KR19990085362A - Calcium Carbonate Single Fertilizer For Agriculture - Google Patents
Calcium Carbonate Single Fertilizer For Agriculture Download PDFInfo
- Publication number
- KR19990085362A KR19990085362A KR1019980017736A KR19980017736A KR19990085362A KR 19990085362 A KR19990085362 A KR 19990085362A KR 1019980017736 A KR1019980017736 A KR 1019980017736A KR 19980017736 A KR19980017736 A KR 19980017736A KR 19990085362 A KR19990085362 A KR 19990085362A
- Authority
- KR
- South Korea
- Prior art keywords
- soil
- calcium
- treatment
- calcium carbonate
- lime
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 title claims abstract description 84
- 229910000019 calcium carbonate Inorganic materials 0.000 title claims abstract description 42
- 239000003337 fertilizer Substances 0.000 title claims abstract description 26
- 239000002689 soil Substances 0.000 abstract description 70
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 abstract description 19
- 235000000536 Brassica rapa subsp pekinensis Nutrition 0.000 abstract description 19
- 241000499436 Brassica rapa subsp. pekinensis Species 0.000 abstract description 19
- 235000002566 Capsicum Nutrition 0.000 abstract description 9
- 239000006002 Pepper Substances 0.000 abstract description 9
- 241000722363 Piper Species 0.000 abstract description 9
- 235000016761 Piper aduncum Nutrition 0.000 abstract description 8
- 235000017804 Piper guineense Nutrition 0.000 abstract description 8
- 235000008184 Piper nigrum Nutrition 0.000 abstract description 8
- 240000004160 Capsicum annuum Species 0.000 abstract description 7
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 abstract description 7
- 235000007862 Capsicum baccatum Nutrition 0.000 abstract description 7
- 239000001728 capsicum frutescens Substances 0.000 abstract description 7
- 230000020477 pH reduction Effects 0.000 abstract description 5
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 abstract description 3
- 235000009932 Zanthoxylum simulans Nutrition 0.000 abstract 1
- 238000011282 treatment Methods 0.000 description 59
- 239000011575 calcium Substances 0.000 description 53
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 43
- 229910052791 calcium Inorganic materials 0.000 description 43
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 24
- 240000007124 Brassica oleracea Species 0.000 description 23
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 23
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 23
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 23
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 22
- 235000011941 Tilia x europaea Nutrition 0.000 description 22
- 239000004571 lime Substances 0.000 description 22
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 18
- 239000000920 calcium hydroxide Substances 0.000 description 18
- 235000011116 calcium hydroxide Nutrition 0.000 description 18
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 18
- 230000012010 growth Effects 0.000 description 17
- 239000011777 magnesium Substances 0.000 description 15
- 239000000292 calcium oxide Substances 0.000 description 13
- 235000012255 calcium oxide Nutrition 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 238000003973 irrigation Methods 0.000 description 8
- 230000002262 irrigation Effects 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 7
- 230000007812 deficiency Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 4
- 206010006956 Calcium deficiency Diseases 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- 241001397173 Kali <angiosperm> Species 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 229910001424 calcium ion Inorganic materials 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 235000013399 edible fruits Nutrition 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 235000012204 lemonade/lime carbonate Nutrition 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000004856 soil analysis Methods 0.000 description 2
- 238000009331 sowing Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000003971 tillage Methods 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N 2,3,4,5-tetrahydroxypentanal Chemical compound OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 240000007087 Apium graveolens Species 0.000 description 1
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 1
- 235000010591 Appio Nutrition 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 208000008167 Magnesium Deficiency Diseases 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000758706 Piperaceae Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- CPGKMLVTFNUAHL-UHFFFAOYSA-N [Ca].[Ca] Chemical compound [Ca].[Ca] CPGKMLVTFNUAHL-UHFFFAOYSA-N 0.000 description 1
- LGBWVEGZBZNNSG-UHFFFAOYSA-N [N].[N].N Chemical compound [N].[N].N LGBWVEGZBZNNSG-UHFFFAOYSA-N 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 244000037666 field crops Species 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000004764 magnesium deficiency Nutrition 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002420 orchard Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 229920003175 pectinic acid Polymers 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000002786 root growth Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Fertilizers (AREA)
Abstract
본 발명은 농업용 탄산칼슘 단일 비료에 관한 것이다.The present invention relates to a single calcium carbonate fertilizer for agriculture.
본 발명은 배추 또는 고추와 같은 농작물 재배시 탄산칼슘 단일 비료를 토양에 시용하므로써 배추의 식용가능한 구중과 고추의 수확량을 증가시키고 토양의 pH를 높여 산성화를 방지하며 암모니아태 질소 함량을 증가시키는 뛰어난 효과가 있다.The present invention is to increase the yield of edible cultivation of Chinese cabbage and pepper and to increase the yield of pepper and prevent soil acidification by increasing the pH of the soil by applying a single calcium carbonate fertilizer to the soil when cultivating crops such as Chinese cabbage or red pepper, the ammonia nitrogen content There is.
Description
본 발명은 탄산칼슘을 함유하는 농업용 비료에 관한 것이다. 더욱상세하게는, 토양의 산성화를 방지하고 작물의 성장을 촉진하는 농업용 탄산칼슘 단일 비료에 관한 것이다.The present invention relates to an agricultural fertilizer containing calcium carbonate. More specifically, it relates to an agricultural calcium carbonate single fertilizer that prevents soil acidification and promotes crop growth.
