed, the wafer is cut and separated into chips. The chip separated from the wafer is bonded to the ceramic case.

세라믹 케이스에 칩을 본딩하고 나면 외부 인출단자에 와이어 본딩을 한다. 그러면 패키징까지 완료되어 가속도 센서가 된다.After bonding the chip to the ceramic case, wire bonding is performed on the external lead terminal. This completes the packaging and becomes an acceleration sensor.

본 발명에 따른 가속도 센서의 제조방법에 의하여, 가속도 센서를 제조할 때 기판이 되는 기판 실리콘 웨이퍼에 희생층이 될 실리콘 산화막(SiO2)을 형성시키고 또 다시 그 위에 구조물의 두께만큼의 두께를 가지는 상부 실리콘 웨이퍼를 접합시킨 웨이퍼(Silicon Direct Bonding wafer, SDB wafer)를 이용하여 가속도 센서를 제조함으로서 미세기계구조물 스프링의 단면을 향상시켜 타축감도 특성이 향상된 가속도센서를 제조하고, 두 개의 포토 마스크만을 사용하여 가속도 센서를 제조함으로서 제조 공정이 간단하다. 마스크의 사용을 최대한 억제를 하여 제조 공정을 단순화시키고 사용된 마스크 중에서 한 장의 마스크에 주요형상을 포함시켜 공정 수율을 향상시킬 수 있으며 제조단가를 낮출 수 있다.According to the method of manufacturing an acceleration sensor according to the present invention, a silicon oxide film (SiO 2 ), which is to be a sacrificial layer, is formed on a substrate silicon wafer, which becomes a substrate when the acceleration sensor is manufactured, and has a thickness equal to that of a structure thereon. Acceleration sensor is fabricated using silicon direct bonding wafer (SDB wafer) to improve the cross-section of micromechanical spring to manufacture acceleration sensor with improved axial sensitivity, and only two photo masks The manufacturing process is simple by manufacturing the acceleration sensor. By minimizing the use of masks, the manufacturing process can be simplified, and the main shape can be included in one mask among the used masks, thereby improving the process yield and lowering the manufacturing cost.

..

Claims (4)

가속도 센서의 제조방법에 있어서,In the manufacturing method of the acceleration sensor, 실리콘 직접접합 웨이퍼를 준비하는 웨이퍼 준비단계,A wafer preparation step of preparing a silicon direct bonded wafer, 상기 웨이퍼 준비단계에서 준비된 상기 실리콘 직접접합 웨이퍼에 산화막을 형성시키는 산화막형성단계,An oxide film forming step of forming an oxide film on the silicon direct bonded wafer prepared in the wafer preparation step, 상기 산화막형성단계에서 형성된 상기 산화막에 구조물을 패터닝하는 패턴형성단계,A pattern forming step of patterning a structure on the oxide film formed in the oxide film forming step, 상기 패턴형성단계에서 형성된 패턴에 따라서 에칭을 하는 구조물에칭단계,Etching the structure according to the pattern formed in the pattern forming step, 상기 에칭단계후 구조물중 질량체 부분 하부에 있는 산화막을 에칭하는 산화막에칭단계,An oxide film etching step of etching the oxide film under the mass part of the structure after the etching step; 상기 산화막에칭단계에서 산화막에칭단계가 종료하면 전극을 형성시키는 전극형성단계를 포함하는 것을 특징으로 하는 가속도 센서의 제조방법.And forming an electrode when the oxide film etching step is completed in the oxide film etching step. 제 1항에 있어서,The method of claim 1, 상기 웨이퍼 준비단계의 실리콘 직접접합 웨이퍼는 기판이 되는 실리콘 웨이퍼와 구조물이 될 실리콘웨이퍼가 사이에 희생층이 될 산화막을 두고 접합되어 있는 것을 특징으로 하는 가속도 센서의 제조방법.The silicon direct-junction wafer of the wafer preparation step is a silicon wafer to be a substrate and a silicon wafer to be a structure is bonded between the oxide film to be a sacrificial layer between the manufacturing method. 제 1항에 있어서,The method of claim 1, 상기 구조물에칭단계는 상기 패턴형성단계에서 형성된 패턴에 따라서 반응성 이온 에칭 방법으로 구조물이 될 실리콘웨이퍼를 상기 기판이 될 실리콘웨이퍼와 상기 구조물이 될 실리콘웨이퍼 사이에 형성된 희생층 산화막이 나타날 때까지 이방성 에칭 하는 것을 특징으로 하는 가속도 센서의 제조방법.The structure etching step is anisotropically etched until a sacrificial layer oxide film is formed between the silicon wafer to be the substrate and the silicon wafer to be the structure by a silicon wafer to be a structure by a reactive ion etching method according to the pattern formed in the pattern forming step. Method for producing an acceleration sensor, characterized in that. 제 1항에 있어서,The method of claim 1, 상기 패턴형성단계는 1개의 마스크 패턴으로 이루어지며 그 마스크 패턴은 주요 구조물을 포함하고 있는 것을 특징으로 하는 가속도 센서의 제조방법.The pattern forming step is made of one mask pattern, the mask pattern manufacturing method of the acceleration sensor, characterized in that it comprises a main structure.
KR10-1998-0033220A 1998-08-17 1998-08-17 Manufacturing method of acceleration sensor KR100375970B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0033220A KR100375970B1 (en) 1998-08-17 1998-08-17 Manufacturing method of acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0033220A KR100375970B1 (en) 1998-08-17 1998-08-17 Manufacturing method of acceleration sensor

Publications (2)

Publication Number Publication Date
KR20000014023A true KR20000014023A (en) 2000-03-06
KR100375970B1 KR100375970B1 (en) 2003-09-13

Family

ID=19547369

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0033220A KR100375970B1 (en) 1998-08-17 1998-08-17 Manufacturing method of acceleration sensor

Country Status (1)

Country Link
KR (1) KR100375970B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117690943A (en) * 2024-01-31 2024-03-12 合肥晶合集成电路股份有限公司 Manufacturing method of image sensor
CN117690943B (en) * 2024-01-31 2024-06-04 合肥晶合集成电路股份有限公司 Manufacturing method of image sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100193426B1 (en) * 1995-12-07 1999-07-01 오상수 Manufacturing method of semiconductor accelelation sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117690943A (en) * 2024-01-31 2024-03-12 合肥晶合集成电路股份有限公司 Manufacturing method of image sensor
CN117690943B (en) * 2024-01-31 2024-06-04 合肥晶合集成电路股份有限公司 Manufacturing method of image sensor

Also Published As

Publication number Publication date
KR100375970B1 (en) 2003-09-13

Similar Documents

Publication Publication Date Title
US6445053B1 (en) Micro-machined absolute pressure sensor
US7736931B1 (en) Wafer process flow for a high performance MEMS accelerometer
US5326726A (en) Method for fabricating monolithic chip containing integrated circuitry and suspended microstructure
US5313836A (en) Semiconductor sensor for accelerometer
KR100301097B1 (en) Acceleration sensor element and method of its manufacture
US5476819A (en) Substrate anchor for undercut silicon on insulator microstructures
US7259436B2 (en) Micromechanical component and corresponding production method
AU2001280660A1 (en) Micro-machined absolute pressure sensor
JP2013014001A (en) Mems device and interposer and method for integrating mems device and interposer
US20030062332A1 (en) Method for fabricating a microelectromechanical system (MEMS) device using a pre-patterned bridge
CN114275731A (en) MEMS-based double-beam type micro-pressure sensing core and preparation process thereof
JP2010199133A (en) Method of manufacturing mems, and mems
JP2001267588A (en) Capacitance-type semiconductor sensor and its manufacturing method
KR100375970B1 (en) Manufacturing method of acceleration sensor
US5286341A (en) Process for producing micro-mechanical structures
US20040089903A1 (en) Method for producing surface micromechanical structures, and sensor
CN110526200B (en) Out-of-plane piezoresistive accelerometer chip with pure axial deformation sensitive beam and preparation method thereof
EP0646246B1 (en) Method for fabricating monolithic chip containing integrated circuitry and self-supporting microstructure
KR100372780B1 (en) Manufacturing Method of Angular Speed Sensor
JP2997962B2 (en) Method of manufacturing single crystal semiconductor substrate for semiconductor sensor and semiconductor sensor
KR100193426B1 (en) Manufacturing method of semiconductor accelelation sensor
KR100397710B1 (en) Manufacturing Method of Semiconductor Sensor
US20210061652A1 (en) Fabrication method for a mems device
JPH03110478A (en) Manufacture of semiconductor acceleration sensor
KR100213757B1 (en) Fabricating method of micro-beam for semiconductor sensor

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee