KR20000002540A - Method of forming an indium nitride layer - Google Patents

Method of forming an indium nitride layer Download PDF

Info

Publication number
KR20000002540A
KR20000002540A KR1019980023363A KR19980023363A KR20000002540A KR 20000002540 A KR20000002540 A KR 20000002540A KR 1019980023363 A KR1019980023363 A KR 1019980023363A KR 19980023363 A KR19980023363 A KR 19980023363A KR 20000002540 A KR20000002540 A KR 20000002540A
Authority
KR
South Korea
Prior art keywords
layer
inn
forming
buffer layer
indium nitride
Prior art date
Application number
KR1019980023363A
Other languages
Korean (ko)
Inventor
전형일
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019980023363A priority Critical patent/KR20000002540A/en
Publication of KR20000002540A publication Critical patent/KR20000002540A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

PURPOSE: Method of forming an indium nitride is provided to improve electrooptic characteristics thereof. CONSTITUTION: The method includes the steps of forming a buffer layer on a substrate and forming an indium nitride layer on the buffer layer, wherein the buffer layer is made of an aluminium nitride or GaN(gallium nitride) to a thickness of about 0.5 micrometer.

Description

인듐 나이트라이드층 형성방법.Indium nitride layer formation method.

본 발명은 인듐 나이트라이드 형성방법에 관한 것으로, 보다 상세하게는, 기존의 MOCVD 장치를 이용한 양질의 단결정 인듐 나이트라이드층(이하 InN층) 형성방법에 관한 것이다.The present invention relates to a method for forming indium nitride, and more particularly, to a method for forming a high quality single crystal indium nitride layer (hereinafter referred to as InN layer) using an existing MOCVD apparatus.

InN의 띠 간격(bandgap)은 약 1.9ev로, InN 자체로는 붉은색의 빛을 발하는 광전 소자에 응용되지만, GaN 또는 AlN와의 3원 또는 4원 화합물 형태로 제작될 경우, 자외선 영역으로부터 가시 광선 영역까지 그 응용폭이 매우 넓은 물질이다. 종래의 InN를 제작하기 위하여는 일반적인 MOCVD(metal organic chemical vapor deposition)을 사용한다.The bandgap of InN is about 1.9 ev, which is applied to photoelectric devices that emit red light by itself, but when manufactured in the form of ternary or quaternary compounds with GaN or AlN, visible light from the ultraviolet region It is a material that has a wide range of applications. In order to fabricate a conventional InN, a general metal organic chemical vapor deposition (MOCVD) is used.

그러나, 상기한 InN층(2)은 사파이어 기판 상부에서의 증착 특성이 좋지 않다. 이로 인하여, InN층(2)내의 결정 특성이 매우 나쁘다. 그러므로, 전기 광학적 특성이 매우 저하된다.However, the InN layer 2 described above has poor deposition characteristics on the sapphire substrate. For this reason, the crystal characteristic in the InN layer 2 is very bad. Therefore, the electro-optical characteristic is very degraded.

따라서, 본 발명의 목적은 InN층의 증착 특성을 개선하여, 전기 광학적 특성을 향상시키는 것이다.Accordingly, it is an object of the present invention to improve the deposition properties of InN layers, thereby improving the electro-optical properties.

도 1은 종래의 InN층 형성방법을 설명하기 위한 도면.1 is a view for explaining a conventional InN layer forming method.

도 2는 본 발명의 실시예에 따른 InN 결정층 형성방법을 설명하기 위한 도면.2 is a view for explaining a method of forming an InN crystal layer according to an embodiment of the present invention.

도 3은 본 발명에 따라 형성된 InN층의 결정 특성을 파악하기 위한 x 레이 디프렉션(XRD) 실험 결과를 보여주는 그래프.3 is a graph showing the results of x-ray deflection (XRD) experiment to determine the crystal characteristics of the InN layer formed in accordance with the present invention.