비료의 3대요소는 질소, 인산, 칼리이며 여기에 추가로 칼슘, 마그네슘, 황, 나트륨 등이 다량 원소로서 중요시되고 있다. 특히 칼슘에 대해서는 서서히 그 작용의 중요성이 밝혀지고 있는데 식물은 물론 동물을 포함한 생물의 생체내 여러 가지 생리활동에 관여하고 있다. 구체적인 역할은 작물체 속에서는 당류의 생성과 이행에 큰 역할을 하고 작물체내의 산을 중화시켜 무해하게 하며 엽록소의 형성, 세포핵속에서의 작용을 들 수 있다. 또 체내의 과잉수분 조절, 질소의 환원에서도 중요한 역할을 하고 있다. 그리고 앞에서 말했듯이 세포와 세포를 접합하는 물질, 펙틴산칼슘의 생성에 꼭 필요하다. 이런 작용의 결과, 과수류에 대해서는 당도를 높이는 작용을 하는데 특히 착색기의 추비로서 사용하면 효과가 현저한 것을 확인하였다. 물론 과수류만이 아니라 토양에서 흡수된 칼슘은 발근력을 강화하여 그 결과로서 수량을 증대시키고 저장물질을 풍부하게 하는 것도 확인하였다. 칼슘 부족은 벼와 보리와 같은 엽폭이 좁은 작물보다 넓은 잎을 가진 채소류나 과수류에 일어나기 쉬운데 이것은 작물체내의 잎에 함유되어 있는 칼슘의 함량이 더 높기 때문이다. 즉 칼슘을 많이 필요로하는 작물일수록 결핍증이 나타나기 쉽다. 칼슘은 작물체내에서의 이동성이 나빠 흡수량이 적으면 특히 잎끝이나 싹끝의 선단생장부 등에 그 장해를 나타낸다. 칼슘의 주요 생리작용은 펙틴산과 결합하여 식물 세포막의 생성과 강화에 관여하고 유기산 등 유해물의 생체내 중화, 탄수화물 대사, 뿌리생육의 촉진 등이 있고 그 결핍징후로는 생체내에서 이동하기 어려우므로 결핍증은 새로운 생장점에서 발생하고 생장조직의 발육불량으로 싹의 선단은 고사하고 또 가는 뿌리가 적은 짧고 굵은 뿌리를 만든다. 자실충실이 불충분하여 성숙을 저해하고 토마토의 배꼽썩음병, 셀러리, 배추 등의 심부병이 칼슘결핍으로 나타난다. 칼슘의 과잉징후로는 다량의 석회사용으로 마그네슘, 칼륨, 인산의 흡수를 억제하고 높은 pH는 망간, 붕소, 철 등의 용해성을 감소시켜 작물의 결핍증을 조장한다.The three major components of fertilizers are nitrogen, phosphoric acid and kali. In addition, calcium, magnesium, sulfur, sodium, etc. are considered as important elements. In particular, calcium is gradually revealed its importance, and is involved in various physiological activities of living organisms including plants and animals. Specific roles play a major role in the production and transfer of sugars in crops, neutralize the acid in crops, make them harmless, form chlorophyll, and act in the cell nucleus. It also plays an important role in the regulation of excess moisture in the body and the reduction of nitrogen. And as I said before, it is essential for the production of calcium-pectinate, a substance that joins cells. As a result of this action, it has been confirmed that the effect of increasing the sugar content on the fruit tree is particularly significant when used as the ratio of the colorator. Of course, it was also confirmed that calcium absorbed from the soil, as well as fruit trees, strengthened rooting, resulting in increased yields and enriched storage. Calcium deficiency is more likely to occur in broad-leafed vegetables and orchards than in narrow-leaf crops such as rice and barley because of the higher levels of calcium in the leaves of the crops. That is, crops that require a lot of calcium are more prone to deficiency. Calcium has poor mobility due to poor mobility in crops, and especially when calcium has a low absorption, it exhibits obstacles such as leaf tips and tip growth at the tip of shoots. The main physiological action of calcium is to combine with pectinic acid to create and strengthen plant cell membranes, and to neutralize harmful substances such as organic acids, metabolize carbohydrates, and promote root growth, and the deficiency symptoms are difficult to move in vivo. Occurs at the new growth point and due to poor growth of the tissue, the tip of the shoots dies and the roots are short and thick with few thin roots. Insufficient fruit fidelity inhibits maturation and leads to calcium deficiency such as tomato rot, celery and cabbage. Excessive signs of calcium are used for large amounts of masonry to inhibit the absorption of magnesium, potassium and phosphoric acid, while high pH reduces the solubility of manganese, boron, iron and the like, leading to crop deficiency.
일반적으로 칼슘이외의 비료성분인 경우는 토양중에 많이 있으면 많이 있을수록 작물이 흡수하는 양도 많고 적으면 흡수량도 적은 경향이 있다. 따라서 토양중 각 요소의 함량을 조사하면 무엇이 충분한지 무엇이 부족한지를 알 수 있다. 그러나 칼슘의 경우는 그렇게 단순하지 않다. 칼슘이 극단적으로 적은 경우는 별도로 하고 칼슘분이 토양속에 충분히 있다고 해도 그만큼 작물의 뿌리가 칼슘을 곧바로 흡수하도록 건전하게 자라는 것은 아니라는 것이다. 칼슘의 경우는 토양중의 함유량보다도 토양의 환경조건에 의해 그 흡수량이 극단적으로 좌우되기 때문이다. 일본의 토양은 지질적으로 칼슘이 적은 화강암류등의 산성석 계통이 많다. 또 강우량이 많으므로 칼슘이나 마그네슘은 유실되기 쉬운데 최근에 화학비료를 다용하면서 거기에 함유된 황산, 염산, 질산으로 인해 칼슘유실은 더욱 심해졌다. 또 유기물 사용의 감소도 그곳에 함유된 칼슘부족을 가속화시켜 토양의 보비력을 약화시키는 결과가 되었다. 칼슘이 토양중에 충분히 있는 경우에도 강우량이 적어 토양이 건조해지면 토양중의 질소분이나 염류농도가 높아지므로 칼슘흡수가 나빠진다. 질소비료의 대부분은 암모니아태질소인데 이것은 토양미생물의 작용으로 채소류가 잘 흡수할 수 있는 질산태질소로 변화한다. 때문에 토양미생물의 활성이 억제되는 악조건도 칼슘 흡수를 나쁘게 하는 것이다.In general, in the case of fertilizers other than calcium, the more water in the soil, the more the crop absorbs and the less there is a tendency for less absorption. Therefore, examining the content of each element in the soil reveals what is sufficient and what is lacking. But calcium is not so simple. Apart from the extremely low calcium, even if the calcium is enough in the soil, the roots of crops do not grow healthy to absorb calcium immediately. This is because, in the case of calcium, the amount of absorption is extremely dependent on the environmental conditions of the soil rather than the content of the soil. In Japan, soil has many acidic stone systems, such as granite, which is low in calcium. In addition, calcium and magnesium are likely to be lost due to the heavy rainfall. Recently, as the use of chemical fertilizers increased, the loss of calcium became more severe due to the sulfuric acid, hydrochloric acid and nitric acid contained therein. In addition, the reduction in the use of organic materials also accelerated the calcium deficiency contained therein, resulting in a weakening of the soil's fertility. Even if there is enough calcium in the soil, if the rainfall is small and the soil is dried, the nitrogen absorption or salt concentration in the soil will increase, resulting in poor calcium absorption. Most of the nitrogen fertilizers are ammonia nitrogen, which is converted to nitrogen nitrate, which can be absorbed well by vegetables by the action of soil microorganisms. Therefore, the bad condition that the activity of soil microorganisms is suppressed also worsens the calcium absorption.
최근에 칼슘자재 중에서 유기산 칼슘의 엽면살포용으로 판매되고 있는 것은 그 대부분이 칼슘이 킬레이트화합된 것이다. 엽면과 뿌리에서의 흡수에도 불구하고 칼슘이 식물체내를 이동하기 어려운 이유는 흡수된 칼슘이 곧바로 다른 음이온과 결합하거나 필요한 곳까지 운반되기 전의 부분에서 이용되기 때문이다. 그래서 보통 이온결합이 아닌 보다 강한 결합인 킬레이트 결합된 칼슘을 공급하여 필요한 곳까지 무리없이 운반되도록 하려는 것이다. 석회(칼슘)는 작물의 생육에 중요한 역할을 하는 원소의 하나이다. 그러나 일본의 토양속에는 그 필요량을 충분히 만족시킬만한 유효 칼슘이 부족한 실정이다. 이전부터 이 칼슘부족 및 칼슘흡수능력을 높힐 목적으로 석회질 비료가 사용되었다. 상술한 바와 같이 이 석회질의 사용목적은 산성토양의 중화이다. 그리고 토양 pH를 중성으로 유지하여 칼슘공급은 물론 토양의 보비력 향상, 인산의 유효화, 미생물의 증식 활성화, 유기물의 분해촉진, 토양의 단립형성 등 많은 토양개량효과를 얻을 수 있다. 물론 칼슘을 사용하는 것만으로는 마그네슘 부족을 해소할 수 없으므로 고토석회 등을 사용하여 균형을 맞출 필요가 있다. 생석회는 산화칼슘이 주성분인데 분쇄한 석회석을 약 1200℃에서 구워 얻을 수 있다. 이 생석회의 성분은 이용하는 석회석의 품질에 의해 좌우되는데 비료로서는 유효석회가 80% 이상이라고 정해져 있다. 또 고토생석회인 경우는 유효고토와 유효석회의 합계로 80% 이상이라고 정하고 그중 유효고토는 10% 이상을 보증해야 한다고 되어 있다. 생석회는 보통 백색의 작은 알갱이 모양인데 물에 닿으면 반응이 일어나 격렬하게 발열한다. 따라서 취급할 때 주의해야 한다. 또 공기가 접촉하면 습기와 탄산가스를 흡수하여 뒤이어 나오는 소석회와 탄산석회가 되어 굳어져 사용할 수 없게 된다. 실제의 이용방법은 토양 pH를 조절하고 나서 사용하는데 산성토양의 중화가 목적인 경우에는 매년 10a당 100 ~ 150kg을 전면사용한다. 매우 강한 알칼리성 자재이므로 과잉사용은 금물이고 암모니아를 함유한 비료나 수용성 인산과 혼합해서는 안된다. 보통은 퇴구비와 병용하여 앞에서 말한 장해발생을 막도록 지도하고 있다. 소석회는 생석회에 물을 넣어 화합시킨 것인데 주성분은 수산화칼슘이다. 유효석회의 최저보증성분량은 60% 이상으로 되어 있는데 보통 시판되고 있는 것은 70% 이상의 것도 있다. 소석회의 형상은 백색의 가벼운 분말이다. 생석회와 마찬가지로 공기 중의 탄산가스와 반응하여 탄산석회가 되어 체적이 늘어나므로 잘 밀봉하여 보존해야 한다. 실제의 사용기준은 생석회 시용량의 약 1.4배이다. 생석회와 마찬가지로 강알칼리성이므로 비료의 배합에 유의하고 시용직후의 파종이나 정식은 피해야 한다. 탄산석회(CaCO3)는 탄산칼슘비료로 보통 탄칼이라고 한다. 형상은 백색이나 회백색 미분말이다. 따라서 입자가 가늘수록 효과가 빠르다. 상기 생석회나 소석회에 비해 공기에 접촉해도 변화가 없으므로 취급은 용이하다. 칼슘분은 보통 30 ~ 40%인 것이 시판되어 있다. 일반 밭작물에 있어 산성토양의 개량에 이용되는데 이것에 마그네슘을 넣은 탄산고토석회는 마그네슘이 결핍됐을 때 자주 이용된다. 전술한 바와 같이 취급이 용이하고 토양 속에서 서서히 녹는 성질이 있고 알칼리성도 약하므로 생석회나 소석회와 같은 과잉장해의 우려도 없다. 토양과 충분히 혼합해야 하는 것은 다른 석회질 비료와 마찬가지인데 사용후 곧바로 파종이나 이식을 해도 별로 장해가 나타나지 않는다.Recently, most of calcium materials are sold for foliar spraying of organic calcium, and most of them are chelated calcium. Despite absorption from the foliar and roots, calcium is difficult to move in the plant because the absorbed calcium is used immediately before binding to other anions or transporting it to where it is needed. Therefore, it is to supply chelated calcium, which is a stronger bond, not an ionic bond, so that it can be transported to where it is needed. Lime (calcium) is one of the elements that plays an important role in the growth of crops. However, there is a lack of effective calcium in the soil of Japan enough to satisfy the required amount. Previously, calcareous fertilizers have been used to increase the calcium deficiency and calcium absorption. As mentioned above, the purpose of using this lime is to neutralize acidic soils. In addition, by maintaining soil pH at neutrality, many soil improvement effects can be obtained, such as supplying calcium, improving soil binding power, validating phosphoric acid, activating the growth of microorganisms, promoting decomposition of organic matter, and forming soil granules. Of course, using calcium alone does not eliminate magnesium deficiency, so it is necessary to balance it with high lime. Quicklime is composed mainly of calcium oxide and can be obtained by baking crushed limestone at about 1200 ℃. The component of this quicklime depends on the quality of the limestone used, but it is determined that the effective lime is 80% or more. Also, in the case of Goto Quick Lime, the total amount of effective clay and effective lime is 80% or more, and the effective clay is guaranteed to be 10% or higher. Quicklime is usually a small white granule, which reacts with water to produce a violent exotherm. Therefore care must be taken when handling. In addition, when air comes into contact, it absorbs moisture and carbonic acid gas, and subsequently becomes hydrated lime and carbonate, which hardens and cannot be used. The actual method is used after adjusting the soil pH. If neutralization of acid soil is used, 100 ~ 150kg per 10a is used every year. Do not overuse as it is a very strong alkaline material and should not be mixed with fertilizer containing ammonia or water-soluble phosphoric acid. Usually, it is used in combination with the discharge fee to prevent the above-mentioned obstacles. Slaked lime is a combination of quicklime and water, the main ingredient is calcium hydroxide. The minimum guaranteed ingredient amount of effective lime is 60% or more, but some commercially available are 70% or more. The shape of slaked lime is a white light powder. Like quicklime, it reacts with carbon dioxide gas in the air to form lime carbonate, which