KR20000002476A - Process for preparing surface alloy material of carbon steel using titanium diborate powder - Google Patents

Process for preparing surface alloy material of carbon steel using titanium diborate powder Download PDF

Info

Publication number
KR20000002476A
KR20000002476A KR1019980023257A KR19980023257A KR20000002476A KR 20000002476 A KR20000002476 A KR 20000002476A KR 1019980023257 A KR1019980023257 A KR 1019980023257A KR 19980023257 A KR19980023257 A KR 19980023257A KR 20000002476 A KR20000002476 A KR 20000002476A
Authority
KR
South Korea
Prior art keywords
carbon steel
powder
tib
flux
electron beam
Prior art date
Application number
KR1019980023257A
Other languages
Korean (ko)
Other versions
KR100266966B1 (en
Inventor
이성학
어광준
Original Assignee
정명식
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정명식, 학교법인 포항공과대학교 filed Critical 정명식
Priority to KR1019980023257A priority Critical patent/KR100266966B1/en
Publication of KR20000002476A publication Critical patent/KR20000002476A/en
Application granted granted Critical
Publication of KR100266966B1 publication Critical patent/KR100266966B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/05Boride

Abstract

PURPOSE: The surface alloy material is provided by a simple process which has a high hardness. CONSTITUTION: The Titanium diborate powder or a ceramic powder containing the titanium diborate and a flux such as Na2B4O7.10H2O, MgO or CaO are mixed to 8.5:1.5- 5:5 ratio, and coated to the surface of the carbon steel by a pressure. An accelerated electron beam of 1.0- 2.5 MeV range is projected in 2- 3 kw/cm¬2 of input energy density to the steel surface to give the surface alloy material of the carbon steel having Fe-Ti-C-B composition.

Description

이붕소화 티타늄 분말을 사용한 탄소강 표면 합금화 재료의 제조방법Manufacturing Method of Carbon Steel Surface Alloying Material Using Titanium Diboride Powder

본 발명은 가속 전자빔 투사방법에 의한 탄소강 표면 합금화 재료의 제조방법에 관한 것으로, 구체적으로는 TiB2세라믹 분말과 융제(flux)를 건식혼합하여 일반 탄소강 표면에 가압하여 도포한 후, 1.0 내지 2.5 MeV 범위의 가속 전자빔을 2 내지 3 kW/㎠의 투입 에너지 밀도로 투사함으로써 Fe-Ti-C-B 조성의 표면 합금화층을 갖는 표면 합금화 재료를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a carbon steel surface alloying material by an accelerated electron beam projection method, specifically, TiB 2 ceramic powder and flux (dry) by mixing the dry and pressurized on the surface of the general carbon steel, 1.0 to 2.5 MeV A method for producing a surface alloying material having a surface alloying layer having a Fe—Ti—CB composition by projecting an accelerating electron beam in the range at an input energy density of 2 to 3 kW / cm 2.

현재까지 알려진 통상적인 표면 합금화 재료의 제조방법으로는 질화처리(nitriding), 표면확산처리, 플라즈마 용사법, 육성용접방법(hardfacing) 등이 있으나, 이러한 방법들은 합금화시키고자 하는 원소에 있어서 제한이 있으며 계면결합이 나쁘고 투입열이 큰 경우에는 재료 전체가 열영향을 받기 때문에 변형 및 균열의 발생 가능성이 높다는 단점이 있다.Conventional methods of manufacturing surface alloying materials known to date include nitriding, surface diffusion, plasma spraying, and hardfacing. However, these methods have limitations on the elements to be alloyed and the interface. If the bonding is bad and the input heat is high, the whole material is affected by heat, so there is a high possibility of deformation and cracking.

한편, 최근들어 연구가 진행되고 있는 레이저 표면 처리법의 경우에는 레이저의 흡수율을 증가시키기 위해 흡수제를 첨가하여야 하고, 넓은 영역을 투사할 경우에는 다중 중첩(overlapping)에 의한 문제가 있으며 열효율이 40% 이하로 낮고 표면 합금화층이 수십 내지 수백 마이크로미터(㎛) 이내로 매우 작다는 단점이 있다.On the other hand, in the case of the laser surface treatment method that is being studied recently, an absorbent must be added to increase the absorption rate of the laser. When projecting a large area, there is a problem due to multiple overlapping and the thermal efficiency is 40% or less. Low and low surface alloying layer within tens to hundreds of micrometers (μm).

이에 반하여 고전압 가속 전자빔 투사방법은 높은 에너지를 갖는 가속 전자빔을 이용함으로써 대기 중에서 투과가 가능하고, 제조공정이 간단하고 열효율이 매우 높아서 시간과 비용이 적게 들며, 연속적인 제조가 가능하다는 장점을 가지고 있다.In contrast, the high-voltage accelerated electron beam projection method has the advantage of being able to transmit in the air by using an accelerated electron beam having a high energy, a simple manufacturing process, high thermal efficiency, low time and cost, and continuous manufacturing. .

이에 본 발명자들은 표면 합금화 재료를 경제적이고 대량으로 제조할 수 있는 방법을 개발하기 위해 연구를 계속 진행한 결과, TiB2세라믹 분말과 융제를 특정의 혼합비로 건식혼합한 다음, 일반 탄소강 표면에 가압하여 도포한 후 전자빔을 가속하여 얻은 고출력 집속에너지를 재료에 직접 전달하게 되면 이 에너지는 순간적으로 열에너지로 바뀌게 됨으로써 강력한 열원으로 사용할 수 있게 되며 TiB2분말과 탄소강의 표면 일부분이 용융되어 짧은 시간내에 합금화가 이루어지게 된다는 사실을 발견하여 본 발명을 완성하게 되었다.Therefore, the present inventors continued to develop a method for producing an economical and mass production of surface alloying material, and as a result, dry mixing TiB 2 ceramic powder and flux at a specific mixing ratio, and then pressing the surface of a general carbon steel When applied, the high-output focusing energy obtained by accelerating the electron beam is transferred directly to the material, and this energy is instantly converted into thermal energy, which can be used as a powerful heat source. The surface of the TiB 2 powder and carbon steel is melted and alloyed in a short time. The present invention has been completed by discovering that it will be made.

본 발명의 목적은 경도가 높은 표면 합금화 재료를 보다 간단한 공정으로 대량 제조하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for mass production of high hardness surface alloying materials in a simpler process.

도 1은 본 발명에 따라 표면 합금화 재료를 제조한 후, 표면으로부터의 깊이에 따른 Ti 원소의 성분변화를 나타낸 그래프이고,1 is a graph showing the change in the composition of the Ti element according to the depth from the surface after the surface alloying material prepared according to the present invention,

도 2는 본 발명에 따라 표면 합금화 재료를 제조한 후, 표면으로부터의 깊이에 따른 경도변화를 나타낸 그래프이다.2 is a graph showing the hardness change according to the depth from the surface after the surface alloying material is prepared according to the present invention.

상기 목적을 달성하기 위해, 본 발명에서는, TiB2분말 또는 TiB2함유 세라믹 분말과 융제를 8.5:1.5 내지 5:5의 비율로 건식혼합하여 일반 탄소강 표면에 가압하여 도포한 후, 1.0 내지 2.5 MeV 범위의 가속 전자빔을 2 내지 3 kW/㎠의 투입 에너지 밀도로 투사하는 것을 포함하는, Fe-Ti-C-B 조성의 표면 합금화층을 갖는 탄소강 표면 합금화 재료를 제조하는 방법을 제공한다.In order to achieve the above object, in the present invention, the TiB 2 powder or TiB 2 -containing ceramic powder and flux are dry mixed at a ratio of 8.5: 1.5 to 5: 5, and then pressurized and applied to the surface of general carbon steel, and then 1.0 to 2.5 MeV. A method of making a carbon steel surface alloying material having a surface alloying layer of Fe—Ti—CB composition, comprising projecting an accelerating electron beam in the range at an input energy density of 2 to 3 kW / cm 2.