(도면의 주요 부분에 대한 부호의 설명)(Explanation of symbols for the main parts of the drawing)

11 : 사파이어 기판 12 : 버퍼층11 sapphire substrate 12 buffer layer

13 : InN층13: InN layer

상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 일 실시예에 따르면, 사파이어 기판 상에 버퍼층을 증착하는 단계와, 상기 버퍼층 상에 InN층을 증착하는 단계를 포함하며, 상기 버퍼층은 AlN층 또는 GaN층으로 하고, 버퍼층의 두께는 0.5㎛ 이상으로 형성하는 것을 특징으로 한다.In order to achieve the above object of the present invention, according to an embodiment of the present invention, comprising the step of depositing a buffer layer on the sapphire substrate, the step of depositing an InN layer on the buffer layer, the buffer layer is an AlN layer Or a GaN layer, and the thickness of the buffer layer is formed to be 0.5 µm or more.

본 발명에 의하면, InN층을 사파이어 기판에 형성하기 전에 AlN층 또는 GaN등을 두껍게 증착하여, InN층의 증착 특성을 개선한다.According to the present invention, before the InN layer is formed on the sapphire substrate, the AlN layer or the GaN layer is thickly deposited to improve the deposition characteristics of the InN layer.

이에따라, InN층의 결정 특성이 현저하게 향상된다.As a result, the crystal characteristics of the InN layer are remarkably improved.

(실시예)(Example)

이하, 첨부된 도면에 의거하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 실시예에 따른 양질의 단결정 InN층 형성방법을 설명하기 위한 단면도이고, 도 3은 본 발명에 따라 형성된 InN층의 성장 조건에 따른 결정성을 파악하기 위해 5크리스탈 x-레이 회절(X-ray difraction) 실험 결과이다.2 is a cross-sectional view illustrating a method for forming a high quality single crystal InN layer according to an embodiment of the present invention, and FIG. 3 is a five-crystal x-ray for determining crystallinity according to growth conditions of an InN layer formed according to the present invention. This is the result of X-ray difraction experiment.

도 2를 참조하여, 사파이어 기판(11) 상부에 버퍼층(12)을 형성한다. 여기서, 버퍼층(12)은 이후에 형성될 InN층의 증착 특성 및 사파이어 기판(11)과의 계면 특성을 좋게하기 위한 것으로, 비교적 증착 특성이 우수한 AlN막 또는 GaN막을 형성한다. 이 버퍼층(12)의 두께는 충분히 두껍게, 바람직하게는 0.5이상이다.Referring to FIG. 2, a buffer layer 12 is formed on the sapphire substrate 11. Here, the buffer layer 12 is to improve the deposition characteristics of the InN layer to be formed later and the interface characteristics with the sapphire substrate 11, to form an AlN film or GaN film having excellent deposition characteristics. The thickness of this buffer layer 12 is sufficiently thick, preferably 0.5 or more.

이어서, 버퍼층(12) 상부에 InN층(13)을 형성한다. InN층(13)은 450 내지 520℃, 사이의 온도에서 저압 또는 상압 MOCVD 방식으로 형성한다. 이때, InN층(13)에서 In 소오스로는 트리메틸인듐(trimethylindium)이 이용되고, N 소오스로는 암모니아(NH3)가 이용된다.Subsequently, an InN layer 13 is formed on the buffer layer 12. The InN layer 13 is formed by a low pressure or atmospheric pressure MOCVD method at a temperature between 450 and 520 ° C. In this case, trimethylindium is used as the In source in the InN layer 13, and ammonia (NH 3 ) is used as the N source.

이와같이 형성된 InN층(13)은 버퍼층(12)이 사파이어 기판(11) 사이에 개재됨에 따라, 계면 특성이 우수해지어, 결정 특성이 우수하여진다.As the InN layer 13 formed as described above is interposed between the sapphire substrate 11 and the buffer layer 12, the interfacial characteristics are excellent and the crystal characteristics are excellent.