increases its volume. The actual usage standard is about 1.4 times the quicklime dosage. As with quicklime, it is strongly alkaline, so be careful in formulating fertilizers and avoiding sowing or formalization immediately after application. Lime carbonate (CaCO 3 ) is a calcium carbonate fertilizer, commonly referred to as charcoal. The shape is white or gray white fine powder. Therefore, the thinner the particles, the faster the effect. Compared with the quicklime or slaked lime, there is no change even when it comes into contact with air, so handling is easy. Calcium powder is commercially available that is usually 30 to 40%. In general field crops, it is used to improve acid soil. Magnesium carbonate lime added to magnesium is frequently used when magnesium is deficient. As described above, it is easy to handle, has a property of slowly melting in the soil, and weak alkalinity, so there is no fear of excessive interference such as quicklime or slaked lime. Mixing well with the soil is the same as for other calcareous fertilizers, but it does not show any problems when seeding or transplanting immediately after use.
따라서 본 발명의 목적은 상기와 같은 사실에 의거하여 안출한 것으로 토양의 산성화를 방지하고 농작물의 재배를 촉진하는 탄산칼슘 단일 비료를 제공함에 있다.Accordingly, an object of the present invention is to provide a single calcium carbonate fertilizer to prevent acidification of the soil and to promote the cultivation of crops made by the above facts.
본 발명의 상기 목적은 배추를 파종하여 발화시킨 후 재식전 토양의 표토에 탄산칼슘의 양을 달리하여 시용하거나 동일양을 다른 조건으로 시용하고 생장을 측정하여 탄산칼슘이 배추성장에 미치는 영향을 조사하고 같은 방법으로 고추를 탄산칼슘을 시용한 토양에서 재배하여 탄산칼슘이 고추성장 및 수확량에 미치는 영향을 조사하였다. 이어서 상기 배추재배 토양을 채취하여 pH와 수용성 양이온 농도, 토양내의 무기물의 농도를 측정하고 재배된 배추엽육과 줄기내의 무기물 농도를 측정한 후 토양내 칼슘이온량과 재배작물내의 칼슘이온량을 조사하고 비교하여 상관관계를 조사하므로써 달성하였다.The object of the present invention is to investigate the effect of calcium carbonate on Chinese cabbage growth by measuring the growth and application by varying the amount of calcium carbonate to the topsoil of soil before planting after ignition by firing cabbage In the same way, the effects of calcium carbonate on pepper growth and yield were investigated by cultivating red pepper in soil with calcium carbonate. The cabbage cultivated soil was then collected to measure pH, water soluble cation concentration, and mineral concentration in the soil, and after cultivation of cabbage leaf and stem mineral concentrations, the amount of calcium ions in the soil and the amount of calcium ions in the cultivated crops were compared and compared. This was achieved by examining the correlation.
이하 본 발명의 구성과 작용을 상세히 설명한다.Hereinafter, the configuration and operation of the present invention will be described in detail.
도 1은 탄산칼슘 단일 비료를 시용하여 재배한 배추의 엽육과 줄기에 함유된 Na+, Mg+2, Ca+2, K+양을 나타낸 그래프이다.1 is a graph showing the Na + , Mg + 2 , Ca + 2 , K + amount contained in the leaf flesh and stem of Chinese cabbage cultivated using a single calcium carbonate fertilizer.
도 2는 탄산칼슘 단일 비료를 시용하여 배추를 재배한 후 수용성토양과 토양 및 배추내의 Ca+2양을 나타낸 그래프이다.2 is a graph showing the amount of Ca +2 in water-soluble soil and soil and cabbage after cultivating cabbage using a single calcium carbonate fertilizer.
본 발명은 배추종자를 파종하여 발화시킨 후 재식전에 토양의 표토에 탄산칼슘을 각기 다른 양으로 시용하거나 동일량을 배추재식 후 관주처리한구 그리고 소석회처리구와 대조구로 구분한 후 시용하여 배추의 생장정도를 측정하는 단계; 상기 배추재배와 같은 방법으로 발화시킨 고추를 재식전에 토양의 표토에 탄산칼슘을 각기 다른 양으로 시용하거나 동일량을 재식 후 관주처리한구 그리고 소석회처리구와 대조구로 구분한 후 시용하여 고추의 생장정도 및 수확량을 측정하는 단계; 배추재배 후 토양을 채취하여 토양 pH와 수용성 양이온 농도를 측정하는 단계; 배추엽육과 줄기 및 상기 채취한 토양내의 칼슘이온, 칼륨이온, 나트륨이온 및 마그네슘이온을 각각 측정하는 단계 및; 토양추출물과 배추엽육내의 칼슘이온을 측정하고 각각의 양을 비교하여 서로의 상관관계를 조사하는 단계로 구성된다.According to the present invention, after sowing cabbage seed and firing, the calcium carbonate is applied to the topsoil of soil before planting, or the same amount is divided into irrigation treatment and calcined lime treatment and control after cabbage planting. Measuring; The peppers ignited by the same method as the Chinese cabbage cultivation are applied to calcium soil carbonate in different amounts of soil before planting, or after the same amount is divided into irrigation treatment, calcined lime treatment and control, and then applied. Measuring yield; Collecting soil after cabbage cultivation to measure soil pH and water soluble cation concentration; Measuring calcium ions, potassium ions, sodium ions and magnesium ions in the cabbage leaf and stem and the collected soil; It is composed of the steps of measuring calcium ions in soil extract and cabbage leaf meat and comparing them with each other.