이하 본 발명을 좀더 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 표면 경화 방법은 균일한 가열과 냉각이 이루어지므로 기공이나 균열이 거의 형성되지 않으며, 재료가 가열되는 시간이 매우 짧으므로 재료 표면의 산화를 방지할 수 있다.Since the surface hardening method of the present invention is uniformly heated and cooled, pores or cracks are hardly formed, and the material is heated for a short time, thereby preventing oxidation of the surface of the material.

본 발명에서는 표면 복합재료로서의 재료물성을 고려하여 경도가 높고, 내열성, 내마모성, 내부식성이 우수한 TiB2분말 또는 TiB2함유 세라믹 분말을 사용하며, 탄소함량 0.02 내지 1.2 중량% 정도의 일반 탄소강을 모재로 한다.In the present invention, TiB 2 powder or TiB 2 containing ceramic powder having high hardness and excellent heat resistance, abrasion resistance, and corrosion resistance in consideration of material properties as a surface composite material is used. Shall be.

또한 본 발명에서는 표면 합금화 재료 제조시 산화층의 형성과 기공 및 급냉균열의 발생을 억제하기 위해 융제(flux)를 TiB2분말과 함께 혼합하여 사용한다. 상기 융제로는 사붕소산나트륨(Na2B4O7·10H2O), MgO 또는 CaO가 있다.In addition, in the present invention, a flux is mixed with TiB 2 powder in order to suppress the formation of an oxide layer and the generation of pores and quench cracks in the preparation of the surface alloying material. The flux may be sodium tetraborate (Na 2 B 4 O 7 .10H 2 O), MgO or CaO.

가속 전자빔 투사에 의해 제조되는 표면 합금화 재료의 물성, 예를 들어 경화 정도, 두께 및 결함의 발생 유무 등은 출발물질인 TiB2분말과 융제의 혼합비에 크게 좌우된다. 일반적으로 TiB2분말의 함량이 높아지면 경화효과는 커질 수 있으나 기공, 급냉균열, TiB2분말의 부분적 용해 및 불균일 혼합 등이 발생하는 문제점이 있으며, 융제의 함량이 높아지면 표면 합금화층의 두께는 증가하게 되나, 최대 경도값이 감소하게 되는 문제점이 있다. 따라서, 본 발명에서는 표면 합금화층내 TiB2성분의 균일한 분포 및 기공 발생 억제를 위하여 TiB2세라믹 분말과 융제를 8.5:1.5 내지 5:5, 바람직하게는 8.5:1.5 내지 7:3의 혼합비율로 혼합하여 사용한다.The physical properties of the surface alloying material produced by the accelerated electron beam projection, for example, the degree of curing, thickness, and the presence of defects, depend greatly on the mixing ratio of the starting material TiB 2 powder and the flux. In general, if the content of TiB 2 powder is increased, the curing effect may be increased, but there are problems such as porosity, rapid quenching cracking, partial dissolution of TiB 2 powder, and heterogeneous mixing, and when the content of flux is increased, the thickness of the surface alloy layer is Although increasing, there is a problem that the maximum hardness value decreases. Accordingly, in the present invention, the TiB 2 ceramic powder and the flux are mixed in a ratio of 8.5: 1.5 to 5: 5, preferably 8.5: 1.5 to 7: 3, in order to uniformly distribute TiB 2 components in the surface alloying layer and suppress pore generation. Use by mixing.

본 발명에서는 제조공정의 단순화를 위해 TiB2/융제의 혼합시 건식혼합방식을 사용하며, 균일한 밀도를 유지하기 위해 0.5 내지 1.5mm의 두께로 모재에 가압 도포한다.In the present invention, in order to simplify the manufacturing process, a dry mixing method is used when mixing TiB 2 / fuse, and pressure-coated to the base material with a thickness of 0.5 to 1.5mm to maintain a uniform density.

도포된 재료의 표면 합금화를 위한 가속 전자빔 투사는 1.0 내지 2.5 MeV 범위의 가속 전자빔을 2 내지 3 kW/㎠의 투입 에너지 밀도로 투사함으로써 수행하며, 투입 에너지가 너무 낮으면 용융이 어려워 표면합금층을 얻기 힘들며, 투입 에너지가 너무 높으면 합금원소 증발 등의 문제가 있다. 이 때 투입 에너지 밀도는 빔전력(전자빔 에너지 x 빔전류), 전자빔 이동속도, 시편의 크기에 의하여 결정되며, 특정한 재료에 대하여 표면 용융이 일어나기 위한 특정한 투입 에너지 밀도가 존재한다. 본 발명에서는 최소한 2kW/㎠의 투입 에너지 밀도가 필요하다.Accelerated electron beam projection for surface alloying of the applied material is carried out by projecting an accelerated electron beam in the range of 1.0 to 2.5 MeV at an input energy density of 2 to 3 kW / cm 2. If the input energy is too low, it is difficult to melt the surface alloy layer. It is difficult to obtain and if the input energy is too high, there is a problem such as evaporation of alloying elements. At this time, the input energy density is determined by the beam power (electron beam energy x beam current), the electron beam movement speed, and the size of the specimen, and there is a specific input energy density for surface melting to occur for a specific material. In the present invention, an input energy density of at least 2 kW / cm 2 is required.

이상과 같이, 본 발명의 표면 합금화 재료의 제조공정에서는 TiB2/융제 건식혼합→가압 도포→가속 전자빔 투사의 간단한 방법에 의해 1 내지 5 mm 두께의 표면 합금화층을 갖는 탄소강 표면 합금화 재료를 제조할 수 있다.As described above, in the manufacturing process of the surface alloying material of the present invention, a carbon steel surface alloying material having a surface alloying layer having a thickness of 1 to 5 mm can be produced by a simple method of TiB 2 / flux dry mixing → pressurization → acceleration electron beam projection. Can be.

이하 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

실 시 예 1Example 1

하기 표 1와 같은 화학조성을 갖는 일반 탄소강을 준비하였다.To prepare a general carbon steel having a chemical composition as shown in Table 1.

원소element CC SiSi MnMn CuCu NiNi CrCr MoMo PP SS FeFe 함량(중량%)Content (% by weight) 0.1630.163 0.0110.011 0.4820.482 0.0330.033 0.0280.028 0.0410.041 0.0020.002 0.0090.009 0.0320.032 나머지량Remainder

TiB2세라믹 분말과 융제 Na2B4O7·10H2O를 융제의 혼합체내 함량비가 각각 0, 15, 30 및 50 중량%가 되도록 건식혼합하여 TiB2/융제 혼합체를 제조하였다. 이어 상기 표 1과 같은 화학조성을 갖는 일반 탄소강의 표면에 상기 각각의 TiB2/융제 혼합체를 300kPa로 가압하여 1mm의 두께로 도포한 후, 러시아 부드커(Budker) 핵물리 연구소의 고전압 전자가속기를 이용하여 전자빔 에너지 1.4MeV를 갖는 가속 전자빔을 2kW/㎠의 투입 에너지 밀도로 투사함으로써 탄소강 표면 합금화 재료를 제조하였다.TiB 2 ceramic powder and flux Na 2 B 4 O 7 · 10H 2 O were dry mixed so that the content ratio of the flux in the mixture was 0, 15, 30, and 50% by weight, respectively, to prepare a TiB 2 / flux mixture. Subsequently, each TiB 2 / melt mixture was pressed to 300 kPa and applied to a thickness of 1 mm on the surface of a general carbon steel having a chemical composition as shown in Table 1, and then a high voltage electron accelerator of the Budker Nuclear Physics Research Institute of Russia was used. The carbon steel surface alloying material was prepared by projecting an accelerated electron beam having an electron beam energy of 1.4 MeV at an input energy density of 2 kW / cm 2.

상기에서 제조된 표면 합금화 재료의 표면부를 투사방향과 평행하게 절단한 후, 표면으로부터의 깊이에 따른 Ti 성분함량과 미세경도의 변화를 조사하였다.After cutting the surface portion of the prepared surface alloying material in parallel with the projection direction, changes in Ti component content and microhardness according to the depth from the surface were investigated.

깊이에 따른 Ti 성분함량의 변화는 주사전자현미경에 장착된 에너지 분산 분석기를 이용하여 정량적으로 측정하였으며, 그 결과를 도 1에 나타내었다. 도 1은 본 발명에 따라 가속 전자빔을 투사하여 표면 합금화 재료를 제조한 후, 표면으로부터의 깊이에 따른 Ti 원소의 성분변화를 나타낸 그래프로서, 여기에서 보듯이, Ti 원소의 성분은 투사층의 밑으로 내려갈수록 감소함을 알 수 있다.The change in Ti content according to the depth was measured quantitatively using an energy dispersing analyzer mounted on a scanning electron microscope, and the results are shown in FIG. 1. 1 is a graph showing the change in the composition of the Ti element according to the depth from the surface after the surface of the alloying material is prepared by projecting an accelerated electron beam in accordance with the present invention, as shown here, It can be seen that the decrease as it goes down.

또한 가속 전자빔 투사전, 후의 미세경도의 변화는 비커스(Vickers) 미소경도계를 사용하여 측정하였으며, 그 결과를 도 2에 나타내었다. 도 2는 본 발명에 따라 가속 전자빔을 투사하여 표면 합금화 재료를 제조한 후, 표면으로부터의 깊이에 따른 경도변화를 나타낸 그래프이다. 여기에서, a), b), c) 및 d)는 각각 융제 첨가량에 따른 경도 변화를 나타낸 것으로서 융제 첨가량에 따라 경도변화는 다소 차이가 있으나 표면 합금화층의 경도는 원래 기지의 150 Hv로부터 350 내지 550 Hv로 증가하여 2 내지 3배까지 증가되었음을 알 수 있다.In addition, the change in the microhardness before and after the accelerated electron beam projection was measured using a Vickers microhardness meter, the results are shown in FIG. Figure 2 is a graph showing the hardness change with the depth from the surface after the surface alloying material is prepared by projecting the accelerated electron beam in accordance with the present invention. Here, a), b), c) and d) show the change in hardness depending on the amount of flux added, respectively, but the hardness change slightly varies depending on the amount of flux, but the hardness of the surface alloy layer is 350 to 150 Hv from the original known. It can be seen that the increase to 550 Hv increased by 2 to 3 times.

본 발명에 따라 TiB2분말을 사용한 탄소강 표면 합금화 재료의 제조방법은 공정이 단순하며, 대기 중에서 연속적인 작업이 가능하며, 이에 따라 제조된 표면 합금화층의 경도가 증가된다.According to the present invention, the method for producing a carbon steel surface alloying material using TiB 2 powder is simple in process, and it is possible to continuously operate in the atmosphere, thereby increasing the hardness of the prepared surface alloying layer.

Claims (2)

TiB2분말 또는 TiB2함유 세라믹 분말과 융제를 8.5:1.5 내지 5:5의 비율로 건식혼합하여 일반 탄소강 표면에 가압 도포한 후, 1.0 내지 2.5 MeV 범위의 가속 전자빔을 2 내지 3 kW/㎠ 범위의 투입 에너지 밀도로 투사함으로써 Fe-Ti-C-B 조성의 표면 합금화층을 갖는 탄소강 표면 합금화 재료의 제조방법.TiB 2 powder or TiB 2 -containing ceramic powder and flux were dry mixed at a ratio of 8.5: 1.5 to 5: 5 and pressure-coated to the surface of ordinary carbon steel, and then the accelerated electron beam in the range of 1.0 to 2.5 MeV was in the range of 2 to 3 kW / cm 2. A method for producing a carbon steel surface alloying material having a surface alloying layer having a Fe-Ti-CB composition by projecting at an input energy density of. 제 1 항에 있어서,The method of claim 1, 융제가 사붕소산나트륨(Na2B4O7·10H2O), MgO 또는 CaO임을 특징으로 하는 방법.And the flux is sodium tetraborate (Na 2 B 4 O 7 .10H 2 O), MgO or CaO.
KR1019980023257A 1998-06-20 1998-06-20 Process for the preparation of surface alloyed material with tib powder KR100266966B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980023257A KR100266966B1 (en) 1998-06-20 1998-06-20 Process for the preparation of surface alloyed material with tib powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980023257A KR100266966B1 (en) 1998-06-20 1998-06-20 Process for the preparation of surface alloyed material with tib powder