도 3을 참조하여 보면, GaN 버퍼층을 사용하지 않고 성장된 시료들에서 측정된 x레이 회절 패턴들(B그룹)의 결정성을 보여주는 반폭치(Full width at half maximum)값이 1도 이상으로 매우 넓은 값을 가진다. 반면, 본 실시예의 시료에서 측정된 x-레이 회절 패턴(곡선(A))을 살펴보면 InN에 해당하는 반폭치가 약 11 arcmin으로 현격하게 감소되었음을 보여준다. 여기서, B 그룹의 곡선은 종래와 같은 방법으로 형성하되, In과 N의 유량을 변화시키면서 측정한 것으로서, 성장 조건에 무관하게 그 결정성이 나쁘다.Referring to FIG. 3, the full width at half maximum value showing the crystallinity of the x-ray diffraction patterns (group B) measured in the samples grown without using the GaN buffer layer is very high. It has a wide value. On the other hand, looking at the x-ray diffraction pattern (curve (A)) measured in the sample of the present example shows that the half-width corresponding to InN was significantly reduced to about 11 arcmin. Here, the curve of the group B is formed by the same method as the conventional method, and is measured while changing the flow rates of In and N, and its crystallinity is poor regardless of the growth conditions.

이상에서와 같이, 본 발명에 의하면, InN층을 사파이어 기판에 형성하기 전에 AlN층 또는 GaN등을 두껍게 증착하여, InN층의 증착 특성을 개선한다.As described above, according to the present invention, before forming the InN layer on the sapphire substrate, the AlN layer or the GaN or the like is thickly deposited to improve the deposition characteristics of the InN layer.

이에따라, InN층의 결정 특성이 개선되어, 전기 광학적 특성이 향상된다.As a result, crystal properties of the InN layer are improved, and electro-optical properties are improved.

한편, 여기에서는 본 발명의 특정 실시예에 대하여 설명하고 도시하였지만, 당업자에 의하여 이에 대한 수정과 변형을 할 수 있다. 따라서, 이하, 특허청구의 범위는 본 발명의 진정한 사상과 범위에 속하는 한 모든 수정과 변형을 포함하는 것으로 이해할 수 있다.Meanwhile, although specific embodiments of the present invention have been described and illustrated, modifications and variations can be made by those skilled in the art. Accordingly, the following claims are to be understood as including all modifications and variations as long as they fall within the true spirit and scope of the present invention.

Claims (5)

사파이어 기판 상에 버퍼층을 증착하는 단계와,Depositing a buffer layer on the sapphire substrate, 상기 버퍼층 상에 InN층을 증착하는 단계를 포함하며,Depositing an InN layer on the buffer layer; 상기 버퍼층은 AlN층 또는 GaN층으로 하고,The buffer layer is an AlN layer or a GaN layer, 버퍼층의 두께는 0.5㎛ 이상으로 형성하는 것을 특징으로 하는 InN층 형성방법.InN layer formation method, characterized in that the thickness of the buffer layer is formed to 0.5㎛ or more. 제 1 항에 있어서, 상기 InN층은 450 내지 520℃의 온도에서, MOCVD 방식으로 형성하는 것을 특징으로 하는 InN층 형성방법.The method of claim 1, wherein the InN layer is formed by a MOCVD method at a temperature of 450 to 520 ℃. 제 1 항에 있어서, 상기 InN층은 트리메틸 인듐과 암모니아의 반응으로 형성되고, 트리메틸 인듐과 암모니아의 몰비를 100,000 이상으로 하여 MOCVD 방식으로 형성하는 것을 특징으로 하는 InN층 형성방법.The method of claim 1, wherein the InN layer is formed by a reaction of trimethyl indium and ammonia, and formed by MOCVD with a molar ratio of trimethyl indium and ammonia of 100,000 or more. 제 1 항에 있어서, 상기 InN층은 1 내지 2.5㎛/sec의 속도로 성장되는 것을 특징으로 하는 InN층 형성방법.The method of claim 1, wherein the InN layer is grown at a rate of 1 to 2.5㎛ / sec. 제 1 항에 있어서, 상기 버퍼층은 GaN층 또는 AlN층을 이용하는 것을 특징으로 하는 InN층 형성방법.The method of claim 1, wherein the buffer layer comprises a GaN layer or an AlN layer.
KR1019980023363A 1998-06-22 1998-06-22 Method of forming an indium nitride layer KR20000002540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980023363A KR20000002540A (en) 1998-06-22 1998-06-22 Method of forming an indium nitride layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980023363A KR20000002540A (en) 1998-06-22 1998-06-22 Method of forming an indium nitride layer

Publications (1)

Publication Number Publication Date
KR20000002540A true KR20000002540A (en) 2000-01-15

Family

ID=19540230

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980023363A KR20000002540A (en) 1998-06-22 1998-06-22 Method of forming an indium nitride layer

Country Status (1)

Country Link
KR (1) KR20000002540A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960036159A (en) * 1995-03-10 1996-10-28 팜에라 엘.키 Light emitting diode
US5650198A (en) * 1995-08-18 1997-07-22 The Regents Of The University Of California Defect reduction in the growth of group III nitrides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960036159A (en) * 1995-03-10 1996-10-28 팜에라 엘.키 Light emitting diode
US5650198A (en) * 1995-08-18 1997-07-22 The Regents Of The University Of California Defect reduction in the growth of group III nitrides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Buffer layer thickness and the properties of InN thin films on AlN-seeded (00.1) sapphire and (111) silicon(1994) *
The Si substrate which is not InN thin film [difference] sapphire substrate having "the property of the InN thin film manufactured by the reactive sputtering" AlN buffer layer. (1997) *

Similar Documents

Publication Publication Date Title
EP1885918B1 (en) Methods of preparing controlled polarity group iii-nitride films
US7612361B2 (en) Method of growing a nitride single crystal on silicon wafer, nitride semiconductor light emitting diode manufactured using the same and the manufacturing method
KR101380717B1 (en) Semi-conductor substrate and method and masking layer for producing a free-standing semi-conductor substrate by means of hydride-gas phase epitaxy
CN105023979B (en) A kind of GaN base LED epitaxial wafer and preparation method thereof
KR100448352B1 (en) Method for fabricating GaN-based nitride layer
KR100674829B1 (en) Nitride based semiconductor device and method for manufacturing the same
KR20020067520A (en) Pendeoepitaxial growth of gallium nitride layers on sapphire substrates
US8148753B2 (en) Compound semiconductor substrate having multiple buffer layers
US20110003420A1 (en) Fabrication method of gallium nitride-based compound semiconductor
KR102072167B1 (en) MANUFACTURING METHOD OF α-Ga2O3 THIN FILM USING HALIDE VAPOR PHASE EPITAXY GROWTH
US20030012984A1 (en) Buffer layer and growth method for subsequent epitaxial growth of III-V nitride semiconductors
US8697551B2 (en) Crystalline aluminum carbide thin film, semiconductor substrate having the aluminum carbide thin film formed thereon and method of fabricating the same
KR20010026835A (en) Method for fabricating a thick GaN film
US20050241571A1 (en) Method of growing nitride single crystal on silicon substrate, nitride semiconductor light emitting device using the same, method of manufacturing the same
KR20020029614A (en) A ⅲ nitride epitaxial wafer and usage of the same
KR19990083174A (en) Method for growing nitride compound semiconductor
KR20000002540A (en) Method of forming an indium nitride layer
JP2005518092A (en) Method for producing a layer of silicon carbide or group III element nitride on a suitable substrate
EP1259978A2 (en) Method and device for producing group iii-n, group iii-v-n and metal-nitrogen component structures on si substrates
US10043870B2 (en) Method and structure to improve film stack with sensitive and reactive layers
KR100447855B1 (en) A method for fabricating a iii-v nitride film and an apparatus for fabricating the same
US5827365A (en) Compound semiconductor and its fabrication
KR100450785B1 (en) Method of manufacturing GaN thick film
EP0548368A1 (en) Compound semiconductor and manufacturing method therefor
US20050136564A1 (en) Method of laterally growing GaN with indium doping

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E801 Decision on dismissal of amendment
E601 Decision to refuse application