이하 본 발명의 구체적인 방법을 실시예을 들어 상세히 설명하고자 하지만 본 발명의 권리범위는 이들 실시예에만 한정되는 것은 아니다.Hereinafter, the specific method of the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited only to these Examples.
실시예 1: 탄산칼슘 시용된 토양에서 배추재배 및 그 생장분석Example 1: Chinese cabbage cultivation and its growth analysis in calcium carbonate applied soil
본 실시예에 사용된 배추종자는 흥농종묘 육종품종인 가을 배추 '불암 3호'를 사용하였다. 배추종자는 Ball상토를 채운 128공 플러그 트레이판에 1997년 8월 20일에 파종하였다. 발화된 유묘의 정식은 1997년 9월 5일 행하였는데 흥농종묘육종농장 300평을 임대하여 재배하였다. 재배기간중 추비를 10a당 요소 15kg(1회), 13kg(2회), 12kg(3회)과 염화가리 10kg(1회), 15kg(2회), 5kg(3회)를 3회 시비하였다. 재식거리는 45cm x 2줄 간격으로 하였으며 시험구 배치는 난괴법 3반복(시험구당 40주)으로 하였다. 탄산칼슘처리는 재식전 토양의 표토에 100kg/10a와 200kg/10a를 사용한후 경운한 것과 동일양을 배추재식후 관주처리한 구 그리고 소석회 100kg/10a처리구의 대조구로 구분하여 실시하였으며 수확은 1997년 11월 17일에 하여 생장정도를 측정하였다. 이때 사용된 탄산칼슘이 함유된 비료성분은 표 1에 나타낸 바와 같이 산화칼슘 48%, 산화마그네슘 1.05%, 산화철 1.10%, 산화규소 40ppm, 산화알루미늄 602ppm을 함유한다. 실험결과, 표 2에 나타낸 바와 같이 배추 전체 포기 무게를 보면 탄산칼슘 처리구와 무처리구 간 차이가 없었으며 표준편차를 감안하면 처리간 거의 동일한 수준으로 평균 3.6kg의 무게를 나타냈다. 그러나 식용불가능한 잎을 제외한 식용 가능 부위의 무게를 보면 표면시용 200kg/10a 구나 관수처리 100kg/10a 구에서 2.77kg 으로 타 처리구에 비해 다소 증가하였다. 최대엽장, 엽폭, 구고 및 구폭 등 그 밖의 형질에 있어서도 처리간 큰 차이를 나타내지 않았다. 그러나 식용 불가능 외엽수에 있어서는 소석회나 무처리, 관수처리 200kg/10a 구에서는 8개 이상 달하였으나 표면 시용구나 100kg/10a 관수처리구에서는 7개 정도로 약간 감소하는 경향을 나타냈다. 그러나 전체 엽수를 보면 표면시용 100kg/10a 처리구에서 70개로 무처리나 그밖의 처리 62 ~ 65에 비해 70개로 현저히 증가하는 현상을 나타냈다. 고온기인 여름에 과습시 뿌리기능 저하로 인하여 발생되거나 가뭄이 계속되다가 수분 공급시 나타나는 석회결핍 증상을 방지하는데 탄산탈슘의 시용효과는 무처리에 비해 다소 효과가 있어 잎 끝부분이 갈색으로 고사하는 현상이 감소되는 경향이 있었다. 그러나 가을배추에서는 석회결핍 증상이 심하지 않고 1997년 기후 조건이 석회결핍 증상을 유발할만한 이상징후가 없었기 때문에 탄산칼슘 사용효과가 크게 나타나지 않았다.The cabbage seed used in this example used the autumn cabbage 'Bulam No. 3' which is a breeding breed of Heungryong seedling. Cabbage seeds were sown on August 20, 1997 in a 128-hole plug tray filled with ball topsoil. The cultivation of fired seedlings was carried out on September 5, 1997, and cultivated by leasing 300 pyeong of Heungjong seedling breeding farm. During the cultivation period, fertilizers were fertilized 15 kg (once), 13 kg (twice), 12 kg (three times), 10 kg (once), 15 kg (twice), and 5 kg (three times) per 10a. . The planting distance was 45cm x 2 lines, and the test piece layout was repeated 3 times (40 weeks per test). Calcium carbonate treatment was carried out using 100kg / 10a and 200kg / 10a in the topsoil of soil before planting, and the same amount of tillage was divided into the control group of irrigation after cabbage planting and 100kg / 10a treatment of slaked lime. The growth rate was measured on November 17. The fertilizer component containing calcium carbonate used at this time contains 48% calcium oxide, 1.05% magnesium oxide, 1.10% iron oxide, 40 ppm silicon oxide, 602 ppm aluminum oxide. As a result, as shown in Table 2, the total weight of abandoned cabbage showed no difference between the calcium carbonate treated group and the non-treated group. However, the weight of edible parts, except for non-edible leaves, was 2.77kg in 200kg / 10a or 100kg / 10a water treatment, which was slightly increased compared to other treatments. There were no significant differences between treatments in other traits such as maximal length, leaf width, height, and width. However, in the non-edible leafy trees, more than eight in the 200kg / 10a treatment of hydrated lime, no treatment, and irrigation treatment decreased slightly to seven in the surface application or 100kg / 10a irrigation treatment. However, the total number of leaves showed a significant increase of 70 in the 100kg / 10a treated surface treatments, compared to 70 in the non-treated or other treatments 62 ~ 65. The effect of Calcium carbonate is more effective than untreated because the effect of Calcium Calcium is caused by deterioration of root function during drought or excessive drought in summer when it is hot. This tended to be reduced. However, the effects of calcium carbonate did not show much effect in the fall cabbage because the symptoms of lime deficiency were not severe and the 1997 climate condition did not have any abnormal symptoms to cause the symptoms of lime deficiency.
실시예 2: 탄산칼슘이 시용된 토양에서 배추재배 및 그 생장분석Example 2: Chinese cabbage cultivation and its growth analysis in the soil where calcium carbonate was applied
고추종자는 1997년 3월 10일에 파종하고 4월 10일에 pot 이식한 후 발화된 유묘의 정식은 1997년 5월 15일 행하였다. 시험구 배치는 난괴법 3반복으로 하였다. 탄산칼슘 처리는 상기 실시예 1과 동일하게 재식전 토양의 표토에 100kg/10a와 200kg/10a를 사용한후 경운한 것과 동일양을 배추재식후 관주처리한 구 그리고 소석회 100kg/10a처리구의 대조구로 구분하여 실시하였으며 재배는 비닐멀칭재배 방법으로 하였고 재식거리는 60cm x 40줄로 하였다. 사용된 탄산칼슘이 함유된 비료성분도 상기 실시예 1에 사용한 탄산칼슘 단일 비료와 동일한 것을 사용하였다. 생육측정은 정식 10일 경과후인 5월 15일에 한번, 68일 경과후인 7월 18일에 다시한번 측정하였고 10월달에 고추를 수확하여 그 양을 측정하였다. 실험결과, 탄산칼슘 단일 비료와 소석회가 고추생육에 거의 영향을 미치지 않았으며 고추의 수확량에 있어서는 소석회와 다량의 농업용 탄산칼슘 처리구에서 다른 처리구와 비교하여 유의성이 있음을 알 수 있었다. 이 결과를 표 3, 4 및 5에 정리하였다.Pepper seeds were sown on March 10, 1997, pot transplanted on April 10, and the firing of seedlings fired on May 15, 1997. The test piece arrangement was repeated 3 times in the ingot method. Calcium carbonate treatment is the same as in Example 1, after using 100kg / 10a and 200kg / 10a in the topsoil of soil before planting, the same amount of tillage is divided into a control group of irrigation treatment and cabbage 100kg / 10a treatment after cabbage planting. Cultivation was carried out by vinyl mulching cultivation method and planting distance was 60cm x 40 rows. The same fertilizer as the calcium carbonate single fertilizer used in Example 1 was also used. The growth was measured once on May 15, which is 10 days after the formalization, and on July 18, which was 68 days after, and the amount of red pepper was harvested in October. As a result, it was found that calcium carbonate fertilizer and hydrated lime had little effect on pepper growth, and the yield of red pepper was significantly higher than that of other treatments. The results are summarized in Tables 3, 4 and 5.
실시예 3: 배추 재배용 포장 토양 pH와 수용성 양이온의 농도분석Example 3: Package of Chinese Cabbage Cultivation Soil pH and Concentration Analysis of Water Soluble Cations
실시예 1에서 탄산칼슘 처리한 포장의 토양 시료를 1주간 암조건하에서 풍건한 후 100메쉬의 망사를 이용하여 왕사 및 굵은 부유입자를 사별 제거하여 시료로 사용하였다. 시료토양 5g을 정확히 달아 100mL 삼각플라스크에 담아 25mL의 증류수를 가하여 상온(25℃)에서 1시간 진탕한 후 pH 메터를 사용하여 pH를 측정하였다. 수용성 양이온은 pH 측정후 100mL로 정량하여 여과(Watman No. 2)하고 다시 0.45㎛ 막여과(membrane filtering)한 것을 HPLC 이온분석 시료로 사용하였다. 실험결과, 표 6에 나타낸 바와 같이 토양의 pH는 소석회 시용구에서 7.77로 가장 높게 나타났고 대조구가 6.89로 낮았으며 탄산칼슘처리구는 7.12에서 7.34 범위로 무처리보다 약간 증가하여 토양 산성화를 방지하는데 효과가 있었다. 토양내 Na+이온함량은 관수처리 200kg/10a 38.73mg을 제외하고는 탄산칼슘처리구가 무처리나 소석회 처리구에 비해 높았다. 이러한 현상은 암모니아태 질소의 함량에도 영향을 미처 탄산칼슘 처리구가 소석회와 무처리구에 비해 2 ~ 3배 증가하는 현상을 보였다. 칼리함량에 있어서는 처리간 큰차이를 나타내지 않았고 마그네슘 함량도 전반적으로 무처리구에 비해 탄산칼슘처리구가 높았는데 소석회 처리구에서 72mg으로 가장 높았다. 칼슘 함량을 보면 대조구에 비해 탄산칼슘처리구에서 100mg이상으로 현저히 높았고 처리방법이나 처리농도에는 큰 영향을 받지 않았다.Soil samples of the calcium carbonate-treated pavement in Example 1 were air-dried under dark conditions for one week, and were then used as a sample by removing the royal sand and coarse suspended particles using 100 mesh mesh. Accurately weigh 5 g of the sample, put it in a 100 mL Erlenmeyer flask, add 25 mL of distilled water, shake for 1 hour at room temperature (25 ° C), and measure the pH using a pH meter. Aqueous cations were quantified in 100 mL after pH measurement and filtered (Watman No. 2), followed by 0.45 μm membrane filtration as an HPLC ion analysis sample. As a result, as shown in Table 6, the pH of soil was the highest at 7.77, and the control was low at 6.89. The calcium carbonate treatment increased slightly from untreated to 7.12 to 7.34 to prevent soil acidification. There was. Na + ion content in soil was higher in calcium carbonate treatment group than in non-treated or lime-treated group except for water treatment 200kg / 10a 38.73mg. This phenomenon also affected the content of ammonia-nitrogen nitrogen, and the calcium carbonate treated group increased two to three times as compared to the slaked lime and untreated group. There was no significant difference between the treatments in the Kali content, and the magnesium content was higher in the calcium carbonate treated group than in the untreated group, which was the highest at 72 mg. Calcium content was significantly higher than 100 mg in the calcium carbonate treatment group compared to the control, and was not significantly affected by the treatment method and concentration.
실시예 4: 배추 재배 토양내 무기물중 Ca+2, K+, Na+및 Mg+2측정Example 4 Determination of Ca +2 , K + , Na + and Mg +2 in Minerals in Chinese Cabbage Soil
실시예 1의 탄산칼슘 처리한 포장의 토양시료 1g을 달아서 20mL의 H2SO4, 10mL의 HNO3그리고 6mL의 H2O2를 첨가하고 QDS-6M 다이제스터(digester)를 이용하여 400℃에서 3시간 산분해 하였다. 맑게 분해된 시료를 100mL로 정량하여 무기물중 Ca+2와 Mg+2를 분석하였다. 실험결과, 표 7에 나타낸 바와 같이 칼슘함량은 소석회 처리구에 비해 탄산칼슘 처리구에서 전반적으로 높았고 표면시비 200kg/10a에서 1,151mg로 가장 높았다. 칼리나 나트륨 함량에 있어서도 시용후 토양분석 결과와 비슷한 경향을 나타냈으며 마그네슘 함량은 처리구간 무처리구에 비해 큰 차이를 나타내지 않았고 다만 소석회 처리구에서는 다소 감소하는 경향을 나타냈다.Weigh 1 g of the soil sample of the calcium carbonate treated package, add 20 mL of H 2 SO 4 , 10 mL of HNO 3, and 6 mL of H 2 O 2 , and at 400 ° C. using a QDS-6M digester. Acid decomposition was carried out for 3 hours. The clear digested sample was quantified in 100 mL and analyzed for Ca +2 and Mg +2 in inorganic matter. As a result, as shown in Table 7, the calcium content was higher in the calcium carbonate treatment group than in the slaked lime treatment group, and the highest was 1,151 mg at the surface application rate of 200 kg / 10a. The contents of kali and sodium were similar to the soil analysis after application, and the magnesium content did not show a big difference compared to the untreated group, but decreased slightly in the lime treated group.
실시예 5: 배추엽육과 줄기의 Ca+2, K+, Na+및 Mg+2농도 측정Example 5: Determination of Ca +2 , K + , Na + and Mg +2 concentrations in Chinese cabbage and stem
실시예 1에서 재배한 배추를 수확하여 노화된 외피를 제거하여 외엽부터 10잎을 제거한 후 11 ~ 15잎을 시료로 사용하였다. 다시 중심 위의 엽육과 이하의 줄기부위를 나눠 가위로 1cm 정도의 크기로 절단하여 20℃ 온실에서 하루동안 예비건조를 한 후 70℃ 드라이 오븐에서 2 ~ 3일 건조하여 시료로 사용하였다. 토양시료와 마찬가지로 1g을 달아 20mL의 황산과 10mL의 과산화수소를 넣은 후 4시간 정도로 완벽히 분해시킨 후 100mL로 정량하여 막 여과(membrane filtering; Watman No. 2) 한 후 원자흡광 분석기기(AA-6701F;SHIMAZUE)로 무기물 분석을 하였다. 실험결과, 도 1에 나타낸 바와 같이 배추엽육과 줄기조직에 있어서 나트륨함량은 엽육조직에 비해 줄기조직이 평균 1.5 ~ 2배 증가하는 현상을 나타냈는데 무처리와 비교할 때 큰 차이를 나타내지 않았다. 마그네슘 함량에 있어서도 엽육조직에 비해 줄기조직에서 함량이 높았으며 탄산칼슘 처리구에서 다소 높았다. 칼슘함량은 탄산칼슘 200kg/10a 처리구, 소석회 및 무처리구 줄기조직에서 가장 높았고 표면시용 200kg/10a 처리구에서 가장 낮았다. 반면에 칼리함량은 전반적으로 무처리구나 소석회 처리구에 비해 탄산칼슘 처리구에서 다소증가하는 현상을 나타냈으며 무처리를 제외하고는 엽육보다는 줄기조직에서 함량이 높았다.After harvesting the cabbage grown in Example 1 to remove the aged outer shell to remove the 10 leaves from the outer leaves 11 to 15 leaves were used as a sample. Again, cut the leaf and the stem below the center to cut the size of about 1cm with scissors, pre-drying in a 20 ℃ greenhouse for one day, and then dried for 2 to 3 days in a 70 ℃ dry oven was used as a sample. Like soil samples, weigh 1 g, add 20 mL of sulfuric acid and 10 mL of hydrogen peroxide, completely decompose for about 4 hours, quantify to 100 mL, perform membrane filtration (Watman No. 2), and then use an atomic absorption analyzer (AA-6701F; SHIMAZUE) analyzed the minerals. As a result, as shown in Figure 1, the sodium content in the cabbage leaf and stem tissue showed an increase of 1.5 ~ 2 times the average of the stem tissue compared with the leaf tissue, but did not show a significant difference when compared to no treatment. Magnesium content was higher in stem tissue than in foliar tissue, and slightly higher in calcium carbonate treatment. Calcium content was highest in 200kg / 10a treated calcium carbonate, hydrated lime and untreated stem and lowest in 200kg / 10a treated surface. On the other hand, the Kali content was slightly increased in the calcium carbonate treated group compared to the untreated or hydrated lime treated group.
실시예 6: 석회처리한 작물과 토양내의 Ca2+함량 비교Example 6: Comparison of Ca 2+ Contents in Lime Treated Crops and Soil
실시예 1에서 탄산칼슘을 배추의 재식전에 토양의 표토에 100kg/10a와 200kg/10a를 사용한 후 경운한 것과 동일양을 배추재식 후 관주처리한 구 그리고 소석회 100kg/10a처리구의 대조구로 구분하여 시용한 후 배추를 재배하였다. 본 실시예는 그 토양추출물과 배추엽내의 칼슘함량을 비교분석하였다. 실험결과, 표 9에 나타낸 바와 같이 수용성 토양내의 칼슘함량은 무처리구나 소석회시용구에 비해 표면시용 200kg/10a 처리구나 관수처리구에서 현저히 높았다. 토양 자체를 분석한 결과도 수용성 토양분석 결과와 흡사하였는데 탄산칼슘 시용은 소석회나 무처리구에 비해 토양내 칼슘함량을 증가시켰다. 배추 조직내 칼슘함량은 관수처리 200kg/10a 처리구나 소석회 및 무처리구에서 현저히 증가하였다. 따라서 토양내 축적되는 칼슘의 함량과 흡수되어 식물체 조직내 축적되는 칼슘함량간에는 상관관계가 없었고 오히려 체내 축적이 무처리구에 비해 감소하였다. 이를 도 2에 나타냈다.In Example 1, the same amount of calcium carbonate was used after 100 kg / 10a and 200kg / 10a in the topsoil of the soil before planting the Chinese cabbage, and the same amount was applied to the control group of irrigation and calcined lime 100kg / 10a treatment after cabbage planting. Chinese cabbage was then grown. In this example, the soil extract and the calcium content in the cabbage leaf were compared and analyzed. As a result, as shown in Table 9, the calcium content in the water-soluble soil was significantly higher in the surface treatment 200kg / 10a treatment or irrigation treatment than in the untreated or slaked lime treatment. The results of analysis of the soil itself were similar to those of water-soluble soil analysis. Calcium carbonate application increased calcium content in the soil compared to hydrated lime or untreated. Calcium content in Chinese cabbage was significantly increased in 200kg / 10a irrigated or hydrated lime and untreated areas. Therefore, there was no correlation between the calcium content accumulated in the soil and the calcium content accumulated in the plant tissues. This is shown in FIG.
본원 발명은 상기 실시예를 통하여 설명한 바와 같이 탄산칼슘 단일 비료를 농작물 재배 토양에 시용시 배추의 식용가능한 구중과 고추의 수확량을 증가시키고 석회결핍증상을 완화시키며 토양의 pH를 높여 산성화를 방지하는 효과가 있고 토양내 칼슘 및 암모니아태 질소 함량을 증가시키는 뛰어난 효과가 있어 농업용 비료산업상 매우 유용한 발명인 것이다.The present invention increases the yield of edible cultivation of Chinese cabbage and red pepper, reduce the lime deficiency symptoms and increase the pH of the soil to prevent acidification when the calcium carbonate single fertilizer is applied to the crop cultivation soil as described above. And it has an excellent effect of increasing the nitrogen and ammonia nitrogen content in the soil is a very useful invention in the agricultural fertilizer industry.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980017736A KR100278580B1 (en) | 1998-05-16 | 1998-05-16 | Agricultural Fertilizer of calcium carbonate oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980017736A KR100278580B1 (en) | 1998-05-16 | 1998-05-16 | Agricultural Fertilizer of calcium carbonate oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990085362A true KR19990085362A (en) | 1999-12-06 |
KR100278580B1 KR100278580B1 (en) | 2001-01-15 |
Family
ID=65891563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980017736A Expired - Lifetime KR100278580B1 (en) | 1998-05-16 | 1998-05-16 | Agricultural Fertilizer of calcium carbonate oxide |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100278580B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020008486A (en) * | 2000-07-20 | 2002-01-31 | 강준구 | Fertilizer for agriculture |
-
1998
- 1998-05-16 KR KR1019980017736A patent/KR100278580B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
KR100278580B1 (en) | 2001-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100741818B1 (en) | Antifungal Organic Clay Composition and Manufacturing Method | |
CN101973812B (en) | Disease-resistant fertilizer composition for tomatoes | |
Shaheen et al. | Effect of organic and bio-fertilizers as a partial substitute for NPK mineral fertilizer on vegetative growth, leaf mineral content, yield and fruit quality of Superior grapevine | |
Ortas | Influences of nitrogen and potassium fertilizer rates on pepper and tomato yield and nutrient uptake under field conditions | |
CN105248213A (en) | Efficient culture technique for ornamental maple | |
Chhabra | Nutrient management in salt-affected soils | |
KR100786772B1 (en) | Soil Modifier Composition for Soil Soil Using Bottom Ash | |
Rachid et al. | Effect of foliar application of humic acid and nanocalcium on some growth, production, and photosynthetic pigments of cauliflower (Brassica oleracea var. Botrytis) planted in calcareous soil | |
Sopha et al. | The incorporation of lime and NPK fertilizer on shallot production in peat soil | |
KR100278580B1 (en) | Agricultural Fertilizer of calcium carbonate oxide | |
Challinor et al. | The production of standard carnations on nutrient-loaded zeolite | |
KR101722422B1 (en) | Composition of Soil Conditioner | |
CN107827658A (en) | A kind of red soil conditioner of Heisui River gadfly sand compounding chelating boron | |
Souri et al. | Benefits of organic fertilizer spray on growth quality of chili pepper seedlings under cool temperature | |
JP5401656B2 (en) | Clay heat treatment granular material | |
Mansour et al. | Effect of nitrogen fertilization and some stimulants on dry weight, yield, bulb quality and storability of garlic | |
Laughlin | The boron nutrition of poppies (Papaver somniferum L.) on krasnozem and alluvial soils of Tasmania | |
KR20060054219A (en) | Organic fertilizer | |
WO2013120116A1 (en) | Methods of treating plants | |
Lee et al. | EFFECT OF CALCIUM CONCENTRATIONS IN FERTILIZER SOLUTION ON GROWTH OF AND NURTRIENT UPTAKE BY ORIENTAL HYBRID LILY'CASA BLANCA' | |
Suryaningtyas et al. | Response of corn growth to ZeomicAgro, a zeolite-based soil ameliorant | |
KR20200113356A (en) | Silicate and granular the soil improvement a component and Water-Soluble Fertilizer method production | |
Suojala-Ahlfors et al. | Nutrient demand and uptake by pickling cucumber under drip irrigation in a northern climate | |
Shafshak et al. | Effect of mineral and bio potassium fertilizer and foliar spray with different sources of boron on productivity and quality of strawberry for exportation | |
CN111592404B (en) | Soil remediation type multifunctional biofertilizer and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19980516 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19980519 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 19980516 Comment text: Patent Application |
|
G15R | Request for early publication | ||
PG1501 | Laying open of application |
Comment text: Request for Early Opening Patent event code: PG15011R01I Patent event date: 19990728 |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20000526 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20000921 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20001020 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20001021 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20031021 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20040823 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20051021 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20061010 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20071001 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20090326 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20090930 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20101020 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20111020 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20121019 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20121019 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20130826 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20130826 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20140904 Start annual number: 15 End annual number: 15 |
|
FPAY | Annual fee payment |
Payment date: 20151005 Year of fee payment: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20151005 Start annual number: 16 End annual number: 16 |
|
FPAY | Annual fee payment |
Payment date: 20161018 Year of fee payment: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20161018 Start annual number: 17 End annual number: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20170929 Start annual number: 18 End annual number: 18 |
|
PC1801 | Expiration of term |