Publications (2)

Publication Number Publication Date
KR20000002476A true KR20000002476A (en) 2000-01-15
KR100266966B1 KR100266966B1 (en) 2000-09-15

Family

ID=19540159

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980023257A KR100266966B1 (en) 1998-06-20 1998-06-20 Process for the preparation of surface alloyed material with tib powder

Country Status (1)

Country Link
KR (1) KR100266966B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621925B1 (en) * 2004-08-10 2006-09-14 학교법인 포항공과대학교 Fabrication of surface composite using self-fluxing ceramic powder
KR100673293B1 (en) * 2005-07-11 2007-01-24 학교법인 포항공과대학교 Method of fabrication of surface composites and surface composites fabricated by the same
KR100699277B1 (en) * 2005-06-07 2007-03-27 학교법인 포항공과대학교 Process for preparing carbon steel surface alloys by using boride ceramic powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621925B1 (en) * 2004-08-10 2006-09-14 학교법인 포항공과대학교 Fabrication of surface composite using self-fluxing ceramic powder
KR100699277B1 (en) * 2005-06-07 2007-03-27 학교법인 포항공과대학교 Process for preparing carbon steel surface alloys by using boride ceramic powder
KR100673293B1 (en) * 2005-07-11 2007-01-24 학교법인 포항공과대학교 Method of fabrication of surface composites and surface composites fabricated by the same

Also Published As

Publication number Publication date
KR100266966B1 (en) 2000-09-15

Similar Documents

Publication Publication Date Title
EP0221276A1 (en) Method of forming a composite layer by laser irradiation on an aluminium alloy substrate surface
CN109851377B (en) Laser-induced high-temperature solid-phase reaction for generating A2B2O7Method for forming thermal barrier coating material
US2672426A (en) Metal-ceramic bodies and method of making
KR100712612B1 (en) Surface composite and fabrication method of the same
CN111465462A (en) Method for producing TiAl intermetallic compound powder and TiAl intermetallic compound powder
KR100266966B1 (en) Process for the preparation of surface alloyed material with tib powder
CN111020561A (en) High-strength composite coating with alloy fiber structure support and preparation method thereof
Zhou et al. Reactive air brazing of 3YSZ ceramic to aluminized Crofer22H stainless steel using Ag–CuO fillers
JP2007131496A (en) Method for producing coal ash sintered compact from coal ash powder as raw material
KR100549997B1 (en) A fabrication method of amorphous surface composites by high energy accelerated electron beam
KR100981368B1 (en) Tungsten composite powders, coated materials formed from the same and method for manufacturing the tungsten composite powders
Zhang et al. Mechanical properties of dental porcelain with different leucite particle sizes
Hazra et al. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting
KR100307666B1 (en) Method for alloying surfce of carbon steel with vc
KR100238953B1 (en) Process for the preparation of functionally gradient material tin on carbon steel
KR100400084B1 (en) Method of manufacturing stainless steel composites
KR100699277B1 (en) Process for preparing carbon steel surface alloys by using boride ceramic powder
Kuehster Processing of mayenite electride and its composites in spark plasma sintering
CN114437500B (en) Polyether-ether-ketone composite powder for laser selective sintering and preparation method thereof
KR100296396B1 (en) Method for formation Surface-alloying layer using high energy electron beam
Atarashiya et al. Joining of Nickel to Magnesia Using Nickel-Nickelous Oxide Composite
CN211814644U (en) High-strength composite coating with alloy fiber structure support
KR100673293B1 (en) Method of fabrication of surface composites and surface composites fabricated by the same
KR20030050637A (en) Method for manufacturing surface composite, using high energy accelerated electron beam
Angjusheva Production and Characterization of Glass-Ceramics From Waste Materials

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080630

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee