KR20000013127A - Divanadium pentaoxide for removing nitrogen oxide using titanium dioxide for pigment as carrier of catalyst - Google Patents

Divanadium pentaoxide for removing nitrogen oxide using titanium dioxide for pigment as carrier of catalyst Download PDF

Info

Publication number
KR20000013127A
KR20000013127A KR1019980031806A KR19980031806A KR20000013127A KR 20000013127 A KR20000013127 A KR 20000013127A KR 1019980031806 A KR1019980031806 A KR 1019980031806A KR 19980031806 A KR19980031806 A KR 19980031806A KR 20000013127 A KR20000013127 A KR 20000013127A
Authority
KR
South Korea
Prior art keywords
catalyst
titanium dioxide
vanadium pentoxide
nitrogen oxide
pigment
Prior art date
Application number
KR1019980031806A
Other languages
Korean (ko)
Other versions
KR100295370B1 (en
Inventor
최병선
이정빈
이인영
남인식
추수태
Original Assignee
이종훈
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종훈, 한국전력공사 filed Critical 이종훈
Priority to KR1019980031806A priority Critical patent/KR100295370B1/en
Publication of KR20000013127A publication Critical patent/KR20000013127A/en
Application granted granted Critical
Publication of KR100295370B1 publication Critical patent/KR100295370B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten

Abstract

PURPOSE: A divanadium pentaoxide is provided to remove over 90% of nitrogen oxide using titanium dioxide for pigment which is 1/10 in a cost aspect compared to titanium dioxide as a carrier of a catalyst. CONSTITUTION: A production method of a catalyst has the steps of: using the titanium dioxide for paint having 500¯70,000 Angstrom of craft size as pellet shaped carrier having an appropriate size or powder state marketed; dispersing Divanadium Pentaoxide or Divanadium Pentaoxide-tungsten trioxide; precipitating; impregnating; and absorbing. The method represents very excellent activity in the removing reaction of nitrogen oxide.

Description

안료용 이산화티타늄을 촉매의 담지체로 이용하는 질소산화물 제거용 오산화이바나듐계 촉매Ivanadium pentoxide catalyst for removing nitrogen oxides using titanium dioxide for pigment as a carrier of catalyst

본 발명은 산업시설로부터 배출되는 배기가스 중에 포함된 질소산화물(NOX)을 제거하기 위하여 안료용 이산화티타늄(TiO2)을 촉매의 담지체로 이용하는 질소산화물 제거용 오산화이바나듐(Divanadium Pentaoxide, V2O5)계 촉매에 관한 것이다.In order to remove nitrogen oxides (NO X ) contained in exhaust gas discharged from an industrial facility, vanadium pentoxide (V 2 O) for removing nitrogen oxides using titanium dioxide (TiO 2 ) for pigments as a carrier of a catalyst. 5 ) It relates to a catalyst.

발전소, 산업용 보일러, 제철소 소결로 등의 산업시설로부터 대기중으로 배출되어 광화학 스모그를 발생시키며 산성비를 유발하는 주원인 물질로 알려진 질소산화물은 고온으로 조업되는 연소설비에서 연소용 공기와 연료중의 질소와 산소가 반응하여 생성된다. 지금까지 이러한 유독성 오염물질인 질소산화물을 제거하기 위한 다양한 기술이 소개되었지만, 가장 유망하고 상업화된 기술은 촉매를 이용한 선택적 촉매 환원법(Selective Catalytic Reduction, SCR)이다[H. Bosch and F. Janssen, Catal. Today, 2, 369 (1987)]. 상기 기술에는 귀금속, 금속산화물, 제올라이트 등의 촉매가 이용되어져 왔는데, 특히 이들 촉매 중에서도 오산화이바나듐계 촉매와 제올라이트계 촉매가 매우 우수한 것으로 알려져 있다.Nitrogen oxides, known as the main source of photochemical smog and causing acid rain from industrial facilities such as power plants, industrial boilers and steel mill sintering furnaces, are nitrogen and oxygen in combustion air and fuel in combustion facilities operating at high temperatures. Is produced by reaction. To date, various techniques for removing such toxic pollutants, nitrogen oxides have been introduced, but the most promising and commercialized technique is the selective catalytic reduction (SCR) using a catalyst [H. Bosch and F. Janssen, Catal. Today, 2, 369 (1987)]. Catalysts such as noble metals, metal oxides, zeolites, and the like have been used in the above technique, and among these catalysts, vanadium pentoxide-based catalysts and zeolite-based catalysts are known to be excellent.

오산화이바나듐계 촉매들은 담지체 종류에 따라 특성이 달라지며, 일반적으로 이산화티타늄(TiO2), 산화알루미늄(Al2O3) 및 이산화규소(SiO2) 등이 주로 오산화이바나듐의 담지체로 사용되는데 이산화티타늄에 담지된 오산화이바나듐계 촉매가 실제 배기가스 조건에서 질소산화물 제거반응에 대한 촉매의 활성 및 내구성 측면에서 바람직하다[ T. Shikada, K. Fujimoto, T. Kunugi and H. Tominaga, J. Chem. Tech. Biotech, 33A, 446(1983), H. Yoshida, K. Takahashi, Y. Sekiya, S. Morokawa and S. Kurita, Proc. 8th Conf. on Catal., Berlin, Ⅲ-649(1984)]. 이러한 오산화이바나듐계 촉매는 공지기술인 담지법에 의해서 제조되거나[ H. Miyata, K. Fujji, T. Ono and Y. Kubokawa, J. Chem. Soc. Fara. trans., 83, 675(1987), M. Sanati, L.R. Wallenbweg, A. Andersson, A. Jansen and Y. Tu. J. Catal. 133, 128(1991)], 메타티타닌산(TiO(OH)2)과 활성물질인 바나듐 용액을 원하는 중량비로 혼합한 후에 건조 및 소성과정을 거쳐 제조될 수 있다[JP5935027, JP58210849, JP58183946].Ivanadium pentoxide-based catalysts vary in characteristics depending on the type of carrier, and generally titanium dioxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), and silicon dioxide (SiO 2 ) are mainly used as carriers of vanadium pentoxide. Ivanadium pentoxide-based catalysts supported on titanium are preferred in view of the activity and durability of the catalyst for nitrogen oxide removal under actual exhaust gas conditions [T. Shikada, K. Fujimoto, T. Kunugi and H. Tominaga, J. Chem. Tech. Biotech, 33A, 446 (1983), H. Yoshida, K. Takahashi, Y. Sekiya, S. Morokawa and S. Kurita, Proc. 8th Conf. on Catal., Berlin, III-649 (1984). Such vanadium pentoxide-based catalysts may be prepared by known supporting methods [H. Miyata, K. Fujji, T. Ono and Y. Kubokawa, J. Chem. Soc. Fara. trans., 83, 675 (1987), M. Sanati, LR Wallenbweg, A. Andersson, A. Jansen and Y. Tu. J. Catal. 133, 128 (1991)], metatitanic acid (TiO (OH) 2 ) and the active material vanadium solution may be prepared by mixing and drying after the desired weight ratio [JP5935027, JP58210849, JP58183946].

이산화티타늄에 담지된 오산화이바나듐계 촉매를 제조할 때, 그 담지체인 이산화티타늄은 다양한 방법으로 얻을 수 있다. 먼저 티타늄이 포함된 용액을 충분한 시간 동안 혼합한 후에 건조 및 소성과정을 거쳐 제조된 이산화티타늄을 담지체로 사용할 수 있다[S. Matsuda and A. Kato, Appl. Catal., 8, 149(1983)]. 또한 사염화티타늄(TiCl4), 황화티타늄(Ti(SO4)2) 등을 전구체로 이용하고 상기와 동일한 방법을 통해 이산화티타늄을 얻을 수 있다. 다른 방법으로는 촉매제조용으로 생산되는 제품, 즉 데구사(Degussa)의 P25, 롱프랑(Rhone-Poulen)의 DT51, 유로타니타니아(Eurotitania), 홈비켓(Hombikat)의 UV-100 TiO2등과 같이 상업용 이산화티타늄을 사용할 수 있다. 이러한 이산화티타늄은 약 60∼250m2/g 또는 그 이상의 비표면적을 갖는다. 그러나 이들은 촉매의 담지체로 이용하기에 충분한 물리적, 화학적 특성이 있더라도 본 발명에서 사용된 안료용 이산화티타늄에 비하여 가격면에서 10배 이상의 매우 고가라는 단점을 지니고 있다. 실제 상업용 촉매가격의 대부분이 이들 담지체 가격에 의해 결정되므로 경제성 측면에서 이러한 담지체의 선정이 매우 중요하다.When preparing the vanadium pentoxide-based catalyst supported on titanium dioxide, the carrier, titanium dioxide, can be obtained by various methods. First, a solution containing titanium may be mixed for a sufficient time, and then titanium dioxide prepared by drying and calcining may be used as a support [S. Matsuda and A. Kato, Appl. Catal., 8, 149 (1983). In addition, using titanium tetrachloride (TiCl 4 ), titanium sulfide (Ti (SO 4 ) 2 ) and the like as a precursor it can be obtained through the same method as above. Alternatively, products produced for the production of catalysts, such as P25 from Degussa, DT51 from Rhone-Poulen, UV-100 TiO 2 from Eurotitania and Hombikat, etc. Commercial titanium dioxide can be used. Such titanium dioxide has a specific surface area of about 60 to 250 m 2 / g or more. However, they have the disadvantage that they are 10 times more expensive in terms of price than the titanium dioxide for pigments used in the present invention even though they have sufficient physical and chemical properties to be used as a support for the catalyst. Since most of the actual commercial catalyst prices are determined by the price of these carriers, the selection of these carriers is very important from the economic point of view.

본 발명은 500∼70,000Å의 세공 크기를 갖는 안료용 이산화티타늄을 시판되는 분말 상태 또는 적당한 크기를 가지는 펠렛 형태의 담지체로 사용하여 그 표면 위에 오산화이바나듐 또는 오산화이바나듐-삼산화텅스텐을 잘 분산시켜 침적(Precipitation), 담지(Impregnation), 흡착(Adsorption)과 같은 촉매 제조방법들을 이용하여 촉매를 제조할 수 있다. 그러나 담지법, 침적법 보다 흡착법으로 제조된 촉매가 담지체 표면에서 활성물질의 분산도가 우수하여 질소산화물 제거에 효과적이기 때문에 본 발명에서는 흡착법을 이용하여 이산화티타늄 담지체 위에 오산화이바나듐 또는 오산화이바나듐-삼산화텅스텐의 양을 조절하여 질소산화물 제거에 효과적인 오산화이바나듐계 촉매를 제조하고자 한다.The present invention uses titanium dioxide for pigments having a pore size of 500 to 70,000 kPa as commercially available powder or pellets having a suitable size to disperse and deposit vanadium pentoxide or vanadium pentoxide-tungsten trioxide on its surface. The catalyst may be prepared using catalyst preparation methods such as precipitation, impregnation, and adsorption. However, in the present invention, since the catalyst prepared by the adsorption method is more effective in removing nitrogen oxides due to the higher dispersion of the active substance on the surface of the carrier, the vanadium pentoxide or vanadium pentoxide is supported on the titanium dioxide support using the adsorption method. By controlling the amount of tungsten trioxide to prepare an vanadium pentoxide-based catalyst effective for the removal of nitrogen oxides.

도 1은 안료용 이산화티타늄을 담지체로 이용하여 질소산화물 제거용 오산화이바나듐계 촉매를 제조하는 공정도이다.1 is a process chart for preparing an vanadium pentoxide-based catalyst for removing nitrogen oxides using titanium dioxide for pigment as a support.

도 2는 안료용 이산화티타늄을 담지체로 사용하여 제조된 오산화이바나듐계 촉매와 상업용 촉매에 대하여 질소산화물의 제거활성을 비교한 그래프이다.2 is a graph comparing the removal activity of nitrogen oxides with respect to a vanadium pentoxide-based catalyst prepared using a titanium dioxide for a pigment as a support and a commercial catalyst.

본 발명의 안료용 이산화티타늄에 담지된 오산화이바나듐 또는 오산화이바나듐-삼산화텅스텐 촉매의 제조과정에 있어서, 질소산화물 제거반응에 대하여 우수한 활성을 갖는 촉매를 얻기 위해서는 전구체 용액의 수소 이온 농도(pH)를 고려해야만 한다. 즉, pH 4∼6 사이의 전구체 용액이 사용될 수 있는데, 보다 바람직하게는 2.0∼2.5 범위가 적절하다.In preparing a vanadium pentoxide or ivanadium pentoxide-tungsten trioxide catalyst supported on the titanium dioxide for pigment of the present invention, the hydrogen ion concentration (pH) of the precursor solution should be taken into consideration in order to obtain a catalyst having excellent activity against the nitrogen oxide removal reaction. Should be. That is, precursor solutions between pH 4 and 6 can be used, more preferably in the range of 2.0 to 2.5.

상기 촉매에 있어서, 안료용 이산화티타늄, 오산화이바나듐 및 삼산화텅스텐(Tungsten Trioxide, WO3)의 합산 중량을 기준으로 오산화이바나듐의 중량비는 0.5∼3.0%, 보다 바람직하게는 1.0∼2.0%일 때 암모니아를 환원제로 이용하는 질소산화물 제거반응에 있어서 효과적이다. 본 발명에 있어서, 안료용 이산화티타늄의 표면에 잘 분산된 오산화이바나듐은 주 활성 성분으로 0.5% 미만의 담지율에서는 질소산화물 제거율이 매우 낮으며 담지율이 2.0% 이상이면 환원제로 이용되는 암모니아의 산화반응이 매우 활발해져 300℃ 이상의 온도에서 질소산화물 제거율이 빠르게 감소하기 때문에 바람직하지 않다. 또한, 실제 배기가스 조건에서 질소산화물과 함께 배출되는 황산화물(주로 SO2)의 산화반응을 저하시키기 위해서도 담지량을 1.0∼2.0%의 중량비로 하는 것이 바람직하다.In the catalyst, the weight ratio of vanadium pentoxide is 0.5 to 3.0%, more preferably 1.0 to 2.0% based on the combined weight of titanium dioxide, vanadium pentoxide and tungsten trioxide (W0 3 ) for pigment. It is effective in the nitrogen oxide removal reaction used as a reducing agent. In the present invention, vanadium pentoxide dispersed well on the surface of titanium dioxide for pigment is the main active ingredient, the removal rate of nitrogen oxide is very low at a loading rate of less than 0.5%, the oxidation of ammonia used as a reducing agent when the loading rate is 2.0% or more It is not preferable because the reaction becomes very active and the nitrogen oxide removal rate rapidly decreases at a temperature of 300 ° C. or higher. In addition, in order to reduce the oxidation reaction of sulfur oxide (mainly SO 2 ) discharged with nitrogen oxide in actual exhaust gas conditions, it is preferable to make the loading amount 1.0 to 2.0% by weight.

한편 전체 중량을 기준으로 삼산화텅스텐의 중량비는 0.1∼8.0%, 보다 바람직하게는 0.5∼4.0%일 때 질소산화물 제거반응에 있어서 효과적이다. 삼산화텅스텐은 촉매표면에 흡착하는 산소의 농도를 조절하여 암모니아의 산화반응을 억제하는 주요 역할을 하므로 0.1% 미만의 중량비에서는 원하는 바의 역할을 기대할 수 없으며, 8.0% 이상에서는 오산화이바나듐의 분산도 등에 문제점들이 발생할 수 있으므로 바람직하지 않다.On the other hand, when the weight ratio of tungsten trioxide is 0.1 to 8.0%, more preferably 0.5 to 4.0% based on the total weight, it is effective in the nitrogen oxide removal reaction. Tungsten trioxide plays a major role in suppressing the oxidation reaction of ammonia by controlling the concentration of oxygen adsorbed on the catalyst surface. Therefore, it is not possible to expect the desired role at a weight ratio of less than 0.1%, and the dispersion degree of vanadium pentoxide at 8.0% or more. It is not desirable because problems can arise.

이하 실시예 및 시험예를 통하여 본 발명을 상세히 설명한다. 그러나 이들은 본 발명을 상세히 설명하기 위한 것으로 제공되는 것일 뿐 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through Examples and Test Examples. However, these are provided only to explain the present invention in detail, but the scope of the present invention is not limited thereto.

실시예 1. 오산화이바나듐 촉매 제조Example 1. Preparation of vanadium pentoxide catalyst

암모니아를 환원제로 이용하는 질소산화물 제거반응에 있어서, 활성물질인 오산화이바나듐을 안료용 이산화티타늄의 표면에 흡착법으로 잘 분산시켜 제조하였는데 그 전체적인 제조과정은 도 1에 도시하였다. 먼저 안료용 이산화티타늄을 110℃에서 50∼60시간 건조하였는데 이는 담지체의 세공내 수분을 제거하여 흡착법에 의한 촉매 제조시 미세 세공내의 활성물질 분산도를 증가시키기 위한 것이다.In the nitrogen oxide removal reaction using ammonia as a reducing agent, vanadium pentoxide, which is an active material, was well dispersed by adsorption on the surface of titanium dioxide for pigment, and the overall manufacturing process is shown in FIG. 1. First, titanium dioxide for pigment was dried at 110 ° C. for 50 to 60 hours to remove the moisture in the pores of the carrier to increase the dispersion of the active substance in the fine pores during the preparation of the catalyst by the adsorption method.

건조된 담지체를 옥살산으로 완전히 녹인 0.1N 암모늄 메타바나듐 용액의 pH를 2.5로 유지시키면서 준비한 안료용 이산화티타늄을 용액속에 넣어 상온, 상압에서 2시간동안 교반한다. 그후 여과를 거쳐 얻은 촉매를 110℃의 공기분위기에서 2시간 동안 건조하고 500℃의 공기분위기에서 5시간 동안 소성하여 안료용 이산화티타늄에 담지된 오산화이바나듐 촉매를 얻는다.While maintaining the pH of the 0.1 N ammonium metavanadium solution completely dissolved in the oxalic acid solution to 2.5 to put the prepared titanium dioxide in the solution and stirred for 2 hours at room temperature and atmospheric pressure. Thereafter, the catalyst obtained by filtration is dried in an air atmosphere at 110 ° C. for 2 hours and calcined for 5 hours in an air atmosphere at 500 ° C. to obtain an vanadium pentoxide catalyst supported on titanium dioxide for pigment.

상기 과정에 있어서, 오산화이바나듐의 중량비를 증가시키기 위한 방법으로 동일한 전구체 용액농도에서 흡착횟수 또는 흡착시간을 증가시키거나 정해진 흡착횟수 또는 흡착시간에서 전구체 용액의 농도를 증가시키면 같은 효과를 얻을 수 있다.In the above process, the same effect can be obtained by increasing the number of adsorption times or adsorption times at the same precursor solution concentration or increasing the concentration of precursor solutions at a predetermined number of adsorption times or adsorption time as a method for increasing the weight ratio of vanadium pentoxide.

실시예 2. 오산화이바나듐-삼산화텅스텐 촉매제조Example 2 Preparation of Ivanadium Pentaoxide-Tungsten Trioxide Catalyst

실시예 1과 동일한 방법으로 중량비 1%의 삼산화텅스텐(WO3)을 첨가하여 오산화이바나듐-삼산화텅스텐 촉매(V2O5-WO3/TiO2)를 제조하였으며 본 발명에서 제조한 안료용 이산화티타늄에 담지된 오산화이바나듐 촉매(V2O5/TiO2), 오산화이바나듐-삼산화텅스텐 촉매와 상업용 촉매의 특성을 표 1에 나타냈다.Tungsten trioxide (WO 3 ) in a weight ratio of 1% was added in the same manner as in Example 1 to prepare an vanadium pentoxide-tungsten trioxide catalyst (V 2 O 5 -WO 3 / TiO 2 ), and the pigment titanium dioxide prepared in the present invention. Table 1 shows the properties of the vanadium pentoxide catalyst (V 2 O 5 / TiO 2 ), the vanadium pentoxide-tungsten trioxide catalyst, and the commercial catalysts supported thereon.

표 1. 담지체 및 촉매의 특성Table 1. Characteristics of Supports and Catalysts

촉매catalyst 비표면적(m2/g)Specific surface area (m 2 / g) 오산화바나듐중량비(%)Vanadium pentoxide, weight ratio (%) TiO2 TiO 2 1212 -- V2O5/TiO2 V 2 O 5 / TiO 2 1212 1.81.8 V2O5-WO3/TiO2 V 2 O 5 -WO 3 / TiO 2 99 0.2(1.0)0.2 (1.0) 상업용 촉매Commercial catalysts 145145 2.1(6.2)2.1 (6.2)

( ) : 삼산화텅스텐의 중량비(%)(): Weight ratio of tungsten trioxide (%)

시험예 1. 고정층 반응기 내에서 질소산화물 제거율 측정Test Example 1 Measurement of NOx Removal Rate in Fixed Bed Reactor

실시예 1과 실시예 2에서 분말상태로 제조된 V2O5/TiO2및V2O5-WO3/TiO2촉매를 20∼30 메쉬(mesh)의 입자 크기로 성형한 후 같은 크기로 성형된 상업용 촉매와 같이 고정층 반응기 내의 중앙에 충전하고 질소산화물 500ppm, 암모니아 500ppm, 산소 5%와 밸런스 기체인 질소를 주입하고, 각각의 기체를 질량 유량 조절기(Brooks 5850E)에 의해 조절하여 공간속도 100,000/hr의 반응조건에서 질소산화물 제거실험을 수행하였다. 질소산화물의 농도는 화학발광 NO/NOX분석기(Thermo Electron Model 10A/R)를 이용하여 연속적으로 측정하여 결과를 도 2에 나타냈다.V 2 O 5 / TiO 2 and V 2 O 5 -WO 3 / TiO 2 catalyst prepared in powder form in Example 1 and Example 2 to a particle size of 20 to 30 mesh (mesh) and then to the same size Like a commercial catalyst, it is charged in the center of a fixed bed reactor and injected with 500 ppm of nitrogen oxide, 500 ppm of ammonia, 5% of oxygen and nitrogen as a balance gas, and each gas is controlled by a mass flow controller (Brooks 5850E) to achieve a space velocity of 100,000. Nitrogen oxide removal experiments were performed under the reaction conditions of / hr. The concentration of nitrogen oxide was continuously measured using a chemiluminescent NO / NO X analyzer (Thermo Electron Model 10A / R), and the results are shown in FIG. 2.

본 발명에서 제조된 V2O5/TiO2촉매의 경우, 350℃ 이하의 온도영역에서 질소산화물 제거율이 높은 반면 350℃ 이상의 온도영역에서는 그 제거율이 오히려 감소하고, V2O5/TiO2촉매에 조촉매로서 삼산화텅스텐이 포함된 V2O5-WO3/TiO2촉매는 300℃ 이하의 온도영역에서 V2O5/TiO2촉매에 비하여 상대적으로 질소산화물 제거율이 낮지만 300℃ 이상의 온도영역에서는 높은 질소산화물 제거율을 보여주었는데, 이는 조촉매가 고온영역에서 환원제의 산화반응을 감소시키기 때문이다.In the case of the V 2 O 5 / TiO 2 catalyst prepared in the present invention, the removal rate of nitrogen oxide is high in the temperature range of 350 ° C. or lower while the removal rate of the V 2 O 5 / TiO 2 catalyst is rather reduced, and the V 2 O 5 / TiO 2 catalyst V 2 O 5 -WO 3 / TiO 2 catalyst containing tungsten trioxide as a co-catalyst has a lower nitrogen oxide removal rate than the V 2 O 5 / TiO 2 catalyst in the temperature range below 300 ° C, but the temperature is higher than 300 ° C. In the region, the removal rate of nitrogen oxide was high because the promoter reduced the oxidation of the reducing agent in the high temperature region.

본 발명에서 흡착법에 의해서 제조된 삼산화텅스텐을 포함한 V2O5-WO3/TiO2촉매는 상업용 촉매와 유사한 활성을 보였으며, 조업온도측면에서도 종래의 상업용 촉매보다 그 적용범위가 확대되었다.In the present invention, the V 2 O 5 -WO 3 / TiO 2 catalyst including tungsten trioxide prepared by the adsorption method showed a similar activity to that of a commercial catalyst, and its range of application was wider than that of a conventional commercial catalyst in terms of operating temperature.

본 발명은 안료용 이산화티타늄을 오산화이바나듐계 촉매의 담지체로 사용함으로써 종래에 담지체로 사용하는 고가의 이산화티타늄에 비해 경제성이 좋으며 질소산화물 제거반응에 있어서 매우 우수한 활성을 나타냈다.According to the present invention, the use of pigment titanium dioxide as a support for an vanadium pentoxide catalyst is more economical than the expensive titanium dioxide conventionally used as a support, and shows excellent activity in the removal of nitrogen oxides.

안료용 이산화티타늄에 담지된 상기 촉매는 별도의 성형과정 없이 분말형태나 적절한 크기의 펠렛(Pellet)형태로 사용이 가능하고 분말로부터 슬러리를 제조하여 세라믹 하니콤에 코팅하여 사용할 수 있다.The catalyst supported on the titanium dioxide for the pigment can be used in powder form or pellets of appropriate size without a separate molding process, and can be used by preparing a slurry from the powder and coating the ceramic honeycomb.

또한, 오산화이바나듐계 촉매를 제조함에 있어 조촉매의 역할을 하는 삼산화텅스텐을 첨가하여 오산화이바나듐만 사용한 촉매에 비하여 고온에서도 질소산화물 제거율이 높은 촉매를 제조할 수 있다.In addition, in the preparation of the vanadium pentoxide-based catalyst, tungsten trioxide, which serves as a cocatalyst, may be added to produce a catalyst having a higher nitrogen oxide removal rate at a higher temperature than a catalyst using only vanadium pentoxide.

Claims (4)

암모니아를 환원제로 이용하는 질소산화물 제거용 오산화이바나듐계 촉매에 있어서, 안료용 이산화티타늄을 담지체로 오산화이바나듐 또는 오산화이바나듐-삼산화텅스텐을 흡착시켜 촉매를 제조하는 것을 특징으로 하는 안료용 이산화티타늄을 촉매의 담지체로 사용하는 질소산화물 제거용 오산화이바나듐계 촉매.In a vanadium pentoxide-based catalyst for removing nitrogen oxides using ammonia as a reducing agent, a catalyst is prepared by adsorbing vanadium pentoxide or vanadium pentoxide-tungsten trioxide as a support to produce a catalyst. Ivanadium pentoxide catalyst for removing nitrogen oxides used as a sieve. 제 1항에 있어서, 안료용 이산화티타늄은 500∼70,000Å의 세공크기를 갖는 것을 특징으로 하는 안료용 이산화티타늄을 촉매의 담지체로 사용하는 질소산화물 제거용 오산화이바나듐계 촉매.The vanadium pentoxide-based catalyst for removing nitrogen oxides according to claim 1, wherein the pigment titanium dioxide has a pore size of 500 to 70,000 kPa. 제 1항에 있어서, 전체 오산화이바나듐 촉매 중량비에서 오산화이바나듐의 중량비는 0.05∼3.5%인 것을 특징으로 하는 안료용 이산화티타늄을 촉매의 담지체로 사용하는 질소산화물 제거용 오산화이바나듐계 촉매.The vanadium pentoxide-based catalyst for removing nitrogen oxides according to claim 1, wherein the weight ratio of vanadium pentoxide to the total vanadium pentoxide catalyst weight ratio is 0.05 to 3.5%. 제 1항에 있어서, 전체 오산화이바나듐-삼산화텅스텐 촉매 중량비에서 삼산화텅스텐의 중량비는 0.1∼8.0%인 것을 특징으로 하는 안료용 이산화티타늄을 촉매의 담지체로 사용하는 질소산화물 제거용 오산화이바나듐계 촉매.The vanadium pentoxide-based catalyst for removing nitrogen oxides according to claim 1, wherein the weight ratio of tungsten trioxide to the total vanadium pentoxide-tungsten trioxide catalyst weight ratio is 0.1 to 8.0%.
KR1019980031806A 1998-08-04 1998-08-04 Method for producing a vanadium pentoxide-based catalyst for removing nitrogen oxides using titanium dioxide for pigment as a carrier of catalyst KR100295370B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980031806A KR100295370B1 (en) 1998-08-04 1998-08-04 Method for producing a vanadium pentoxide-based catalyst for removing nitrogen oxides using titanium dioxide for pigment as a carrier of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980031806A KR100295370B1 (en) 1998-08-04 1998-08-04 Method for producing a vanadium pentoxide-based catalyst for removing nitrogen oxides using titanium dioxide for pigment as a carrier of catalyst

Publications (2)

Publication Number Publication Date
KR20000013127A true KR20000013127A (en) 2000-03-06
KR100295370B1 KR100295370B1 (en) 2001-10-26

Family

ID=19546456

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980031806A KR100295370B1 (en) 1998-08-04 1998-08-04 Method for producing a vanadium pentoxide-based catalyst for removing nitrogen oxides using titanium dioxide for pigment as a carrier of catalyst

Country Status (1)

Country Link
KR (1) KR100295370B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10092896B2 (en) 2014-04-14 2018-10-09 Doosan Engine Co., Ltd. Catalyst for selective catalytic reduction and preparation method therefor
KR102183166B1 (en) * 2020-06-05 2020-11-26 대구대학교 산학협력단 Iron Ions-Exchanged Titanium Dioxide-Supported Vanadia-Tungsta Catalysts and Method of Removing NOx Using the Catalysts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010107235A (en) * 2000-05-26 2001-12-07 김창국 Producing device and method of the nitrogen-sulfide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183946A (en) * 1982-04-20 1983-10-27 Mitsubishi Heavy Ind Ltd Denitration catalyst and preparation thereof
JPS6117422A (en) * 1984-07-02 1986-01-25 Teikoku Kako Kk Preparation of agglomerated particle of titanium dioxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10092896B2 (en) 2014-04-14 2018-10-09 Doosan Engine Co., Ltd. Catalyst for selective catalytic reduction and preparation method therefor
KR102183166B1 (en) * 2020-06-05 2020-11-26 대구대학교 산학협력단 Iron Ions-Exchanged Titanium Dioxide-Supported Vanadia-Tungsta Catalysts and Method of Removing NOx Using the Catalysts
WO2021246630A1 (en) * 2020-06-05 2021-12-09 대구대학교 산학협력단 Vanadium pentoxide-tungsten trioxide catalyst supported on iron ion-exchanged titanium dioxide support, and method for removing nitrogen oxide using same

Also Published As

Publication number Publication date
KR100295370B1 (en) 2001-10-26

Similar Documents

Publication Publication Date Title
EP1475149B1 (en) CATALYST CONTAINING PLATINUM ON A SUPPORT CONSISTING OF MAGNESIUM OXIDE AND CERIUM OXIDE FOR THE REDUCTION OF NO TO N2 WITH HYDROGEN UNDER NOx OXIDATION CONDITIONS
US6051529A (en) Ceric oxide washcoat
KR101798713B1 (en) SCR Catalyst for Nitrogen Oxide Removal and Manufacturing method thereof
US5037792A (en) Catalyst for the selective reduction of nitrogen oxides and process for the preparation of the catalyst
CN111001415A (en) Preparation method of composite oxide low-temperature denitration catalyst and catalyst
CN109603807B (en) Modified activated carbon Ce-Nb/TiO2@ AC low-temperature efficient desulfurization and denitrification catalyst and preparation method thereof
CN107126949B (en) A kind of SCR denitration and preparation method thereof of anti-arsenic poisoning
KR100314758B1 (en) Divanadium Pentaoxide-based catalysts and their preparation method for NOx removal from flue gases
FI93520B (en) Exhaust catalysts for vehicles
EP0643991A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
CN109603808B (en) Preparation method and application of zirconium pillared montmorillonite-loaded Ce-Nb composite catalyst
KR20170126837A (en) SCR Catalyst for Nitrogen Oxide Removal and Manufacturing Method Thereof
JP4989545B2 (en) Nitrogen oxide catalytic reduction catalyst
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
WO2021055299A1 (en) Selective catalytic reduction catalyst composition, catalytic article comprising the same and method for preparing the catalytic article
KR100295370B1 (en) Method for producing a vanadium pentoxide-based catalyst for removing nitrogen oxides using titanium dioxide for pigment as a carrier of catalyst
EP1360006B1 (en) Method for preparing a catalyst for selective catalytic reduction of nitrogen oxides
KR100473080B1 (en) Method for Improving NOx Removal Efficiency from Flue Gas and Reducing Consumption of Ammonia and Emission of Nitrogen Dioxide Using Modified Natural Manganese Ores
EP0417538A1 (en) Catalyst for reducing nitrogen oxides in a flue gas and method for producing said catalyst
JPH01111443A (en) Nitrogen oxide removing catalyst
CN114950423B (en) Indoor low-concentration formaldehyde purification catalyst product and preparation method thereof
KR20220037625A (en) Vanadium/molybdenum/titania catalyst for removal of nitrogen oxide with excellent sulfur dioxide durability and low-temperature reaction activity, method for manufacturing the same, and method for removing nitrogen oxide using the same
CN112755991B (en) Modified monolithic catalyst for synergistically removing organic waste gas and NOx in coal-fired flue gas and preparation method and application thereof
KR102378405B1 (en) Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
CN114471532B (en) Preparation method and application of valley-shaped samarium-manganese composite oxide denitration catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130417

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140415

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 18

EXPY Expiration of term