KR19990078213A - Process for preparing alpha-hydroxycarboxylate - Google Patents

Process for preparing alpha-hydroxycarboxylate Download PDF

Info

Publication number
KR19990078213A
KR19990078213A KR1019990010056A KR19990010056A KR19990078213A KR 19990078213 A KR19990078213 A KR 19990078213A KR 1019990010056 A KR1019990010056 A KR 1019990010056A KR 19990010056 A KR19990010056 A KR 19990010056A KR 19990078213 A KR19990078213 A KR 19990078213A
Authority
KR
South Korea
Prior art keywords
reaction
hydroxycarboxylic acid
gas
acid ester
ammonia
Prior art date
Application number
KR1019990010056A
Other languages
Korean (ko)
Inventor
나카무라겐이치
가와타카후토시
야마다가즈히로
우에노와타루
Original Assignee
오오히라 아키라
미츠비시 가스 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10077369A external-priority patent/JPH11279120A/en
Priority claimed from JP10102881A external-priority patent/JPH11292825A/en
Priority claimed from JP10102880A external-priority patent/JPH11292824A/en
Priority claimed from JP10194447A external-priority patent/JP2000026370A/en
Application filed by 오오히라 아키라, 미츠비시 가스 가가쿠 가부시키가이샤 filed Critical 오오히라 아키라
Publication of KR19990078213A publication Critical patent/KR19990078213A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/18Preparation of carboxylic acid esters by conversion of a group containing nitrogen into an ester group
    • C07C67/20Preparation of carboxylic acid esters by conversion of a group containing nitrogen into an ester group from amides or lactams
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/39Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
    • C07C67/42Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester by oxidation of secondary alcohols or ketones

Abstract

용제를 위시해서 식품첨가물이나 향료, 또한 각종유기약품의 원료등으로서 유용한 α-히드록시카르복실산에스테르를 α-히드록시카르복실산아미드와 알코올로부터 효율적으로 공업적으로 유리하게 제조하는 방법이 제시되어있다.A method for efficiently and advantageously producing α-hydroxycarboxylic acid esters, which are useful as food additives, fragrances, and raw materials for various organic chemicals, including solvents, from α-hydroxycarboxylic acid amides and alcohols, has been proposed. It is.

본발명은 α-히드록시카르복실산아미드와 알코올을 촉매의 존재하에, 발생된 암모니아를 기체로서 기체상으로 배출시키므로서 반응액중의 암모니아농도를 0.1중량%이하로 유지하면서 액상으로 반응시키는 α-히드록시카르복실산에스테르의 제조방법을 제공한다.In the present invention, α-hydroxycarboxylic acid amide and an alcohol are reacted in a liquid phase while maintaining the ammonia concentration in the reaction solution at a concentration of 0.1% by weight or less in the presence of a catalyst while discharging the generated ammonia as a gas. Provided is a method for producing hydroxycarboxylic acid ester.

Description

α-히드록시카르복실산에스테르의 제조방법 {PROCESS FOR PREPARING ALPHA-HYDROXYCARBOXYLATE}Production method of α-hydroxycarboxylic acid ester {PROCESS FOR PREPARING ALPHA-HYDROXYCARBOXYLATE}

본발명은 α-히드록시카르복실산에스테르의 제조방법에 관한 것이다.The present invention relates to a method for producing α-hydroxycarboxylic acid ester.

다시또 상세하게는 본발명은 용제를 위시해서 식품첨가물이나 향료, 다시또, 의약, 농약, 공업약품, 분해성중합체, α-아미노산등의 원료로서 유용한 α-히드록시카르복실산에스테르를 α-히드록시카르복실산아미드와 알코올로부터 효율적으로 공업적으로 유리하게 제조하는 방법에 관한 것이다.Again, in detail, the present invention is an α- hydroxy carboxylic acid ester useful as a raw material, such as food additives, flavorings, pharmaceuticals, pesticides, industrial chemicals, degradable polymers, α-amino acids, including solvents. A method for efficiently and advantageously producing industrially from oxycarboxylic amides and alcohols.

α-히드록시카르복실산에스테르는 공업적으로 극히 중요한 화합물인 것이 알려져있고, 예를들면 그 일종인 락트산에스테르는 고비점용제로서 사용되는외에 식품첨가물이나 향료, 의약, 농약의 원료, 분해성중합체의 원료로서 사용되고 있다.It is known that α-hydroxycarboxylic acid ester is an industrially important compound. For example, lactic acid ester, which is a kind of high boiling point solvent, is used as a raw material for food additives, flavors, medicines, pesticides, and degradable polymers. It is used as a raw material.

또 α-히드록시카르복실산에스테르는 용제로서 사용되는외에 탈수에 의한 메타크릴산에스테르, 특히 메타크릴산메틸의 생성, 아미놀리시스에의한 α-아미노산의 생성등의 원료로서 사용된다.In addition to being used as a solvent, the α-hydroxycarboxylic acid ester is used as a raw material such as the production of methacrylic acid esters by dehydration, especially methyl methacrylate and the production of α-amino acids due to aminolsis.

α-히드록시카르복실산에스테르를 제조하는 방법으로서는 알코올과 니트릴을 산촉매 존재하에서 반응시키는 방법이 예로부터 알려져있다.As a method for producing α-hydroxycarboxylic acid ester, a method of reacting an alcohol with nitrile in the presence of an acid catalyst is known from the example.

예를들면 락트산에스테르를 제조하는 방법으로서 일본국 특공8061/55호공보, 특공2333/65호공보에는 락트니트릴을 알코올 및 물에 용해시키고 황산을 첨가해서 가수분해 및 에스테르화를 행하여 생성되는 혼합물에 알코올증기를 도입하는 방법이 제안되어있다.For example, as a method for producing lactic acid ester, Japanese Unexamined Patent Publication No. 8081/55 and Japanese Patent No. 2333/65 disclose a mixture produced by dissolving lactnitrile in alcohol and water and adding sulfuric acid to hydrolysis and esterification. A method of introducing alcohol vapor has been proposed.

α-히드록시이소부티르산에스테르에 대해서는 산촉매를 사용해서 아세톤시안히드린과 알코올을 반응시켜서 제조하는 방법이 알려져있고, 예를들면 미국특허 명세서 제 2041820호 일본국 특개평 230241/92호공보에 제안되어있다.As for the α-hydroxyisobutyric acid ester, a method of producing by reacting acetonecyanhydrin with an alcohol using an acid catalyst is known. For example, it is proposed in U.S. Patent No. 2041820, Japanese Patent Laid-Open No. 230241/92. have.

이들반응은 발열반응으로서 자발적으로 진행하기때문에 제조장치는 다음에 기술하는 다른 방법에 비해서 단순해도된다.Since these reactions proceed spontaneously as exothermic reactions, the manufacturing apparatus may be simpler than other methods described below.

그러나 산촉매를 사용하기때문에 내부식성재료를 사용할필요가 있는외에 폐기물로서 대량의 염이 생성되는 결점이있다.However, there is a drawback in that a large amount of salt is generated as a waste in addition to the need to use corrosion resistant materials due to the use of an acid catalyst.

α-히드록시카르복실산에스테르를 제조하는 방법으로서 α-히드록시카르복실산아미드와 에스테르를 반응시키는 방법이있다.As a method for producing α-hydroxycarboxylic acid ester, there is a method of reacting α-hydroxycarboxylic acid amide with an ester.

예를들면 일본국 특개평178792/93호공보, 특개평 145106/94호공보에는 α-히드록시이소부티르산에스테르를 제조하는 방법이 제안되어있다.For example, Japanese Patent Laid-Open No. 178792/93 and Japanese Patent Laid-Open No. 145106/94 propose a method of producing α-hydroxyisobutyric acid ester.

이 반응은 아미드와 에스테르의 교환반응이며 큰 발열도 흡열도 없고, 내부식성재료를 사용할필요가없는것이 특징이다.This reaction is characterized by the exchange of amides and esters, no exothermic heat or endothermic, and no need to use corrosion-resistant materials.

그러나 아미드와 에스테르의 평형조성까지밖에 반응이 진행되지 않는다고하는 결점이있다.However, there is a drawback that the reaction proceeds only up to the equilibrium composition of the amide and the ester.

다시또 α-히드록시카르복실산아미드와 알코올을 직접 반응시켜서 α-히드록시카르복실산에스테르를 제조하는 방법이 알려져있다.Again, a method of producing α-hydroxycarboxylic acid ester by directly reacting α-hydroxycarboxylic acid amide with an alcohol is known.

이방법은 폐기해야할 염이 생성되지않고, 원리적으로는 원료아미드의 전환율에 상한이 없다고하는 특징을 갖는다.This method is characterized in that no salts to be disposed of are produced and in principle there is no upper limit to the conversion of the raw amides.

예를들면 일본국 특개소 3015/1977호공보에는 가스를 간헐적으로 정화시키면서 금속카르복실산의 존재하에서 반응을 실시하는 방법이 기재되어있다.For example, Japanese Patent Application Laid-Open No. 3015/1977 discloses a method of reacting in the presence of a metal carboxylic acid while purifying gas intermittently.

그러나 이방법에서는 수율(yield)이 낮은외에 부산물이 많고, 실용적이 아니었다.However, in this method, besides low yield, there were many by-products and it was not practical.

또 일본국 특개345692/94호공보, 특개258154/95호공보, 및 특개73408/96호공보에있어서 다량의 질소가스를 공급하여 발생하는 암모니아를 방출시키면서 불용성의 고체산촉매 또는 금속촉매의 존재하에서 반응시키는 방법이 제안되어있다.In Japanese Patent Nos. 345692/94, 258154/95, and 7373/96, the reaction is carried out in the presence of an insoluble solid acid catalyst or a metal catalyst while releasing ammonia generated by supplying a large amount of nitrogen gas. A method of making it is proposed.

본발명자등이 검토한바 이 방법에서 고수율로 α-히드록시카르복실산에스테르를 제조하기위해서는 다량의 질소가 필요하다.As discussed by the present inventors, a large amount of nitrogen is required to prepare α-hydroxycarboxylic acid ester in high yield in this method.

이때문에 배출된 가스로부터 암모니아를 회수하는데는 다대한 에너지가 필요하다.Because of this, a great deal of energy is required to recover ammonia from the emitted gases.

다시또 사용하는 촉매량도 많고, 반응에 장시간을 요하고, 부산물도 많고, 공업적으로는 실용적이 아니었다.Again, the amount of catalyst used again, the reaction takes a long time, many by-products, industrially not practical.

본발명은 이와같은 상황하에서 종래의 α-히드록시카르복실산에스테르의 제조방법이 갖는 결점을 극복하고, α-히드록시카르복실산아미드와 알코올로부터 α-히드록시카르복실산에스테르를 효율적으로 공업적으로 유리하게 제조하는 방법을 제공하는것을 목적으로 하는것이다.The present invention overcomes the drawbacks of the conventional methods for producing α-hydroxycarboxylic acid esters under such circumstances, and efficiently utilizes α-hydroxycarboxylic acid esters from α-hydroxycarboxylic acid amides and alcohols. It is an object to provide a method of manufacturing advantageously advantageously.

도 1은 본발명의 방법을 실시하기위해 사용되는 독립된 반응기를 연결한 반응장치의 일례의 개요도1 is a schematic diagram of an example of a reactor incorporating independent reactors used to practice the method of the present invention.

도 2는 실시예 11∼15에서 사용한 반응장치의 개요도2 is a schematic view of a reactor used in Examples 11 to 15;

(도면의 주요부분에대한 부호의설명)(Explanation of symbols for main parts of drawing)

1. 첫번째 반응기1. First reactor

2. 두번째 반응기2. second reactor

3. 세번째 반응기3. third reactor

4,5,6. 액도관4,5,6. Liquid pipe

7,8,9. 가스도관7,8,9. Gas conduit

10. 메탄올10. Methanol

11. 송액펌프11. Liquid pump

12. 하부반응기12. Bottom Reactor

13. 가스도관13. Gas Conduit

14. 액도관14. Liquid pipe

15. 밸브15. Valve

16. 냉각기16. Chiller

17. 저면수용기17. Bottom Container

18. 가스도관18. Gas Conduit

19. 응축기19. Condenser

20. 응축액수용기20. Condensate Container

21. 밸브21.Valve

22. 송액펌프22. Liquid pump

23. 원료액23. Raw material solution

24. 상부반응기24. Top Reactor

본발명자등은 상기한 목적을 달성하기위해 액상에서 실시되는 다음식의 반응에대해 각종검토한결과 반응액중의 암모니아의 존재량을 적게할수록 반응속도가 향상되고, 높은 전환율과 선택율이 얻어지고, 부산물도 적은것을 발견했다.In order to achieve the above object, the present inventors have conducted various studies on the following reactions carried out in a liquid phase, and as the amount of ammonia in the reaction liquid decreases, the reaction rate is improved, and high conversion and selectivity are obtained. I also found a few by-products.

본반응은 다음식 (1)로 표시된다.This reaction is represented by the following formula (1).

R1R2C(OH)CONH2+ R3OH=R1R2C(OH)COOR3+ NH3···(1)R 1 R 2 C (OH) CONH 2 + R 3 OH = R 1 R 2 C (OH) COOR 3 + NH 3 ... (1)

(식중 R1및 R2는 수소원자 또는 알킬기, R3는 알킬기 또는 아랄킬기등을 나타낸다)(Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group, R 3 represents an alkyl group or an aralkyl group, etc.)

본반응은 평형반응이기때문에 생성계의 암모니아를 증류제거하는 생성측으로 반응이 진행하는것은 당연하다.Since this reaction is an equilibrium reaction, it is natural that the reaction proceeds to the production side which distills off the ammonia in the production system.

종래기술에 있어서도 생성되는 암모니아에 의해 압력상승이 생겨 이것을 간헐적으로 또는 부분적으로 압력을 방출시켜서 평형을 생성측으로 진행시키는것은 앞서 기술한바와 같이 공지이다.In the prior art, it is well known as described above that the pressure rise is caused by the ammonia produced and the pressure is intermittently or partially released to advance the equilibrium to the production side.

그러나 암모니아는 가압하에서, 알코올이나 α-히드록시카르복실산에스테르에 용해되기때문에 이 조작방법만으로 액상중의 암모니아농도를 낮게할 수는 없다.However, since ammonia is dissolved in alcohol or α-hydroxycarboxylic acid ester under pressure, the ammonia concentration in the liquid phase cannot be lowered only by this operation method.

본발명자등은 반응액을 비등상태로하든가 혹은 불활성가스를 거품일게하므로서 발생하는암모니아를 기체로서 기체상으로 배출시켜 반응액중의 암모니아농도를 낮게유지하면서 반응을 실시하므로서 반응속도가 향상되고 높은 전환율과 선택율이 얻어지고, 부산물도 적은것을 알아냈다.The present inventors perform the reaction while maintaining the low ammonia concentration in the reaction solution by discharging the ammonia generated by boiling the reaction solution or bubbling inert gas into the gas phase as a gas, thereby improving the reaction rate and high conversion rate. And selectivity were obtained, and by-products were found to be small.

특히 본발명자등은 반응액중의 암모니아농도를 0.1중량%이하로 유지하는것이 지금까지 아무도 지적하지않은 부산물의 억제에 효과가 있는것을 알아냈다.In particular, the present inventors found that maintaining the ammonia concentration in the reaction solution below 0.1% by weight was effective in suppressing by-products that no one has pointed out so far.

부산물은 다음식(2)으로 표시되는 바와 같이 반응액중에 암모니아가 존재하면 생성물인 α-히드록시카르복실산에스테르와 암모니아로부터 α-히드록시카르복실산의 4급아민염이 생성되고, 이어서 호프만분해를 경유하여 α-히드록시카르복실산(N-알킬)아미드가 발생하는것이다.As a by-product, when ammonia is present in the reaction solution as shown by the following formula (2), a quaternary amine salt of α-hydroxycarboxylic acid is produced from the product α-hydroxycarboxylic acid ester and ammonia, and then Hoffman Α-hydroxycarboxylic acid (N-alkyl) amide is generated via decomposition.

R1R2C(OH)COOR3+ NH3= [R1R2C(OH)COO]-[R3NH3]+ R 1 R 2 C (OH) COOR 3 + NH 3 = [R 1 R 2 C (OH) COO] - [R 3 NH 3 ] +

= R1R2C(OH)CONR3H + H2O···(2)= R 1 R 2 C (OH) CONR 3 H + H 2 O (2)

(식중 R1R2및 R3는 상기한바와 같다).Wherein R 1 R 2 and R 3 are as defined above.

반응액중의 암모니아농도가 0.1중량%보다 많으면 이 α-히드록시카르복실산(N-알킬)아미드의 생성이 증가하고 선택율을 현저히 저하시킨다.If the ammonia concentration in the reaction solution is more than 0.1% by weight, the production of this α-hydroxycarboxylic acid (N-alkyl) amide increases and the selectivity is significantly reduced.

또 본발명자등은 반응액중의 암모니아농도가 높으면 단지 평형반응에서 생성계로 반응이 진행되기 어렵게되는 이외에 암모니아가 촉매에 동위 또는 흡착되어 원료인 α-히드록시카르복실산아미드의 동위 또는 흡착을 현저히 저해하여 반응속도의 저하를 초래하는것도 알아냈다.In addition, the present inventors have a high ammonia concentration in the reaction solution, which makes it difficult to proceed the reaction to the production system in the equilibrium reaction. It was also found that inhibition caused a decrease in reaction rate.

즉 반응액중의 암모니아농도가 0.1중량%보다 많으면 평형전환율까지 반응이 진행하지않게되고, 외관상의 반응속도가 늦게되고, 반응이 정지해버리는 것이다.In other words, if the concentration of ammonia in the reaction solution is more than 0.1% by weight, the reaction will not proceed until the equilibrium conversion rate, the apparent reaction rate will be slow, and the reaction will stop.

반응액중의 암모니아농도를 0.1중량%이하로 유지하는 수단으로서는 발생한 암모니아에의해 생긴 압력상승분을 간헐적으로 또는 부분적으로 압력방출하는 정도로는 불충분하다.As a means for maintaining the ammonia concentration in the reaction solution at 0.1% by weight or less, the degree of pressure release intermittently or partially caused by the ammonia generated by the ammonia generated is insufficient.

본발명자등은 반응액을 비등상태로하든가 혹은 불활성가스를 거품일게하여 암모니아와 알코올과를 증류제거하면서 알코올을 반응액상으로 연속적으로 공급하므로서 용이하게 이것을 달성할수있는것을 알아냈다.The present inventors have found that this can be easily achieved by boiling the reaction solution or by blowing the inert gas to continuously supply alcohol to the reaction liquid while distilling off ammonia and alcohol.

본발명은 그러한 발견에 기초해서 완성한 것이다.The present invention has been completed based on such findings.

즉 본발명은 α-히드록시카르복실산아미드와 알코올을 촉매의 존재하에 발생하는 암모니아를 기체로해서 기체상으로 배출시키므로서 반응액중의 암모니아농도를 0.1중량%이하로 유지하면서 액상으로 반응시키는것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법을 제공하는 것이다.In other words, the present invention allows the reaction of a-hydroxycarboxylic acid amide and an alcohol in a liquid phase while maintaining the ammonia concentration in the reaction solution at a concentration of 0.1% by weight or less by discharging the ammonia generated in the presence of a catalyst as a gas. It is to provide a method for producing α-hydroxycarboxylic acid ester, characterized in that.

또 상기한 반응액중의 암모니아농도를 0.1중량%이하로 유지하는 바람직한 방법으로서 반응액을 비등화 또는 불활성가스의 기포화 혹은 그 양쪽의 조작에의해 발생하는 암모니아를 기체로서 기체상으로 배출시키는 방법 및 알코올을 반응액에 연속적으로 공급함과 동시에 발생하는 암모니아를 그 알코올과 함께 연속적으로 배출시키는 방법을 제공한다.In addition, as a preferable method for maintaining the ammonia concentration in the reaction solution to 0.1% by weight or less, the reaction solution is discharged to the gas phase as a gas by ammonia generated by boiling or bubbling an inert gas or both operations. And a method of continuously discharging ammonia generated at the same time as the alcohol is continuously supplied to the reaction solution together with the alcohol.

(실시예)(Example)

본발명의 α-히드록시카르복실산에스테르의 제조방법은 촉매의 존재하에 원료인 α-히드록시카르복실산아미드와 알코올을 액상으로 반응시키는 방법이다.The manufacturing method of the (alpha)-hydroxycarboxylic acid ester of this invention is a method of making liquid (alpha) -hydroxycarboxylic acid amide which is a raw material, and alcohol react in the presence of a catalyst.

이 방법에있어서, 원료로서 사용되는 α-히드록시카르복실산아미드의 대표예는 락트아미드 또는 α-히드록시이소부티르산아미드 이지만 이들에 한정되는것은 아니다.In this method, a representative example of α-hydroxycarboxylic acid amide used as a raw material is, but is not limited to, lactamide or α-hydroxyisobutyric acid amide.

알코올의 대표예로서는 메탄올, 에탄올, 프로판올, 부탄올, 2-에틸헥산올, 글리시딜알코올, 벤질알코올등을 들수가있으나 이들중에서 메탄올이 아주 적당하다.Representative alcohols include methanol, ethanol, propanol, butanol, 2-ethylhexanol, glycidyl alcohol, benzyl alcohol and the like. Of these, methanol is most suitable.

알코올의 사용량은 α-히드록시카르복실산아미드에 대해서 1∼50배몰이 바람직하고, 특히 2∼20배몰의 범위가 바람직하다.1-50 times mole is preferable with respect to (alpha) -hydroxycarboxylic acid amide, and, as for the usage-amount of alcohol, the range of 2-20 times mole is especially preferable.

반응온도는 통상 100∼250℃, 바람직하게는 120∼230℃의 범위에서 선택된다.The reaction temperature is usually selected in the range of 100 to 250 ° C, preferably 120 to 230 ° C.

100℃보다 낮은 온도에서는 반응속도가 지나치게 느려서 실용적이아니며, 또 250℃보다 높은 온도에서는 α-알콕시카르복실산에스테르, α-히드록시카르복실산이나 탈수생성물인 올레핀유도체등의 부산물량이 많아져서 바람직하지않다.At temperatures lower than 100 ° C, the reaction rate is too slow to be practical, and at temperatures higher than 250 ° C, by-products such as α-alkoxycarboxylic acid esters, α-hydroxycarboxylic acids, and olefin derivatives, which are dehydration products, increase. Not desirable

본반응은 반응계에 물이 존재하지않는쪽이 바람직하지만 물의 양이 α-히드록시카르복실산아미드에 대해서 3배몰 이하이면 반응은 진행한다.It is preferable that water is not present in the reaction system in the present reaction, but the reaction proceeds when the amount of water is 3 times or less with respect to α-hydroxycarboxylic acid amide.

반응압력은 사용되는 알코올의 종류, 및 양, 반응온도등에의해 적당히 결정되지만 통상은 1∼100기압, 바람직하게는 5∼50기압의 범위이다. 본반응은 용매의 공존하에 반응을 행할수도있다.The reaction pressure is appropriately determined depending on the type and amount of alcohol used, the reaction temperature and the like, but is usually in the range of 1 to 100 atm, preferably 5 to 50 atm. This reaction can also be carried out in the presence of a solvent.

또 반응의 형식은 배치(batch)식 연속식의 어느방법에의해서도 행할수가있다.The reaction can be carried out by any method of batch continuous.

본발명의 방법에있어서의 촉매로서는 가용성금속촉매, 고체촉매의 어느것이나 사용할수가있고, 특히 제한은없고, 예를들면 (1) 가용성 금속착염, (2)금속트리플루오르메탄술폰산염, (3) 불용성의 금속산화물 및 (4)불용성의 금속 등으로부터 상황에 따라 적절히 선택해서 사용할 수가 있다.As a catalyst in the method of the present invention, any one of a soluble metal catalyst and a solid catalyst can be used, and there is no particular limitation, for example, (1) soluble metal complex salt, (2) metal trifluoromethanesulfonate salt, (3) Insoluble metal oxides, (4) insoluble metals, and the like can be appropriately selected depending on the situation.

상기한 (1)의 가용성 금속착염으로서는 티타늄 또는 주석 혹은 그 양쪽과 α-히드록시카르복실산아미드로된 가용성의 금속착염을 바람직하게 들수가 있으나 이들에 한정되는것은 아니다.Examples of the soluble metal complex salt of (1) include, but are not limited to, a soluble metal complex salt made of titanium or tin or both and α-hydroxycarboxylic acid amide.

이때 티타늄을 금속종류로서 선택하는경우 티타늄테트라이소프로폭시드와 같은 알콕시레이트를 반응계에 직접 투입해서 계중에서 티타늄과 α-히드록시카르복실산아미드로된 가용성의 착염을 형성시켜도되고, 별도 계외에서 티타늄테트라이소프로폭시드와 α-히드록시카르복실산아미드로부터 착염을 형성하여 이것을 촉매로해서 반응계에 첨가해도 된다.In this case, when titanium is selected as the metal type, an alkoxylate such as titanium tetraisopropoxide may be added directly to the reaction system to form a soluble complex salt of titanium and α-hydroxycarboxylic acid amide in the system. You may form a complex salt from titanium tetraisopropoxide and (alpha)-hydroxycarboxylic acid amide, and add it as a catalyst to a reaction system.

또 주석을 금속종류로 선택하는경우에도 같은것을 말할수 있다.The same can be said for selecting tin as the metal type.

예를들면 알킬주석화합물을 반응계에 직접 투입해서 계중에서 주석과 α-히드록시카르복실산아미드로된 가용성착염을 형성시켜도 된다.For example, an alkyl tin compound may be directly introduced into the reaction system to form a soluble complex salt of tin and α-hydroxycarboxylic acid amide in the system.

이 경우의 알킬주석화합물로서 n-부틸기등의 치환기와 결합한 주석화합물을 들수가 있다.Examples of the alkyl tin compound in this case include tin compounds bonded to substituents such as n-butyl groups.

또한 이때에 사용되는 촉매원료 선구물질의 금속화합물에 대해서는 특히 제한이 없다.In addition, there is no restriction | limiting in particular about the metal compound of the catalyst raw material precursor used at this time.

상기한 (2)의 금속트리플루오르메탄술폰산염[금속 트리플레이트(triflate)라고도한다]은 가용성 혹은 불용성이라도 되고, 이와같은 것으로는 주기율표 제1, 2, 3, 4, 11, 12, 13및 14족에 속하는 원소중에서 선택되는 1종 또는 2종이상의 금속원소를 포함하는 트리플레이트를 리간드로서 갖는 금속트리플레이트를 들수가 있다.The metal trifluoromethanesulfonate (also referred to as metal triflate) of the above-mentioned (2) may be soluble or insoluble, such as the Periodic Tables 1, 2, 3, 4, 11, 12, 13 and 14 The metal triplate which has as a ligand the triflate containing 1 type (s) or 2 or more types of metal elements selected from the elements which belong to a group is mentioned.

특히 Na, Li, k, Mg, Ca, Sr, Ba, Sc, y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Hf, Cu, Ag, Zn, Cd, Hg, B, Al, Ga, In, Tl, Si, Ge, Sn 및 Pb중에서 선택된 1종 또는 2종이상의 원소를 포함하는 금속트리플레이트가 바람직하다.Especially Na, Li, k, Mg, Ca, Sr, Ba, Sc, y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Hf, Cu, Ag, Zn Metal triplates containing one or two or more elements selected from among Cd, Hg, B, Al, Ga, In, Tl, Si, Ge, Sn and Pb are preferred.

일본국 특개3015/77호 공보에는 음이온이 카르복실레이트인 가용성의 금속착염이 알코올분해를 촉진시킨다고 되어있으나, 이 금속트리플레이트를 사용하면 금속카르복실레이트를 사용하는 경우에 비해 반응이 촉진되고 보다 빠른 반응속도가 얻어진다.Japanese Unexamined Patent Publication No. 3015/77 states that soluble metal complex salts having an anion carboxylate promote alcohol decomposition, but the use of this metal triplate accelerates the reaction compared to the case of using metal carboxylate. Fast reaction rates are obtained.

상기한 (1)의 가용성 금속착염 특히 티타늄균일계 촉매는 가수분해성이 높고, 원료계중의 수분량을 제어할 필요가 있다.The soluble metal complex salt, especially the titanium homogeneous catalyst of the above-mentioned (1), is highly hydrolyzable and needs to control the amount of water in the raw material system.

이에대해서 특히 란타노이드의 트리플레이트는 수용액중에서 수열합성으로 조제되고, 또 란타노이드자체의 가수분해성도 낮기때문에 물을 포함한 계에 있어서도 촉매가 가수분해되고, 활성을 잃는일이 없이 반응을 진행시킬수가 있다는 큰이점을 갖고있고 아주 적당하다.On the other hand, in particular, the triflate of lanthanoids is prepared by hydrothermal synthesis in aqueous solution, and the hydrolyzability of lanthanoid itself is low, so that even in systems containing water, the catalyst is hydrolyzed and the reaction can proceed without loss of activity. It has a big advantage and is very suitable.

또 상기한 (3)의 불활성 금속산화물로서는 예를들면 Sb, Sc, Y, La, Ce, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Tc, Re, Fe, Co, Ni, Cu, Al, Si, Sn, Pb 및 Bi중으로부터 선택되는 적어도 1종의 원소를 포함하는 금속산화물을 바람직하게 들수가있다.Moreover, as said inert metal oxide of (3), for example, Sb, Sc, Y, La, Ce, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Tc, Re, Fe, Co, The metal oxide containing at least 1 sort (s) of element chosen from Ni, Cu, Al, Si, Sn, Pb, and Bi is mentioned preferably.

다시또 상기한 (4)의 불용성의 금속으로서는 예를들면 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Cu, Ga, In, Bi 및 Te중에서 선택되는 적어도 1종의 원소를 포함하는 불용성의 금속을 바람직하게 들수가 있다.Again, the insoluble metal of (4) is selected from, for example, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Cu, Ga, In, Bi, and Te. The insoluble metal containing at least 1 sort (s) of elements mentioned above can be mentioned preferably.

이들 촉매는 1종을 사용해도되고, 2종이상을 조합해서 사용해도되고, 또 가용성 혹은 불용성촉매의 어느것이나 사용방법은 반응형식에 따라 적절히 결정하면된다.One type of these catalysts may be used, or two or more types thereof may be used in combination, and any method of using a soluble or insoluble catalyst may be appropriately determined depending on the reaction type.

다시또 불용성촉매의 경우 슬러리로 사용하거나 성형해서 사용하는 것은 그 사용방법에 맞추어서 적절히 선택할 수가 있다.Again, in the case of an insoluble catalyst, it can be appropriately selected according to the method of use, which is used as a slurry or molded.

본발명의 방법에서는 발생 기체인 암모니아를 기체상으로 배출시키므로서 반응액중의 암모니아농도를 0.1중량%이하로 유지하면서 반응시키는것이 필요하다.In the method of the present invention, it is necessary to react while maintaining the ammonia concentration in the reaction liquid at 0.1% by weight or less while discharging the ammonia serving as a gas phase.

이와같이 반응액중의 암모니아농도를 0.1중량%이하로 유지하면서 반응시키므로서 반응속도가 향상되고, 또한 고전환율과 고선택율이 얻어짐과 동시에 부산물의 양도 적게된다.In this way, the reaction rate is improved by maintaining the ammonia concentration in the reaction solution at 0.1 wt% or less, and high conversion and high selectivity are obtained, and the amount of by-products is also reduced.

반응액중의 암모니아농도를 0.1중량%이하로 유지하는 방법으로서는 예를들면 (1) 반응액을 비등상태 또는 불활성가스의 기포화나 혹은 그 양쪽의 조작에 의해, 발생하는 암모니아 기체를 기체상태로 배출시키는 방법, 혹은 (2)알코올을 반응액에 연속적으로 공급함과 동시에 발생하는 암모니아를 그 알코올과 함께 연속적으로 배출시키는 방법을 실시하는것이 유리하다.As a method of maintaining the ammonia concentration in the reaction liquid at 0.1% by weight or less, for example, (1) the ammonia gas generated by boiling or bubbling an inert gas or both operations is discharged in a gaseous state. It is advantageous to carry out the method of (2) continuously supplying the alcohol to the reaction liquid or the method of continuously discharging the ammonia generated at the same time with the alcohol.

또 반응장치로서 가스발산장치를 사용하고, 여기에 원료인 아미드와 알코올을 공급하고, 암모니아를 증류제거하면서 가스발산장치내에서 반응을 행하게하는 방법도 유리하다.In addition, a method of using a gas dissipation device as a reaction device, supplying amide and alcohol as raw materials thereto, and reacting in the gas dissipation device while distilling off ammonia is also advantageous.

반응장치내의 액 및 가스의 조성은 연속적 혹은 불연속적으로 변화하기때문에 알코올의 증류제거량을 상대적으로 낮게 유지한채로 아미드의 전환율을 높일수가있다.Since the composition of the liquid and gas in the reactor changes continuously or discontinuously, it is possible to increase the conversion of amide while keeping the alcohol distillation amount relatively low.

여기서 가스발산장치란 혼합액으로부터 목적으로하는 어떤 성분을 기체중에 발산분리하기위해 공업적으로 사용되는 장치이다.Here, the gas dissipation device is a device used industrially to divertify a desired component in a gas from the mixed liquid.

가스발산은 이론적으로는 가스흡수의 역조작이기 때문에 사용되는 장치는 가스흡수에 사용되는것과 동등한것이 많다.Since gas divergence is theoretically the reverse operation of gas absorption, the devices used are often equivalent to those used for gas absorption.

가스발산장치는 각종의 것이 있으나 액분산형, 가스분산형의 어느것도 적용가능하다.There are various kinds of gas dissipating devices, but any of liquid dispersing type and gas dispersing type can be applied.

액분산형으로서는 충전탑, 습식벽탑, 액주탑, 분사탑등을 들수가 있다.Examples of the liquid dispersion type include a packed tower, a wet wall tower, a liquid column tower, a spray tower, and the like.

가스분산형으로서는 각종의 것이 있으나 기포탑, 가스분사식교반기, 선반탑등을 들수가 있다.There are various gas dispersion types, but there are bubble towers, gas jet stirrers, shelf towers, and the like.

이중에서 충전탑, 기포탑, 및 평판탑이 바람직하다.Among them, the packed column, bubble column, and flat column are preferred.

충전탑에 사용되는 충전물은 불규칙충전물, 규칙충전물, 격자충전물의 어느것이라도 사용할수 있다.Fillers used in the packed column may be any of irregular fillings, regular fillings and lattice fillings.

또 고체촉매를 성형하여 충전물로서 사용하는것도 가능하다.It is also possible to mold a solid catalyst and use it as a filler.

기포탑으로서는 노즐식. 다공질판의 어느것이나 사용가능하고, 충전물을 충전시켜두었어도 상관없다.It is a nozzle type as a bubble tower. Any of the porous plates may be used, and the packing may be filled.

가스분산형장치는 슬러리상의 원료를 흘리는것이 비교적 용이하며 불용성촉매를 사용하는경우에 적합하다.The gas dispersion type device is relatively easy to flow slurry material and is suitable for the use of an insoluble catalyst.

균일계촉매를 사용하는경우에는 액분산형, 가스분산형의 어느것이라도 상관없다.In the case of using a homogeneous catalyst, either a liquid dispersion type or a gas dispersion type may be used.

사용하는 가스는 질소등의 비응축성가스만이 아니고 알코올의 증기등 응축성가스라도 상관없다.The gas used may be not only a non-condensable gas such as nitrogen, but also a condensable gas such as vapor of alcohol.

또 장치의 하부를 가열해서 내부의 액을 기화시켜 이것을 사용해도 상관없다.Moreover, you may vaporize the liquid inside by heating the lower part of an apparatus, and you may use this.

액체와 기체가 반대방향으로 흐르는 경우에는 병행방향으로 흐르는 것보다 효율적으로 암모니아를 발산시킬수가 있으므로 바람직하다.When the liquid and the gas flow in the opposite direction, ammonia can be released more efficiently than the flow in the parallel direction.

반대방향으로 흐르게 하기위해서는 가스발산장치의 하부로부터 가스를 도입 또는 발생시켜 상부로부터 원료아미드를 공급하는것이 바람직하다.In order to flow in the opposite direction, it is preferable to introduce or generate gas from the lower part of the gas dissipation device to supply the raw amide from the upper part.

다시또 본발명을 실시하기위한 바람직한 형태로서 다음의 재순환법 및 다단반응법을 채용할 수가 있다.Again, the following recycling method and the multistage reaction method can be adopted as a preferred form for carrying out the present invention.

우선 재순환법에 대해 설명한다.First, the recycling method will be described.

반응중 또는 반응후의 생성액에는 주로 비점이 낮은순으로 원료인 알코올, 생성물인 α-히드록시카르복실산에스테르, 부산물인 α-히드록시카르복실산(N-알킬)아미드, 원료인 α-히드록시카르복실산아미드 및 촉매가 포함된다.In the reaction solution during or after the reaction, the boiling point is mainly in the order of low boiling point, alcohol as a raw material, α-hydroxycarboxylic acid ester as a product, α-hydroxycarboxylic acid (N-alkyl) amide as a by-product, and α-hydride as a raw material. Oxycarboxylic acid amides and catalysts.

재순환법에 있어서는 이 생성액은 증류구역에 도입되고, 미반응알코올과 생성α-히드록시카르복실산에스테르는 증발분으로서 분리된다.In the recirculation method, this product is introduced into the distillation zone, and unreacted alcohol and the product? -Hydroxycarboxylic acid ester are separated as evaporated fractions.

한편 미증발분의 일부 또는 전부는 그대로 반응기에 재순환되고, 원료 α-히드록시카르복실산아미드와 알코올을 첨가하여 재차 반응시킨다.On the other hand, part or all of the unevaporated content is recycled to a reactor as it is, and it reacts again by adding raw material (alpha)-hydroxycarboxylic acid amide and alcohol.

촉매는 활성을 갖는한 재사용가능하므로 단위촉매당의 α-히드록시카르복실산에스테르의 생산량을 증가시킬수가있다.Since the catalyst is reusable as long as it has activity, it is possible to increase the production amount of α-hydroxycarboxylic acid ester per unit catalyst.

원료 α-히드록시카르복실산아미드보다 저비점의 부산물인 α-히드록시카르복실산(N-알킬)아미드가 축적에의해 함량이 증가해온 경우에는, (제1)증류구역에서 얻어지는 미증발분의 일부 또는 전부를 제2의 증류구역으로 도입하여, α-히드록시카르복실산(N-알킬)아미드를 증발분으로서 분리하고, 미증발분의 일부 또는 전부를 반응기에 재순환시킨다.When the content of α-hydroxycarboxylic acid (N-alkyl) amide, which is a by-product having a lower boiling point than the raw material α-hydroxycarboxylic acid amide, has increased due to accumulation, Some or all of the α-hydroxycarboxylic acid (N-alkyl) amide is introduced as an evaporation fraction, and some or all of the evaporation fraction is recycled to the reactor.

α-히드록시카르복실산(N-알킬)아미드 이외의 α-히드록시카르복실산에스테르와 α-히드록시카르복실산아미드의 중간의 비점을 갖는 부산물도 이 조작에의해 제거된다.By-products having a boiling point between the α-hydroxycarboxylic acid ester and the α-hydroxycarboxylic acid amide other than the α-hydroxycarboxylic acid (N-alkyl) amide are also removed by this operation.

원료인 α-히드록시카르복실산아미드 보다도 고비점인 부산물의 축적이 많은경우에는 미증발분의 일부 또는 전부를 빼내어 폐기해도 된다.In the case where there are more accumulations of by-products having a higher boiling point than α-hydroxycarboxylic acid amide, which is a raw material, some or all of the unevaporated content may be removed and discarded.

또 폐기된 미증발성분에 포함되는 촉매와 동등몰의 새촉매성분을 새로이 반응기에 투입해도된다.In addition, a new catalyst component equivalent to the catalyst contained in the discarded unevaporated component may be newly added to the reactor.

증류조작은 일반적인 방법에의해 실시된다. 충전탑, 평판탑, 박막증류탑등 적당히 그 사용조건으로부터 선택된다.Distillation is carried out by a general method. Packed column, flat column, thin film distillation column and the like are appropriately selected from the conditions of use.

배치식 증류라도 연속식 증류라도 어느것이라도 실시가능하다.Either batch distillation or continuous distillation can be performed.

또 특히 반응기와 독립해서 증류설비를 갖지않고, 반응기상부에 증류탑을 설치하여 반응기내에 생성액을 유지한채로 증류조작을 실시해도 하등 문제는 없다.In particular, there is no problem even if the distillation operation is carried out without having a distillation facility independent of the reactor, and a distillation column is installed on the reactor and the production liquid is maintained in the reactor.

증류조건도 특별한 제한이 없고, 상압으로부터 감압까지 넓은 범위에서 선택된다.Distillation conditions are not particularly limited and are selected in a wide range from normal pressure to reduced pressure.

온도는 일반적인 유기물이 변질하지않는 250℃이하의 온도로부터 적당히 선택된다.The temperature is appropriately selected from temperatures below 250 ° C. in which normal organic matter does not deteriorate.

다음에 다단반응법에 대해 설명한다.Next, the multistage reaction method will be described.

이 다단반응법은 반응구역을 복수 사용하여 암모니아 및 알코올을 포함한 기체와 그 아미드를 포함한 액체를 반대방향으로 접촉시키는 방법이다.This multistage reaction method uses a plurality of reaction zones to contact the gas containing ammonia and alcohol and the liquid containing the amide in opposite directions.

이 방법에 있어서는,In this way,

(a) 복수의 반응구역이 직렬로 배치되고, 인접한 구역은 액체와 기체가 반대방향으로 유통될수 있도록 연결된 반응장치를 사용하고,(a) a plurality of reaction zones are arranged in series with adjacent zones using connected reactors to allow liquid and gas to flow in opposite directions;

(b) 원료인 α-히드록시카르복실산아미드 및 알코올을 첫번째이후의 반응구역에 공급하고,(b) feed the raw material α-hydroxycarboxylic acid amide and alcohol into the reaction zone after the first time,

(c) 각 반응구역을 비등상태로 유지하고, 알코올과 부수생성되는 암모니아를 포함하는 어느 특정 반응구역으로부터 기체를 앞서의 반응구역에 공급하고, 그 반응구역의 원료와 생성물을 포함하는 반응액을 후의 반응구역에 공급하고,(c) maintaining each reaction zone in a boiling state, supplying gas to the preceding reaction zone from any particular reaction zone, including alcohol and by-product ammonia, and supplying the reaction liquid containing the raw materials and products of the reaction zone; Feed into the subsequent reaction zone,

(d) 첫번째 반응구역으로부터 기체를 배출시키고 최후 반응구역으로부터 반응액을 배출시키는것이 행해진다.(d) evacuating the gas from the first reaction zone and discharging the reaction liquid from the last reaction zone.

각 반응구역에서 반응액은 비등상태로 되어있다.In each reaction zone, the reaction solution is in a boiling state.

여기서 비등상태란 부수생성되는 암모니아가 알코올과 함께 반응액중에서 기화가 일어나고있는 상태이다.Here, the boiling state is a state in which by-produced ammonia is evaporated in the reaction solution together with alcohol.

각 반응구역에 있어서, 원료인 아미드는 촉매의 존재하에 원료인 알코올과 반응해서 에스테르로 변화한다.In each reaction zone, the raw amide is reacted with the raw alcohol to change into an ester in the presence of a catalyst.

생성된 에스테르와 원료인 아미드를 포함한액체는 다음의 반응구역으로 유통해간다.The liquid containing the produced ester and the raw amide is distributed to the next reaction zone.

즉 최후의 반응구역으로 진행함에 따라 그 아미드의 전환율이 상승하고 에스테르가 증가한다.That is, the conversion of the amide increases and the ester increases as it proceeds to the last reaction zone.

각 반응구역에서 발생한 암모니아의 일부는 알코올과 함께 기화해서 하나앞의 반응구역으로 공급되어간다.Some of the ammonia generated in each reaction zone is vaporized with alcohol and fed to the previous reaction zone.

최후의 반응구역으로부터 첫번째의 반응구역으로 향해서 반응구역을 진행함에따라서 증류된 가스중의 암모니아의 비율이 증가한다.As the reaction zone proceeds from the last reaction zone to the first reaction zone, the proportion of ammonia in the distilled gas increases.

즉 첫번째의 반응구역에 가까울수록 암모니아의 비율이 높고, 최후의 반응구역에 가까울수록 암모니아의 비율이 낮게 유지된다.That is, the closer to the first reaction zone, the higher the ratio of ammonia, and the closer to the last reaction zone, the lower the ratio of ammonia.

그 결과 각 반응구역에서는 액상중의 원료아미드와 알코올의 몰비와 반응구역으로부터의 증류가스의 암모니아분율의 사이의 비례관계가 유지된다.As a result, in each reaction zone, the proportional relationship between the molar ratio of the raw amide and the alcohol in the liquid phase and the ammonia fraction of the distillation gas from the reaction zone is maintained.

증류량을 변경하지않고, 아미드의 전환율을 증가시킬수가있다.It is possible to increase the conversion of amide without changing the distillation amount.

적은 열에너지로 모든 반응구역에서 비등상태를 유지하기위해 (a) 최후의 반응구역의 반응액을 가열해서 알코올 또는 알코올과 암모니아의 혼합액의 일부를 기화시키고, 이 증기를 순차 앞서의 반응구역으로 유입시키고, 첫번째의 반응구역으로부터 배출시키는 방법, 또는 (b)최후의 반응구역에 알코올의 증기 또는 알코올증기와 불활성가스의 혼합가스를 유입시키고, 이 가스를 순차 앞서의 반응구역으로 유입시키고, 첫번째의 반응구역으로부터 배출시키는 방법이 바람직하다고 할수있다.In order to maintain boiling in all reaction zones with less thermal energy, (a) the reaction liquid in the last reaction zone is heated to vaporize a portion of the alcohol or a mixture of alcohol and ammonia, and the steam is sequentially introduced into the reaction zone. Or (b) introducing a vapor of alcohol or a mixture of alcohol vapor and an inert gas into the last reaction zone, and subsequently introducing this gas into the preceding reaction zone, followed by a first reaction. The discharge from the zone is desirable.

반응구역은 직렬로 연결되면 충분하고, 하나하나가 독립된 반응기일 필요는없다.The reaction zones are sufficient to be connected in series, and each one does not have to be a separate reactor.

즉 독립된 반응기를 배관으로 연결하는 방법만이 아니고 하나의 반응기를 간막이해서 복수의 반응구역으로 분할해도 상관없다.In other words, not only a method of connecting independent reactors by pipes, but also one reactor may be partitioned into a plurality of reaction zones.

반응구역의 공간적인 배치는 문제가 되지않고, 수평, 수직 어느방향으로 나란히해서 연결해도 상관없다.The spatial arrangement of the reaction zones is not a problem and can be connected side by side in either horizontal or vertical direction.

계단탑식반응장치는 복수의 반응구역을 수직으로 연결한 장치의 1종이다.A step-top reactor is one type of device in which a plurality of reaction zones are vertically connected.

독립된 반응기를 배관에의해 연결하는 방법의 예로서 3개의 반응기를 연결한 장치의 도면을 도 1에 나타낸다.FIG. 1 shows a diagram of an apparatus in which three reactors are connected as an example of a method of connecting independent reactors by piping.

도 1에서는 첫번째의 반응기(1)에 원료인 아미드를 유입시키고, 세번째의 반응기(3)에 가스를 도입한다.In FIG. 1, amide as a raw material is introduced into the first reactor 1, and gas is introduced into the third reactor 3.

각 반응기의 사이는 가스도관(8),(9)과 액도관(4),(5)으로 연결되고, 액은 액도관을 통해서 첫번째 반응기(1)로부터 두번째 반응기(2), 세번째 반응기(3)로 흐른다.Between each reactor is connected to the gas conduits (8), (9) and liquid conduits (4), (5), and the liquid is passed through the liquid conduit from the first reactor (1) to the second reactor (2) and the third reactor (3). Flows).

가스는 반대로 가스도관을 통해서 세번째 반응기(3)로부터 두번째 반응기(2), 첫번째 반응기(1)로 흐른다.The gas, in contrast, flows from the third reactor 3 to the second reactor 2 and the first reactor 1 through the gas conduit.

하나의 반응기를 간막이하여 복수의 반응구역으로 분할하는경우 각 반응구역은 간막이판등에 의해 막히고, 액과 가스는 반대방향으로 흐르도록 되어있다.When one reactor is partitioned and divided into a plurality of reaction zones, each reaction zone is blocked by a partition plate, and the liquid and gas flow in opposite directions.

이와같은 다단반응법에 있어서는 각 반응구역에 있어서, 반응액내의 암모니아농도가 어느것이나 0.1중량%이하로 유지되도록 운전하는것이 중요하다.In such a multistage reaction method, it is important to operate so that the ammonia concentration in the reaction liquid is maintained at 0.1% by weight or less in each reaction zone.

이 다단반응법을 채용하므로서 적은 에너지로 높은 전환율 및 선택율을 얻을수가있다.By adopting this multi-stage reaction method, high conversion and selectivity can be obtained with less energy.

본발명의 방법에 의하면 α-히드록시카르복실산아미드와 알코올로부터 α-히드록시카르복실산에스테르를 높은 전환율 및 선택율로 공업적으로 유리하게 제조할 수가 있다.According to the method of the present invention, α-hydroxycarboxylic acid ester can be industrially advantageously produced from α-hydroxycarboxylic acid amide and an alcohol with high conversion and selectivity.

다음에 본발명을 실시예에 의해 다시또 상세히 설명하지만 본발명은 이들 예에의해 하등 한정되는 것은 아니다.Next, the present invention will be described in detail again by way of examples, but the present invention is not limited to these examples.

실시예 1Example 1

α-히드록시이소부티르산아미드(HBD)63.5g(0.634몰)를 이소프로판올 1000g에 용해시켰다.63.5 g (0.634 mol) of α-hydroxyisobutyric acid amide (HBD) was dissolved in 1000 g of isopropanol.

여기에 티타늄테트라이소프로폭시드 30g(0.106몰)를 이소프로판올1000g에 용해시킨액을 첨가했다.A solution obtained by dissolving 30 g (0.106 mol) of titanium tetraisopropoxide in 1000 g of isopropanol was added thereto.

혼합액을 회전식증발기를 사용해서 이소프로판올을 증류제거해서 840g로 농축시켰다.The mixed solution was concentrated to 840 g by distilling off isopropanol using a rotary evaporator.

실온에서 하룻동안 방치해서 석출된 침전물을 여과시켜 헵탄으로 세정후 진공건조시켜 37.0g의 결정을 얻었다.The precipitate precipitated after standing at room temperature for one day was filtered, washed with heptane and dried in vacuo to give 37.0 g of crystals.

얻어진 착염의 원소분석을 행한 바, Ti :10.5중량%, C: 42.7 중량%, H : 7.91중량%, N :12.1중량%로 되었다.Elemental analysis of the obtained complex salt showed Ti: 10.5 wt%, C: 42.7 wt%, H: 7.91 wt%, and N: 12.1 wt%.

이 착염은 Ti(HBD)4로 확인되었다 (원소분석이론치 : Ti:10.4중량%, C: 41.8 중량%, H : 7.83중량%, N :12.2중량%).This complex salt was identified as Ti (HBD) 4 (Elemental analysis theory: Ti: 10.4% by weight, C: 41.8% by weight, H: 7.83% by weight, N: 12.2% by weight).

재킷식 환류응축기 및 교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 α-히드록시이소부티르산아미드 30.0g(0.291몰), 메탄올 100g, Ti(HBD)4착염 4.85g(0.0106몰)을 투입하여 압력을 3.0MPa로 유지하고, 교반하에 190℃에서 오토클레이브에 질소가스를 공급하고 생성되는 암모니아를 오토클레이브로부터 질소가스와 함께 방출시키면서 1.5시간 반응을 행했다.30.0 g (0.291 mol) of α-hydroxyisobutyric acid amide, 100 g of methanol, and 4.85 g (0.0106 mol) of Ti (HBD) 4 complex salt were added to a 300 ml stainless steel autoclave equipped with a jacketed reflux condenser and a stirrer. Was maintained at 3.0 MPa, and the reaction was carried out for 1.5 hours while supplying nitrogen gas to the autoclave at 190 ° C under agitation and releasing the resulting ammonia together with the nitrogen gas from the autoclave.

이때 환류응축기의 재킷에 185℃의 기름을 순환시켜 가열하고, 암모니아와 함께 메탄올의 일부를 30g/hr의 속도로 환류응축기의 상부로부터 빼내고 동시에 반응기에 메탄올을 30g/hr의 속도로 공급했다.At this time, 185 ° C. oil was circulated and heated in the jacket of the reflux condenser, and a portion of methanol and ammonia were removed from the top of the reflux condenser at a rate of 30 g / hr and methanol was supplied to the reactor at a rate of 30 g / hr.

반응후 반응액을 냉각시켜 가스크로마토그래피로 분석했다.After the reaction, the reaction solution was cooled and analyzed by gas chromatography.

생성액중의 암모니아농도는 0.01중량%미만이며 α-히드록시이소부티르산아미드의 전환율 95.3몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 97.1몰%, α-히드록시이소부티르산(N-메틸)아미드의 선택율은 2.9몰%가 얻어졌다.The ammonia concentration in the resulting solution was less than 0.01% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 95.3 mol%, the selectivity of α-hydroxyisobutyric acid methyl ester was 97.1 mol%, and α-hydroxyisobutyric acid (N-methyl ), The selectivity of amide was obtained at 2.9 mol%.

비교예 1Comparative Example 1

교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 α-히드록시이소부티르산아미드 30.0g(0.291몰), 메탄올 100g, Ti(HBD)4착염 4.85g(0.0106몰)을 투입하여 압력을 3.0MPa로 유지하고, 교반하에 190℃에서 오토클레이브를 밀폐시켜 1.5시간 반응을 행했다.Into a 300 ml stainless steel autoclave with a stirrer, 30.0 g (0.291 mol) of α-hydroxyisobutyric acid amide, 100 g of methanol and 4.85 g (0.0106 mol) of Ti (HBD) 4 complex salt were added to maintain the pressure at 3.0 MPa. Then, the autoclave was sealed at 190 degreeC under stirring, and reaction was performed for 1.5 hours.

생성액중의 암모니아농도는 1.01중량% 이며 α-히드록시이소부티르산아미드의 전환율 34.9몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 78.9몰%, α-히드록시이소부티르산(N-메틸)아미드의 선택율은 18.2몰%가 얻어졌다.The ammonia concentration in the resulting solution was 1.01% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 34.9 mol%, the selectivity of α-hydroxyisobutyric acid methyl ester was 78.9 mol%, and the α-hydroxyisobutyric acid (N-methyl) 18.2 mol% of selectivity of the amide was obtained.

비교예 2Comparative Example 2

재킷식 환류응축기 및 교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 α-히드록시이소부티르산아미드 30.0g(0.291몰), 메탄올 100g, Ti(HBD)4착염 4.85g(0.0106몰)을 투입하여 압력을 3.0MPa로 유지하고, 교반하에 190℃에서 오토클레이브에 질소가스를 공급하고, 생성되는 암모니아를 오토클레이브로부터 질소가스와 함께 방출시키면서 1.5시간 반응을 행했다.30.0 g (0.291 mol) of α-hydroxyisobutyric acid amide, 100 g of methanol, and 4.85 g (0.0106 mol) of Ti (HBD) 4 complex salt were added to a 300 ml stainless steel autoclave equipped with a jacketed reflux condenser and a stirrer. Was maintained at 3.0 MPa, and the reaction was carried out for 1.5 hours while supplying nitrogen gas to the autoclave at 190 ° C. under stirring, and releasing the resulting ammonia from the autoclave together with the nitrogen gas.

이때 환류응축기의 재킷에 20℃의 냉수를 순환시켜 냉각시키고, 반응기에서 증발한 메탄올은 전량 환류응축기로 응축되고, 암모니아를 용해시킨 메탄올로서 반응기에 복귀하도로했다.At this time, 20 degreeC cold water was circulated and cooled in the jacket of a reflux condenser, and methanol evaporated in the reactor was condensed by the reflux condenser entirely, and it returned to the reactor as methanol which melt | dissolved ammonia.

생성액중의 암모니아농도는 0.59중량%이며 α-히드록시이소부티르산아미드의 전환율 56.4몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 87.1몰%, α-히드록시이소부티르산(N-메틸)아미드의 선택율은 11.2몰%가 얻어졌다.The ammonia concentration in the resulting solution was 0.59% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 56.4 mol%, the selectivity of α-hydroxyisobutyric acid methyl ester was 87.1 mol%, and α-hydroxyisobutyric acid (N-methyl) The selectivity for amide was 11.2 mol%.

실시예 2Example 2

락트아미드(LD)56.5g(0.634몰)를 이소프로판올 500g에 용해시켰다.56.5 g (0.634 mole) of lactamide (LD) was dissolved in 500 g of isopropanol.

여기에 티타늄테트라이소프로폭시드 30g(0.106몰)를 이소프로판올 150g에 용해시킨액을 첨가했다.A liquid obtained by dissolving 30 g (0.106 mol) of titanium tetraisopropoxide in 150 g of isopropanol was added thereto.

혼합액을 회전식증발기를 사용해서 이소프로판올을 증류제거해서 200g로 농축시켰다.The mixture was concentrated to 200 g by distilling off isopropanol using a rotary evaporator.

실온에서 하룻동안 방치해서 석출된 침전물을 여과시켜 헵탄으로 세정후 진공건조시켜 34.3g의 결정을얻었다.The precipitate precipitated by standing at room temperature for one day was filtered, washed with heptane and dried in vacuo to give 34.3 g of crystals.

얻어진 착염의 원소분석을 행한바, Ti :11.9중량%, C: 36.0 중량%, H : 6.84중량%, N :13.6중량%로 되었다.An elemental analysis of the obtained complex salt showed that Ti: 11.9% by weight, C: 36.0% by weight, H: 6.84% by weight, and N: 13.6% by weight.

이 착염은 Ti(HBD)4로 확인되었다 (원소분석이론치 : Ti:11.9중량%, C: 35.6 중량%, H : 6.93중량%, N :13.9중량%).This complex salt was identified as Ti (HBD) 4 (Elemental analysis theory: Ti: 11.9% by weight, C: 35.6% by weight, H: 6.93% by weight, N: 13.9% by weight).

재킷식 환류응축기 및 교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 락트아미드 25.9g(0.291몰), 메탄올 100g, Ti(LD)4착염 4.28g(0.0106몰)을 투입하여 압력을 3.0MPa로 유지하고, 교반하에 190℃에서 오토클레이브에 질소가스를 공급하고 생성되는 암모니아를 오토클레이브로부터 질소가스와 함께 방출시키면서 1.5시간 반응을 행했다.25.9 g (0.291 mol) of lactamide, 100 g of methanol, and 4.28 g (0.0106 mol) of Ti (LD) 4 complex salt were added to a 300 ml stainless steel autoclave equipped with a jacketed reflux condenser and agitator to maintain the pressure at 3.0 MPa. Under agitation, the reaction was carried out for 1.5 hours while supplying nitrogen gas to the autoclave at 190 ° C and releasing the resulting ammonia together with the nitrogen gas from the autoclave.

이때 환류응축기의 재킷에 185℃의 기름을 순환시켜 가열하고, 암모니아와 함께 메탄올의 일부를 30g/hr의 속도로 환류응축기의 상부로부터 빼내고 동시에 반응기에 메탄올을 30g/hr의 속도로 공급했다.At this time, 185 ° C. oil was circulated and heated in the jacket of the reflux condenser, and a portion of methanol and ammonia were removed from the top of the reflux condenser at a rate of 30 g / hr and methanol was supplied to the reactor at a rate of 30 g / hr.

반응후 반응액을 냉각시켜 가스크로마토그래피로 분석을 행했다.After the reaction, the reaction solution was cooled and analyzed by gas chromatography.

생성액중의 암모니아농도는 0.01중량%미만이며 락트아미드의 전환율 95.6몰%, 락트산메틸의 선택율은 97.4몰%, 락트(N-메틸)아미드의 선택율은 2.6몰%가 얻어졌다.The ammonia concentration in the resulting solution was less than 0.01% by weight, the conversion rate of lactamide was 95.6 mol%, the selectivity of methyl lactate was 97.4 mol%, and the selectivity of lact (N-methyl) amide was 2.6 mol%.

실시예 3Example 3

질산비스무트 40g를 10% 질산수용액 50ml에 용해시켜 교반하면서 28중량%의 암모니아수로 pH를 8로 조정하고 수산화비스무트를 침전시켰다.40 g of bismuth nitrate was dissolved in 50 ml of 10% aqueous nitric acid solution, the pH was adjusted to 8 with 28% by weight of ammonia water while stirring, and bismuth hydroxide was precipitated.

이 침전물을 여과, 수세시킨후 하룻동안 110℃로 건조시키고, 450℃로 3시간 소성을 행했다.After filtering and washing this deposit, it dried at 110 degreeC for one day, and baked at 450 degreeC for 3 hours.

반응후 반응액을 냉각시켜 가스크로마토그래피로 분석을 행했다.After the reaction, the reaction solution was cooled and analyzed by gas chromatography.

생성액중의 암모니아농도는 0.01중량%미만이며 α-히드록시이소부티르산아미드의 전환율 57.3몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 97.3몰%, α-히드록시이소부티르산(N-메틸)아미드의 선택율은 2.7몰%가 얻어졌다.The ammonia concentration in the resulting solution was less than 0.01% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 57.3 mol%, the selectivity of α-hydroxyisobutyric acid methyl ester was 97.3 mol%, and α-hydroxyisobutyric acid (N-methyl ) Selectivity of the amide was obtained 2.7 mol%.

비교예 3Comparative Example 3

실시예 3에서 얻어진 산화비스무트 3.0g를 촉매로서 사용하고, 비교예 2와 같은 방법으로 메탄올에의한 에스테르화반응을 행했다.3.0 g of bismuth oxide obtained in Example 3 was used as a catalyst, and esterification with methanol was carried out in the same manner as in Comparative Example 2.

생성액중의 암모니아농도는 0.47중량%이며, α-히드록시이소부티르산아미드의 전환율 32.7몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 80.3몰%, α-히드록시이소부티르산(N-메틸)아미드의 선택율은 19.7몰%가 얻어졌다.The ammonia concentration in the resulting solution was 0.47% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 32.7 mol%, the selectivity of α-hydroxyisobutyric acid methyl ester was 80.3 mol%, and α-hydroxyisobutyric acid (N-methyl The selectivity of the amide was 19.7 mol%.

실시예 4Example 4

질산세륨 200g를 물 2000ml에 용해시켜 교반하면서 5중량%의 탄산암모늄수용액을 첨가하여 pH를 8로 조정하고 침전물을 생성시켰다.200 g of cerium nitrate was dissolved in 2000 ml of water, and 5% by weight aqueous solution of ammonium carbonate was added while stirring to adjust the pH to 8 to form a precipitate.

이 침전물을 여과, 수세시킨후 하룻동안 110℃로 건조시키고, 450℃로 3시간 소성을 행했다.After filtering and washing this deposit, it dried at 110 degreeC for one day, and baked at 450 degreeC for 3 hours.

얻어진 산화물3.0g을 촉매로 사용한 것 이외는 실시예 1과 같은 방법으로 메탄올에 의한 에스테르화반응을 행했다.An esterification reaction with methanol was carried out in the same manner as in Example 1 except that 3.0 g of the obtained oxide was used as a catalyst.

반응후 반응액을 냉각시켜 가스크로마토그래피로 분석을 행했다.After the reaction, the reaction solution was cooled and analyzed by gas chromatography.

생성액중의 암모니아농도는 0.01중량%미만이며 α-히드록시이소부티르산아미드의 전환율 81.7몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 97.4몰%, α-히드록시이소부티르산(N-메틸)아미드의 선택율은 2.6몰%가 얻어졌다.The ammonia concentration in the resulting solution was less than 0.01% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 81.7 mol%, the selectivity of α-hydroxyisobutyric acid methyl ester was 97.4 mol%, and α-hydroxyisobutyric acid (N-methyl ) 2.6 mol% of the selectivity was obtained.

비교예 4Comparative Example 4

실시예 4에서 얻어진 산화세륨 3.0g를 촉매로서 사용하고 비교예 2와같은 방법으로 메탄올에 의한 에스테르화반응을 행했다.3.0 g of cerium oxide obtained in Example 4 was used as a catalyst, and esterification with methanol was carried out in the same manner as in Comparative Example 2.

생성액중의 암모니아농도는 0.86중량%이며 α-히드록시이소부티르산아미드의 전환율 52.7몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 86.5몰%, α-히드록시이소부티르산(N-메틸)아미드의 선택율은 13.5몰%가 얻어졌다.The ammonia concentration in the resulting solution was 0.86% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 52.7 mol%, the selectivity of α-hydroxyisobutyric acid methyl ester was 86.5 mol%, and α-hydroxyisobutyric acid (N-methyl) The selectivity of the amide was 13.5 mol%.

실시예 5Example 5

금속비스무트의 미세분말 2.0g를 촉매로서 사용한 것 이외는 실시예 1과같은 방법으로 메탄올에 의한 에스테르화반응을 행했다.An esterification reaction with methanol was carried out in the same manner as in Example 1 except that 2.0 g of fine powder of metal bismuth was used as a catalyst.

반응후 반응액을 냉각시켜 가스크로마토그래피에 의해 분석을 행했다.After the reaction, the reaction solution was cooled and analyzed by gas chromatography.

생성액중의 암모니아농도는 0.01중량%미만이며 α-히드록시이소부티르산아미드의 전환율 64.7몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 97.3몰%, α-히드록시이소부티르산(N-메틸)아미드의 선택율은 2.7몰%가 얻어졌다.The ammonia concentration in the resulting solution was less than 0.01% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 64.7 mol%, the selectivity of α-hydroxyisobutyric acid methyl ester was 97.3 mol%, and the α-hydroxyisobutyric acid (N-methyl ) Selectivity of the amide was obtained 2.7 mol%.

비교예 5Comparative Example 5

금속비스무트의 미세분말 2.0g를 촉매로서 사용하고, 비교예 2와같은 방법으로 메탄올에 의한 에스테르화반응을 행했다.Using 2.0 g of fine powder of metal bismuth as a catalyst, esterification with methanol was carried out in the same manner as in Comparative Example 2.

생성액중의 암모니아농도는 0.75중량%이며 α-히드록시이소부티르산아미드의 전환율 47.4몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 82.6몰%, α-히드록시이소부티르산(N-메틸)아미드의 선택율은 17.4몰%가 얻어졌다.The ammonia concentration in the resulting solution was 0.75% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 47.4 mol%, the selectivity of α-hydroxyisobutyric acid methyl ester was 82.6 mol%, and α-hydroxyisobutyric acid (N-methyl) The selectivity of the amide was obtained at 17.4 mol%.

실시예 6Example 6

[에스테르화반응실험][Esterification Experiment]

재킷식 환류응축기 및 교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 α-히드록시이소부티르산아미드 30.0g(0.291몰), 메탄올 100g, 실시예 1과같이해서 조제한 Ti(HBD)4착염 4.85g(0.0106몰)을 투입하여 압력을 3.0MPa로 유지하고, 교반하에 190℃에서 오토클레이브에 질소가스를 1ℓ/분으로 공급하고 생성되는 암모니아를 오토클레이브로부터 질소가스와 함께 방출시키면서 1.5시간 반응을 행했다.4.85 g of Ti (HBD) 4 complex salt prepared in 30.0 g (0.291 mol) of α-hydroxyisobutyric acid amide, 100 g of methanol, as described in Example 1, in a 300 ml stainless steel autoclave with a jacketed reflux condenser and a stirrer. 0.0106 mol) was added to maintain the pressure at 3.0 MPa, and the reaction was carried out at 190 DEG C while supplying nitrogen gas to the autoclave at 1 L / min and releasing the resulting ammonia from the autoclave with nitrogen gas for 1.5 hours.

이때 환류응축기의 재킷에 185℃의 기름을 순환시켜 가열하고, 암모니아와 함께 메탄올의 일부를 50g/hr의 속도로 환류응축기의 상부로부터 빼내고 동시에 반응기에 메탄올을 50g/hr의 속도로 공급했다.At this time, 185 ° C. oil was circulated and heated in the jacket of the reflux condenser, and a portion of methanol and ammonia were removed from the upper portion of the reflux condenser at a rate of 50 g / hr and methanol was supplied to the reactor at a rate of 50 g / hr.

반응후 반응액을 냉각시켜 가스크로마토그래피로 분석을 행했다.After the reaction, the reaction solution was cooled and analyzed by gas chromatography.

생성액중의 암모니아농도는 0.01중량%미만이며 α-히드록시이소부티르산아미드의 전환율 95.6몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 98.5몰%, α-히드록시이소부티르산(N-메틸)아미드의 선택율은 1.5몰%가 얻어졌다.The ammonia concentration in the resulting solution was less than 0.01% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 95.6 mol%, the selectivity of α-hydroxyisobutyric acid methyl ester was 98.5 mol%, and α-hydroxyisobutyric acid (N-methyl ), The selectivity for amide was obtained at 1.5 mol%.

[재순환실험 1][Recycling Experiment 1]

에스테르화반응실험에서 얻어진 반응생성액을 반응기로부터 빼내어 증류조작을 행했다.The reaction product obtained in the esterification experiment was removed from the reactor and distillation operation was performed.

생성액을 200ml의 가지형 플라스크에 넣고, 미반응의 메탄올을 상압하 65℃에서 성분으로서 분리했다.The resulting solution was placed in a 200 ml eggplant flask, and unreacted methanol was separated as a component at 65 ° C under normal pressure.

다음에 생성된 α-히드록시이소부티르산메틸을 30mmHg의 감압하에 50℃의 성분으로서 분리했다.The resulting α-hydroxyisobutyrate methyl was separated as a component at 50 ° C. under a reduced pressure of 30 mmHg.

나머지 미증발분은 성분으로서 회수하지못한 α-히드록시이소부티르산메틸의 일부와 부산물인 α-히드록시이소부티르산(N-메틸)아미드, 미반응의 원료인 α-히드록시이소부티르산아미드와 촉매성분인 티타늄의 금속착염을 함유하고있었다.The remaining unevaporated portion is a part of α-hydroxyisobutyrate which was not recovered as a component, α-hydroxyisobutyric acid (N-methyl) amide as a by-product, α-hydroxyisobutyric acid amide which is an unreacted raw material, and a catalyst component. It contained a metal complex salt of phosphorus titanium.

미증발분의 전량을 반응기에 투입하여 재차 α-히드록시이소부티르산아미드와 메탄올을 첨가하여 에스테르화반응을 행했다.The total amount of unevaporated content was put into a reactor, and again, alpha-hydroxyisobutyric acid amide and methanol were added and esterification was performed.

이때 새로이 첨가한 α-히드록시이소부티르산아미드와 미증발분중의 α-히드록시이소부티르산아미드의 총계는 30.0g가 되도록했다.At this time, the total amount of the newly added α-hydroxyisobutyric acid amide and α-hydroxyisobutyric acid amide in the unevaporated powder was 30.0 g.

이 조작을 반복하여 10회 행했다.This operation was repeated 10 times.

결과를 표 1에 나타낸다.The results are shown in Table 1.

1회의 에스테르화반응에서 약 1.5몰%의 α-히드록시이소부티르산(N-메틸)아미드의 부산물이 확인되고, 반응반복시 재순환실험1의 방법이면 축적되는 경향이 있었다.About 1.5 mol% of by-products of α-hydroxyisobutyric acid (N-methyl) amide were identified in one esterification reaction, and the reaction tended to accumulate in the method of recycling experiment 1 during repeated reactions.

HDB : α-히드록시이소부티르산아미드HDB: α-hydroxyisobutyric acid amide

HBM : α-히드록시이소부티르산메틸HBM: α-hydroxyisobutyrate methyl

N-Me아미드 : α-히드록시이소부티르산(N-메틸)아미드N-Meamide: α-hydroxyisobutyric acid (N-methyl) amide

HBD전환율몰%=[1-(금회뱃치의 미반응HBD몰)/(금회뱃치의 신첨가HBD몰+전회뱃치의 미반응HBD몰)]×100% Of HBD conversion rate = [1- (unreacted HBD mole of this batch) / (new addition HBD mole of this batch + unreacted HBD mole of last batch)] × 100

HBM선택율몰%=[(금회뱃치의 생성HBM몰)/(금회뱃치의 생성HBM몰+금회뱃치의 생성N-Me아미드몰)]×100HBM Selectivity Mole% = [(Generation HBM Mole) / (Generation HBM Mole + Generation N-Meamide Mole)] × 100

N-Me아미드선택율몰%=[(금회뱃치의[(생성N-Me아미드몰)/(금회HBM몰 + 금회뱃치의 생성N-Me아미드몰)]×100N-Meamide selectivity mole% = [(current batch B- (N-Meamide mole) / (current HBM mole + current batch N-Meamide mole)] × 100

N-Me아미드선택율의 총계몰%=[(금회뱃치생성액에 함유된 N-Me아미드몰/(금회뱃치 생성HBM몰 + 금회뱃치 생성N-Me아미드몰)]×100Total mole% of N-Meamide selectivity = [((N-Meamide mole / (HBM mole produced in this batch) + N-Meamide mole generated in this batch)] × 100

실시예 7Example 7

실시예 6의 반복실험 10회째의 생성액을 실시예 1의 재순환실험 1의 조작에따라 증류를 행하여 미반응의 메탄올과 생성된 α-히드록시이소부티르산메틸을 성분으로서 분리했다.The 10th production liquid of the repeated experiment of Example 6 was distilled according to the operation of recycling experiment 1 of Example 1, and the unreacted methanol and the produced alpha-hydroxyisobutyrate were separated as a component.

얻어진 미증발분의 3할을 버리고 나머지 7할의 미증발분과 새Ti(HBD)4착염 1.45g(0.0032몰)를 반응기에 투입하여 재차 α-히드록시이소부티르산아미드와 메탄올을 첨가하여 11배치째의 에스테르화반응을 행했다.Discard 30% of the obtained evaporated fraction, add the remaining 70% evaporated fraction and 1.45 g (0.0032 mol) of new Ti (HBD) 4 complex salt into the reactor, and add α-hydroxyisobutyric acid amide and methanol again. Esterification reaction was carried out.

결과를 표 2에 나타낸다.The results are shown in Table 2.

미증발분의 일부를 버리므로서 α-히드록시이소부티르산(N-메틸)아미드의 축적을 억제할 수가 있었다.Accumulation of α-hydroxyisobutyric acid (N-methyl) amide could be suppressed by discarding a part of unevaporated powder.

실시예 8Example 8

[재순환실험2][Recycling Experiment 2]

실시예 7의 반복실험 11회째의 생성액을 실시예 6의 재순환실험 1의 조작에따라 증류를 행하여 미반응의 메탄올과 생성된 α-히드록시이소부티르산메틸을 성분으로서 분리했다. 얻어진 미증발분을 제2의 증류를 실시하여 부산물인 α-히드록시이소부티르산(N-메틸)아미드를 10mmHg의 감압하에서 100℃의 성분으로서 분리했다. 나머지 미증발분은 미반응의 원료인 α-히드록시이소부티르산아미드와 촉매성분인 티타늄의 금속착염을 함유하고 있었다.The eleventh production liquid of Example 7 was distilled off according to the operation of Recirculation Experiment 1 of Example 6 to separate unreacted methanol and produced α-hydroxyisobutyrate as a component. The obtained evaporated fraction was subjected to second distillation to separate α-hydroxyisobutyric acid (N-methyl) amide as a by-product as a component at 100 ° C. under a reduced pressure of 10 mmHg. The remaining unevaporated powder contained the metal complex salt of (alpha) -hydroxyisobutyric acid amide which is an unreacted raw material, and titanium which is a catalyst component.

나머지 미증발분의 전량을 반응기에 투입하여 재차 α-히드록시이소부티르산아미드와 메탄올을 첨가하여 11회째의 에스테르화반응을 행했다.The total amount of the remaining evaporated content was added to the reactor, and α-hydroxyisobutyric acid amide and methanol were added again to carry out the eleventh esterification reaction.

결과를 표 2에 나타낸다. 제2의 증류로 α-히드록시이소부티르산(N-메틸)아미드를 분리제거하므로서 반응계중에서의 축적을 방지할수 있었다.The results are shown in Table 2. The second distillation separated out the α-hydroxyisobutyric acid (N-methyl) amide, thereby preventing accumulation in the reaction system.

실시예 9Example 9

교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 락트아미드 25.0g(0.291몰), 메탄올 100g, 실시예 2와같이해서 조제한 Ti(LD)4착염 4.28g(0.0106몰)을 투입하여 실시예 6의 에스테르화반응조건 및 재순환실험 1에따라 1로부터 5배치까지의 반복반응을 행하여 실시예 8의 재순환실험 2에따라 6배치째의 반복반응을 행했다. 결과를 표 3에 나타낸다.Into a 300 ml stainless steel autoclave with a stirrer, 25.0 g (0.291 mol) of lactamide, 100 g of methanol, and 4.28 g (0.0106 mol) of Ti (LD) 4 complex salt prepared in the same manner as in Example 2 were added thereto. According to the esterification reaction condition and the recycling experiment 1, the repeated reaction was carried out from 1 to 5 batches, and the 6th batch was repeated according to the recycling experiment 2 of Example 8. The results are shown in Table 3.

LD :락트아미드LD: Lactamide

LM :α-히드록시락트산메틸LM: α-hydroxylactic acid methyl

N-Me아미드 : 락트(N-메틸)아미드N-Meamide: Lact (N-methyl) amide

실시예 10Example 10

α-히드록시이소부티르산아미드(HBD)31.0g(0.301몰)와 디부틸주석옥사이드30.0g(0.120몰)에 메탄올 1800g를 첨가하여 가열환류하에서 용해시켰다.1800 g of methanol was added to 31.0 g (0.301 mol) of α-hydroxyisobutyric acid amide (HBD) and 30.0 g (0.120 mol) of dibutyltin oxide, and dissolved under heating and reflux.

이 액을 회전식증발기를 사용해서 메탄올을 증류제거해서 150g로 농축시켰다. 실온에서 하룻동안 방치해서 석출된 침전물을 여과시켜 헵탄으로 세정후 진공건조시켜 42.1g의 결정을 얻었다.The solution was concentrated to 150 g by distilling off methanol using a rotary evaporator. The precipitate precipitated after standing at room temperature for one day was filtered, washed with heptane and dried in vacuo to give 42.1 g of crystals.

얻어진 착염의 원소분석을 행한바, Sn :24.5중량%, C: 42.1 중량%, H : 816중량%, N :5.97중량%로 되었다.An elemental analysis of the obtained complex salt showed that Sn: 24.5 wt%, C: 42.1 wt%, H: 816 wt%, and N: 5.97 wt%.

이 착염은 (HBD)2Bu2Sn으로 확인되었다 (원소분석이론치 : Sn:27.1중량%, C: 43.8 중량%, H : 8.21중량%, N :6.38중량%).This complex salt was identified as (HBD) 2 Bu 2 Sn (Elemental Analysis Theory: Sn: 27.1 wt%, C: 43.8 wt%, H: 8.21 wt%, N: 6.38 wt%).

교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 α-히드록시이소부티르산아미드 30.0g(0.291몰), 메탄올 100g,(HBD)2Bu2Sn 착염 10.57g(0.0241몰)을 투입하여 실시예 6의 에스테르화반응조건으로 반응시간을 2.5시간으로 변경하고 재순환실험 1에따라 1로부터 5배치까지의 반복반응을 행했다.Into a 300 ml stainless steel autoclave with a stirrer, 30.0 g (0.291 mol) of α-hydroxyisobutyric acid amide, 100 g of methanol, and 10.57 g (0.0241 mol) of (HBD) 2 Bu 2 Sn complex salt were added thereto. The reaction time was changed to 2.5 hours under the esterification condition, and the reaction was repeated from 1 to 5 batches according to the recycle experiment 1.

반복실험 5회째의 생성액을 실시예 6의 재순환실험1의 조작에따라 증류를 행하여 미반응의 메탄올과 생성된 α-히드록시이소부티르산메틸을 성분으로서 분리했다.The production solution of the fifth experiment was distilled according to the operation of Recycling Experiment 1 of Example 6 to separate unreacted methanol and produced α-hydroxyisobutyrate as a component.

얻어진 미증발분의 5할을 반응기에 그대로 투입하고 나머지 5할의 미증발분에대해서는 실시예 8의 재순환실험 2의 증류법에 따라 α-히드록시이소부티르산(N-메틸)아미드를 성분으로서 분리제거하고, 제2증류의 미증발분으로서 반응기에 투입했다.50% of the obtained evaporated fraction was introduced into the reactor as it is, and the remaining 50% of the evaporated fraction was separated and removed with α-hydroxyisobutyric acid (N-methyl) amide as a component according to the distillation method of recycling experiment 2 of Example 8. The mixture was charged into a reactor as undistilled fraction of the second distillation.

다시또 α-히드록시이소부티르산아미드와 메탄올을 첨가하여 6회째의 에스테르화반응을 행했다. 결과를 표 4에 나타낸다.Again, α-hydroxyisobutyric acid amide and methanol were added to carry out the sixth esterification reaction. The results are shown in Table 4.

실시예 11Example 11

강제교반장치를 장비한 내용적이 500ml의 SUS316제의 반응기(하부반응기)의 상부에 내용적 150ml의 SUS316제의 반응기(상부반응기)를 액, 가스를 반대방향으로 흐르도록 연결해서 하부반응기를 가열해서 내부의 알코올을 기화시키고, 기체를 상부반응기를 통해서 빼내고, 상부반응기의 액은 하부반응기를 통해서 빼내는 장치를 준비했다.A lower reactor is heated by connecting a 150 ml SUS316 reactor (upper reactor) with an internal volume of 500 ml of SUS316 (lower reactor) with a forced stirring device to flow liquid and gas in opposite directions. The apparatus was prepared by evaporating the alcohol inside, withdrawing gas through the upper reactor, and withdrawing the liquid from the upper reactor through the lower reactor.

도 2에 이 반응장치의 개요도를 나타낸다.The schematic diagram of this reactor is shown in FIG.

이 반응장치의 상부반응기에 α-히드록시이소부티르산아미드와 메탄올, 촉매로서 티타늄이소프로폭시드를 각각 50g/hr, 100g/hr, 10g/hr씩 송액펌프를 사용해서 공급했다.The upper reactor of this reactor was supplied with? -Hydroxyisobutyric acid amide, methanol, and titanium isopropoxide as a catalyst at 50 g / hr, 100 g / hr, and 10 g / hr, respectively.

하부반응기를 가열해서 암모니아 및 메탄올이 기화하도록하는 한편 상부반응기를 충분히 온도를 보존해서 하부반응기로부터의 메탄올증기의 응축을 극력 억제했다.The lower reactor was heated to vaporize ammonia and methanol while the upper reactor was sufficiently kept in temperature to inhibit condensation of methanol vapor from the lower reactor as much as possible.

상부반응기로부터의 증류가스는 응축기로 액화되여,응축액수용기에 축적된다.Distillation gas from the upper reactor is liquefied into a condenser and accumulates in the condensate container.

이와같이 상부반응기내의 액온 및 하부반응기내의 액을 170℃로 유지한다.As such, the liquid temperature in the upper reactor and the liquid in the lower reactor are maintained at 170 ° C.

하부반응기의 저면으로부터 반응액을 141g/hr 상부반응기로부터 증류물을 110g/hr로 얻었다.From the bottom of the bottom reactor, the reaction solution was obtained at 141 g / hr from the top reactor at 110 g / hr.

하부반응기로부터 얻어진 반응액을 가스크로마토그래피로 분석한바, α-히드록시이소부티르산아미드의 전환율은 83몰%, 생성물로서 α-히드록시이소부티르산메틸이 선택율 98몰%로 얻어졌다.The reaction solution obtained from the bottom reactor was analyzed by gas chromatography, and the conversion of α-hydroxyisobutyric acid amide was 83 mol%, and the product of α-hydroxyisobutyrate methyl was obtained at 98 mol%.

또 증류된 가스를 냉각시켜서 액화시킨후 분석한바, 암모니아가 4.1중량%, 메탄올이 95.9중량%, 포함되어있었다.The distilled gas was cooled and liquefied, and analyzed. As a result, 4.1% by weight of ammonia and 95.9% by weight of methanol were included.

또 하부반응기의 반응액 및 상부반응기의 반응액중의 암모니아농도는 어느것이나 0.01중량%미만이었다.The ammonia concentration in the reaction liquid of the lower reactor and the reaction liquid of the upper reactor was less than 0.01% by weight.

참고예 1Reference Example 1

강제교반장치를 장비한 내용적이 500ml의 SUS316제의 반응기에 α-히드록시이소부티르산아미드와 메탄올, 촉매로서 티타늄이소프로폭시드를 각각 50g/hr, 200g/hr, 10g/hr씩 도입했다.Into a 500 ml SUS316 reactor equipped with a forced stirring device, 50 g / hr, 200 g / hr and 10 g / hr of α-hydroxyisobutyric acid amide, methanol and titanium isopropoxide were introduced as catalysts, respectively.

반응기를 가열해서 암모니아 및 메탄올을 증류제거했다.The reactor was heated to distill off ammonia and methanol.

반응액온도를 170℃로 유지하고, 반응액을 141g/hr, 증류물을 110g/hr로 얻었다.The reaction solution temperature was maintained at 170 ° C, the reaction solution was obtained at 141 g / hr and distillate at 110 g / hr.

반응액하부로부터 얻어진 반응액을 가스크로마토그래피로 분석한바, α-히드록시이소부티르산아미드의 전환율은 63몰%, 생성물로서 α-히드록시이소부티르산메틸이 선택율 98몰%로 얻어졌다.The reaction solution obtained from the bottom of the reaction solution was analyzed by gas chromatography, and the conversion of α-hydroxyisobutyric acid amide was 63 mol%, and the product of α-hydroxyisobutyrate methyl was obtained at a selectivity of 98 mol%.

또 증류된 가스를 냉각시켜서 액화시킨후 분석한바, 암모니아를 3.4중량%, 메탄올을 96.6중량%를 포함하고있었다.The distilled gas was cooled and liquefied, and analyzed. The mixture contained 3.4% by weight of ammonia and 96.6% by weight of methanol.

실시예 12Example 12

α-히드록시이소부티르산아미드 대신에 락트아미드를 사용한것이외는 실시예 11과같은 조작을 행했다.The same operation as in Example 11 was carried out except that lactamide was used instead of α-hydroxyisobutyric acid amide.

락트아미드의 전환율은 80몰%, 락트산메틸의 선택율은 98몰%였다.The conversion rate of lactamide was 80 mol%, and the selectivity of methyl lactate was 98 mol%.

실시예 13Example 13

티타늄이소프로폭시드대신에 트리부틸주석옥사이드를 사용한것외는 실시예 11과 같은 조작을 행했다.The same operation as in Example 11 was carried out except that tributyltin oxide was used instead of titanium isopropoxide.

α-히드록시이소부티르산아미드의 전환율은 70몰%, α-히드록시이소부티르산메틸의 선택율은 98몰%였다.The conversion rate of α-hydroxyisobutyric acid amide was 70 mol% and the selectivity of α-hydroxyisobutyrate methyl was 98 mol%.

실시예 14Example 14

티타늄이소프로폭시드대신에 란탄트리플레이트를 사용한것외는 실시예 11과 같은 조작을 행했다.The same operation as in Example 11 was carried out except that the lanthanum triflate was used instead of titanium isopropoxide.

α-히드록시이소부티르산아미드의 전환율은 83몰%, α-히드록시이소부티르산메틸의 선택율은 98몰%였다.The conversion rate of α-hydroxyisobutyric acid amide was 83 mol% and the selectivity of α-hydroxyisobutyrate methyl was 98 mol%.

실시예 15Example 15

티타늄이소프로폭시드대신에 비스무트산화물을 슬러리상으로 해서 사용한것외는 실시예 11과 같은 조작을 행했다.The same operation as in Example 11 was carried out except that bismuth oxide was used as a slurry instead of titanium isopropoxide.

α-히드록시이소부티르산아미드의 전환율은 50몰%, α-히드록시이소부티르산메틸의 선택율은 98몰%였다.The conversion of α-hydroxyisobutyric acid amide was 50 mol% and the selectivity of α-hydroxyisobutyrate methyl was 98 mol%.

실시예 16Example 16

내용적 100ml 내압용기의 상부에 직경 3mm의 딕슨패킹을 끼운 내경 2cm, 탑의길이 2m의 액분산형충전탑을 연결한 장치를 사용하여, 탑정상부로부터 50cm의 위치에 α-히드록시이소부티르산아미드 30중량%, 메탄올 64중량%, 티타늄이소프로폭시드 6중량%의 혼합액을 57g/hr 로공급하고, 탑저면부로부터 50cm의 위치에 메탄올을 85g/hr로 공급하고, 내압용기를 가열해서 메탄올을 가스화해서 탑정상부로부터 암모니아를 포함하는 메탄올가스를 62g/hr로 제거했다.Α-hydroxyisobutyricamide 30 at a position of 50cm from the top of the tower, using a device that connected a liquid dispersing type charging tower with a diameter of 2cm and a tower length of 2m with a Dickson packing with a diameter of 3mm on top of a 100ml pressure-resistant container. 57 g / hr of a mixed liquid of 64% by weight, 64% by weight of methanol and 6% by weight of titanium isopropoxide was supplied, and 85 g / hr of methanol was supplied at a position of 50 cm from the bottom of the column. Gasification was carried out to remove methanol gas containing ammonia at 62 g / hr from the top of the column.

이때 반응액온도가 170℃가되도록 압력을 2MPa로 유지하고, 내압용기내의 액량이 50ml가되도록 내압용기 저면부로부터 반응액을 빼냈다.At this time, the pressure was maintained at 2 MPa so that the reaction liquid temperature was 170 ° C, and the reaction liquid was removed from the bottom portion of the pressure vessel so that the liquid volume in the pressure vessel was 50 ml.

저면부로부터 얻어진 반응액을 가스크로마토그래피로 분석한바, 생성액중의 암모니아농도는 0.01중량%미만이며 α-히드록시이소부티르산아미드의 전환율은 86몰%, 생성물로서 α-히드록시이소부티르산메틸이 선택율 97몰%로 얻어졌다.The reaction solution obtained from the bottom part was analyzed by gas chromatography. The ammonia concentration in the resulting solution was less than 0.01% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 86 mol%, and the product of methyl α-hydroxyisobutyrate was Obtained with a selectivity of 97 mol%.

또 증류된 가스를 냉각시켜서 액화시킨후 분석한바, 암모니아를 2.7중량%, 메탄올을 97.2중량% 포함하고있었다.After distilled gas was cooled and liquefied, it was analyzed, which contained 2.7% by weight of ammonia and 97.2% by weight of methanol.

실시예 17Example 17

내경 2cm, 탑의길이 1m의 기포탑을 사용하여, 탑정상부로부터 25cm의 위치에 α-히드록시이소부티르산아미드 30중량%, 메탄올 64중량%, 티타늄이소프로폭시드 6중량%의 혼합액을 57g/hr 로공급하고, 탑저면부로부터 25cm의 위치에 메탄올을 85g/hr로 공급하고, 탑저면부를 가열해서 메탄올을 가스화해서 탑정상부로부터 암모니아를 포함하는 메탄올가스를 60g/hr로 증류제거했다.Using a bubble column having an inner diameter of 2 cm and a length of 1 m, 57 g / of a mixed liquid of 30% by weight of α-hydroxyisobutyric acid amide, 64% by weight of methanol, and 6% by weight of titanium isopropoxide at a position of 25cm from the top of the column. hr, 85 g / hr of methanol was supplied at a position of 25 cm from the bottom of the column, the bottom of the column was heated to gasify methanol, and 60 g / hr of methanol gas containing ammonia was distilled off from the top of the column.

이때 반응액온도가 170℃가되도록 압력을 2MPa로 유지하고,액면이 탑정상부로부터 10cm의 높이로 일정하게되도록 탑저면부로부터 반응액을 빼냈다.At this time, the pressure was maintained at 2 MPa so that the reaction liquid temperature was 170 ° C, and the reaction liquid was removed from the bottom of the column so that the liquid level was constant at a height of 10 cm from the top of the column.

탑저면부로부터 얻어진 반응액을 가스크로마토그래피로 분석한바, 생성액중의 암모니아농도는 0.01중량%미만이며 α-히드록시이소부티르산아미드의 전환율은 82몰%, 생성물로서 α-히드록시이소부티르산메틸이 선택율 97몰%로 얻어졌다.The reaction solution obtained from the bottom of the column was analyzed by gas chromatography, and the concentration of ammonia in the resulting solution was less than 0.01% by weight, the conversion rate of α-hydroxyisobutyric acid amide was 82 mol%, and the product of methyl α-hydroxyisobutyrate This selectivity was obtained at 97 mol%.

또 증류된 가스를 냉각시켜서 액화시킨후 분석한바, 암모니아를 2.6중량%, 메탄올을 97.3중량% 포함하고있었다.After distilled gas was cooled and liquefied, it was analyzed and found to contain 2.6% by weight of ammonia and 97.3% by weight of methanol.

실시예 18Example 18

α-히드록시이소부티르산아미드 대신에 락트아미드를 사용한것이외는 실시예 16과같은 조작을 행했다.The same operation as in Example 16 was carried out except that lactamide was used instead of α-hydroxyisobutyric acid amide.

락트아미드의 전환율은 81몰%, 락트산메틸의 선택율은 97몰%였다.The conversion rate of lactamide was 81 mol%, and the selectivity of methyl lactate was 97 mol%.

실시예 19Example 19

티타늄이소프로폭시드대신에 트리부틸주석옥사이드를 사용한것외는 실시예 16과 같은 조작을 행했다.The same operation as in Example 16 was carried out except that tributyltin oxide was used instead of titanium isopropoxide.

α-히드록시이소부티르산아미드의 전환율은 69몰%, α-히드록시이소부티르산메틸의 선택율은 97몰%였다.The conversion rate of α-hydroxyisobutyric acid amide was 69 mol% and the selectivity of α-hydroxyisobutyrate methyl was 97 mol%.

실시예 20Example 20

티타늄이소프로폭시드 대신에 란탄트리플레이트를 사용한 것 외는 실시예 16과 같은 조작을 행했다.The same operation as in Example 16 was carried out except that a lanthanum triflate was used instead of titanium isopropoxide.

α-히드록시이소부티르산아미드의 전환율은 84몰%, α-히드록시이소부티르산메틸의 선택율은 97몰%였다.The conversion rate of α-hydroxyisobutyric acid amide was 84 mol% and the selectivity of α-hydroxyisobutyrate methyl was 97 mol%.

실시예 21Example 21

티타늄이소프로폭시드대신에 비스무트산화물을 슬러리상으로 해서 사용한것외는 실시예 17과 같은 조작을 행했다.The same operation as in Example 17 was carried out except that bismuth oxide was used as a slurry instead of titanium isopropoxide.

α-히드록시이소부티르산아미드의 전환율은 50몰%, α-히드록시이소부티르산메틸의 선택율은 97몰%였다.The conversion of α-hydroxyisobutyric acid amide was 50 mol% and the selectivity of α-hydroxyisobutyrate methyl was 97 mol%.

실시예 22Example 22

티타늄이소프로폭시드를 사용하지않고, 딕슨패킹 대신에 고체촉매의 충전물로서 직경 3mm, 길이 5mm로 성형한 CeO2를 사용한 것 이외는 실시예 16과 같은 조작을 행했다.The same operation as in Example 16 was performed except that CeO 2 molded into a diameter of 3 mm and a length of 5 mm was used as a filler for the solid catalyst without using titanium isopropoxide.

α-히드록시이소부티르산아미드의 전환율은 50몰%, α-히드록시이소부티르산메틸의 선택율은 97몰%였다.The conversion of α-hydroxyisobutyric acid amide was 50 mol% and the selectivity of α-hydroxyisobutyrate methyl was 97 mol%.

실시예 23Example 23

재킷식 환류응축기 및 교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 α-히드록시이소부티르산아미드 30.0g(0.291몰), 메탄올 100g, Ti(HBD)4착염 4.85g(0.0106몰)을 투입하여 압력을 3.0MPa로 유지하고, 교반하에 190℃에서 오토클레이브에 질소가스를 공급하고 생성되는 암모니아를 오토클레이브로부터 질소가스와 함께 방출시키면서 1.5시간 반응을 행했다.30.0 g (0.291 mol) of α-hydroxyisobutyric acid amide, 100 g of methanol, and 4.85 g (0.0106 mol) of Ti (HBD) 4 complex salt were added to a 300 ml stainless steel autoclave equipped with a jacketed reflux condenser and a stirrer. Was maintained at 3.0 MPa, and the reaction was carried out for 1.5 hours while supplying nitrogen gas to the autoclave at 190 ° C under agitation and releasing the resulting ammonia together with the nitrogen gas from the autoclave.

반응후 반응액을 냉각시켜 가스크로마토그래피로 분석을 행했다.After the reaction, the reaction solution was cooled and analyzed by gas chromatography.

생성액중의 암모니아농도는 0.01중량%미만이며 α-히드록시이소부티르산아미드의 전환율 78.7몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 95.5몰%가 얻어졌다.The ammonia concentration in the resulting solution was less than 0.01% by weight, and the conversion rate of α-hydroxyisobutyric acid amide was 78.7 mol% and the selectivity of α-hydroxyisobutyric acid methyl ester was 95.5 mol%.

실시예 24Example 24

교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 α-히드록시이소부티르산아미드 30.0g(0.291몰), 메탄올 100g, 티타늄테트라이소프로폭시드 3.00g(0.0106몰)을 투입하여 압력을 3.0MPa로 유지하고, 교반하에 190℃에서 오토클레이브에 질소가스를 공급하고 생성되는 암모니아를 오토클레이브로부터 질소가스와 함께 방출시키면서 1.5시간 반응을 행했다.Into a 300 ml stainless steel autoclave with a stirrer, 30.0 g (0.291 mol) of α-hydroxyisobutyric acid amide, 100 g of methanol and 3.00 g (0.0106 mol) of titanium tetraisopropoxide were added to maintain the pressure at 3.0 MPa. Under agitation, the reaction was carried out for 1.5 hours while supplying nitrogen gas to the autoclave at 190 ° C and releasing the resulting ammonia together with the nitrogen gas from the autoclave.

반응후 반응액을 냉각시켜 그일부를 샘플링해서 가스크로마토그래피로 분석을 행하여 반응성적을 산출한 바, 생성액중의 암모니아농도는 0.01중량%미만이며 α-히드록시이소부티르산아미드의 전환율 83.0몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 79.1몰% 였다.After the reaction, the reaction solution was cooled, and a part of it was sampled and analyzed by gas chromatography to calculate reactivity. The ammonia concentration in the resulting solution was less than 0.01% by weight, and the conversion rate of α-hydroxyisobutyric acid amide was 83.0 mol%. and the selectivity of the (alpha) -hydroxyisobutyric acid methyl ester were 79.1 mol%.

생성액을 플라스크에넣고 단증류를 행하여 메탄올, α-히드록시이소부티르산메틸에스테르, 미반응 α-히드록시이소부티르산아미드를 증류제거한 바, 미증류분이 4.85g 잔존하고 있었다.The resulting solution was placed in a flask and subjected to monostillation, and methanol, α-hydroxyisobutyric acid methyl ester, and unreacted α-hydroxyisobutyric acid amide were distilled off, and 4.85 g of undistilled water remained.

미증류분의 원소분석을 행한바, Ti(HBD)4와 동일한것이 확인되었다.Elemental analysis of the distillate showed that it was the same as Ti (HBD) 4 .

반응한 α-히드록시이소부티르산아미드의 일부가 티타늄과의 착염의 형성에 소비되고, 실제로는 α-히드록시이소부티르산메틸에스테르의 생성에 관여하지않는것을 알았다.It was found that part of the reacted α-hydroxyisobutyric acid amide was consumed in the formation of the complex salt with titanium, and was not actually involved in the production of the α-hydroxyisobutyric acid methyl ester.

이 분을 고려하여 α-히드록시이소부티르산메틸에스테르의 선택율을 재계산하면 95.1몰%가 되었다.Considering this, the selectivity of the α-hydroxyisobutyric acid methyl ester was 95.1 mol%.

참고예 2Reference Example 2

α-히드록시이소부티르산아미드의 메탄올용액에 티타늄테트라이소프로폭시드를 비율을 변경해서 첨가했다.Titanium tetraisopropoxide was added to the methanol solution of (alpha)-hydroxyisobutyric acid amide in varying ratios.

5분간 교반하면서 그 상태를 유지하고, 5분후에 혼합액중의 α-히드록시이소부티르산아미드의 정량을 행했다.The state was kept stirring for 5 minutes, and after 5 minutes, the (alpha) -hydroxyisobutyric acid amide in the liquid mixture was quantified.

5분후의 혼합액중의 α-히드록시이소부티르산아미드의 정량은 가스크로마토그래피를 사용해서 내부표준법으로 행했다.After 5 minutes, quantification of α-hydroxyisobutyric acid amide in the mixed solution was performed by an internal standard method using gas chromatography.

실제로 사용한 티타늄테트라이소프로폭시드(Ti)량에 대한 실제사용한 α-히드록시이소부티르산아미드(HBD)량의 몰비 및 실제사용한 티타늄테트라이소프로폭시드량에 대한 가스크로마토그래피정량한 혼합액중의 α-히드록시이소부티르산아미드량의 몰비를 산출했다. 결과를 표 5에 나타낸다.Α in the molar ratio of the actual amount of α-hydroxyisobutyric acid amide (HBD) to the amount of titanium tetraisopropoxide (Ti) actually used, and the gas chromatographic quantification of the amount of titanium tetraisopropoxide in the actual mixture. The molar ratio of the amount of hydroxyisobutyric acid amide was calculated. The results are shown in Table 5.

표 5에 나타내는바와 같이 실제로 사용한 Ti량에 대한 가스크로마토그래피로 정량한 HBD량의 몰비가 4이하에서는 α-히드록시이소부티르산아미드가 검출되지 않게되기때문에 Ti(HBD)4가 생성되고있다고 생각된다.As shown in Table 5, when the molar ratio of HBD amount quantified by gas chromatography to the amount of Ti actually used is 4 or less, α-hydroxyisobutyric acid amide is not detected. Therefore, Ti (HBD) 4 is considered to be produced. .

실시예 25Example 25

교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 α-히드록시이소부티르산아미드 30.0g(0.291몰), 메탄올 100g, 실시예 10과 같이해서 조제한 (HBD)2Bu2Sn 착염 10.57g(0.0241몰)을 투입하여 압력을 3.0MPa로 유지하고, 교반하에 190℃에서 오토클레이브에 질소가스를 공급하고 생성되는 암모니아를 오토클레이브로부터 질소가스와 함께 방출시키면서 2.5시간 반응을 행했다.10.57 g (0.0241 mol) of (HBD) 2 Bu 2 Sn complex salt prepared in the same manner as Example 10 in 30.0 g (0.291 mol) of α-hydroxyisobutyric acid amide, 100 g of methanol in a 300 ml stainless steel autoclave with a stirrer The reaction was carried out for 2.5 hours while the pressure was maintained at 3.0 MPa, the nitrogen gas was supplied to the autoclave at 190 ° C under stirring, and the resulting ammonia was released together with the nitrogen gas from the autoclave.

반응후 반응액을 냉각시켜 그일부를 샘플링해서 가스크로마토그래피로 분석하여 반응성적을 산출한바, α-히드록시이소부티르산아미드의 전환율 74.5몰%, 생성액중의 암모니아농도는 0.01중량%미만이며, α-히드록시이소부티르산메틸에스테르의 선택율은 96.1몰% 였다.After the reaction, the reaction solution was cooled, and a portion thereof was sampled and analyzed by gas chromatography to calculate reactivity. The conversion rate of α-hydroxyisobutyric acid amide was 74.5 mol%, and the ammonia concentration in the resulting solution was less than 0.01 wt%. The selectivity of the (alpha)-hydroxyisobutyric acid methyl ester was 96.1 mol%.

실시예 26Example 26

교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 α-히드록시이소부티르산아미드 25.9g(0.291몰), 메탄올 100g, 실시예 2와 같이해서 조제한 Ti(LD)4착염 4.28g(0.0106몰)을 투입하여 압력을 3.0MPa로 유지하고, 교반하에 190℃에서 오토클레이브에 질소가스를 공급하고 생성되는 암모니아를 오토클레이브로부터 질소가스와 함께 방출시키면서 1.5시간 반응을 행했다.Into a 300 ml stainless steel autoclave with a stirrer, 25.9 g (0.291 mol) of α-hydroxyisobutyric acid amide, 100 g of methanol and 4.28 g (0.0106 mol) of Ti (LD) 4 complex salt prepared in the same manner as in Example 2 were charged. The pressure was maintained at 3.0 MPa, and the reaction was carried out for 1.5 hours while supplying nitrogen gas to the autoclave at 190 ° C under agitation and releasing the resulting ammonia from the autoclave together with the nitrogen gas.

반응후 반응액을 냉각시켜 가스크로마토그래피로 분석했다.After the reaction, the reaction solution was cooled and analyzed by gas chromatography.

생성액중의 암모니아농도는 0.01중량%미만이며, 락트아미드 전환율 78.1몰%, 락트산메틸에스테르의 선택율은 95.4몰% 였다.The ammonia concentration in the resulting solution was less than 0.01% by weight, the selectivity of lactic acid conversion 78.1 mol% and lactic acid methyl ester was 95.4 mol%.

실시예 27Example 27

재킷식 환류응축기 및 교반기부착의 내용적 300ml의 스테인레스제 오토클레이브에 α-히드록시이소부티르산아미드 30.0g(0.291몰), 메탄올 100g, 란탄트리플레이트 6.19g(0.0106몰) 을 투입하여 압력을 3.0MPa로 유지하고, 교반하에 190℃에서 오토클레이브에 질소가스를 공급하고 생성되는 암모니아를 오토클레이브로부터 질소가스와 함께 방출시키면서 1.5시간 반응을 행했다.30.0 g (0.291 mol) of α-hydroxyisobutyric acid amide, 100 g of methanol and 6.19 g (0.0106 mol) of lanthanum triflate were added to a 300 ml stainless steel autoclave equipped with a jacketed reflux condenser and a stirrer, and the pressure was 3.0 MPa. The reaction was carried out for 1.5 hours while supplying nitrogen gas to the autoclave at 190 ° C. under agitation and releasing the resulting ammonia together with nitrogen gas from the autoclave.

이때 환류응축기의 재킷에 185℃의 기름을 순환시켜 가열하고, 암모니아와 함께 메탄올의 일부를 30g/hr의 속도로 환류응축기의 상부로부터 빼내고 동시에 반응기에 메탄올을 30g/hr의 속도로 공급했다.At this time, 185 ° C. oil was circulated and heated in the jacket of the reflux condenser, and a portion of methanol and ammonia were removed from the top of the reflux condenser at a rate of 30 g / hr and methanol was supplied to the reactor at a rate of 30 g / hr.

반응후 반응액을 냉각시켜 가스크로마토그래피에의해 분석을 행했다.After the reaction, the reaction solution was cooled and analyzed by gas chromatography.

생성액중의 암모니아농도는 0.01중량%미만이며 α-히드록시이소부티르산아미드의 전환율 98.5몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 98.2몰%가 얻어졌다.The ammonia concentration in the resulting solution was less than 0.01% by weight, and the conversion of 98.5 mol% of α-hydroxyisobutyric acid amide and the selectivity of α-hydroxyisobutyric acid methyl ester were 98.2 mol%.

실시예 28∼32Examples 28-32

하기표 6에 기재된 각종 금속트리플레이트 촉매를 사용한것이외는 실시예 27과 같은 방법으로 반응을 행했다. 그 결과를 표 6에 나타낸다.The reaction was carried out in the same manner as in Example 27, except that the various metal triflate catalysts shown in Table 6 were used. The results are shown in Table 6.

La(OTf)3: 란탄트리플레이트, OTf는 트리플레이트의 약자La (OTf) 3 : Lanthanum Triflate, OTf stands for triplerate

참고예 3∼7Reference Examples 3-7

하기 표 7에 각종금속카르복실레이트를 금속트리플레이트와 동일몰수 사용하고, 촉매로 사용하여 반응을 행했다.In Table 7 below, various metal carboxylates were used in the same number of moles as the metal triplate, and the reaction was carried out using a catalyst.

기재한 촉매를 사용한것이외는 실시예 27과 같은 방법으로 반응을 행했다.The reaction was carried out in the same manner as in Example 27 except for using the catalyst described.

그 결과를 표 7에 나타낸다.The results are shown in Table 7.

표 7로부터 알수있는바와같이 금속트리플레이트를 사용한쪽이 전환율이 높았다.As can be seen from Table 7, the conversion rate was higher for the metal tree plate.

La(OAc)31.5H2O:란탄카르복실레이트, OAc는 카르복실레이트의 약자La (OAc) 3 1.5H 2 O: Lantancarboxylate, OAc stands for carboxylate

참고예 8(티타늄균일계 촉매를 사용한 예) Reference Example 8 ( Example Using Titanium Homogeneous Catalyst)

투입물로서 물을 α-히드록시이소부티르산아미드에 대해서 5중량% 첨가하고, 촉매로서 Ti(HBD)4착염 4.85g(0.0106몰)를 사용한 것 이외는 실시예 27과 같은방법으로 반응을 행했다.5 wt% of water was added to the α-hydroxyisobutyric acid amide as an input, and the reaction was carried out in the same manner as in Example 27 except that 4.85 g (0.0106 mol) of Ti (HBD) 4 complex salt was used as the catalyst.

α-히드록시이소부티르산아미드의 전환율 80.7몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 90.2몰%,α-히드록시이소부티르산의 선택율 8.2몰%가 얻어졌다.The conversion of 80.7 mol% of the α-hydroxyisobutyric acid amide and the selectivity of the α-hydroxyisobutyric acid methyl ester were 90.2 mol% and the 8.2-% selectivity of the α-hydroxyisobutyric acid.

생성액중에 백색침전이 석출되어있고, 반응중에 Ti(HBD)4착염이 가수분해를 받아서 일부 수산화티타늄, 산화티타늄으로 되었다고 생각된다.White precipitates precipitated in the resulting solution, and during the reaction, the Ti (HBD) 4 complex salt was hydrolyzed to form some titanium hydroxide and titanium oxide.

이때문에 아미드전환율이 저하하고, 아미드의 가수분해도 촉진되어서 에스테르선택율이 저하했다.For this reason, amide conversion fell, the hydrolysis of amide was also accelerated | stimulated, and ester selectivity fell.

실시예 33Example 33

투입물로서 물을 α-히드록시이소부티르산아미드에 대해서 5중량% 첨가하고, 촉매로서 La(OTf)36.19g(0.0106몰)를 사용한 것 이외는 실시예 27과 같은 방법으로 반응을 행했다.5 wt% of water was added to α-hydroxyisobutyric acid amide as an input, and the reaction was carried out in the same manner as in Example 27 except that 6.19 g (0.0106 mol) of La (OTf) 3 was used as a catalyst.

α-히드록시이소부티르산아미드의 전환율 98.2몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 97.9몰%가 얻어졌다.97.9 mol% of the conversion rates of (alpha) -hydroxyisobutyric acid amide 98.2 mol% and the selectivity of (alpha) -hydroxyisobutyric acid methyl ester were obtained.

계중에 물에 의해 α-히드록시이소부티르산로 가수분해가 일부 일어나지만 촉매가 활성을 잃지않기 때문에 메탄올에 의한 에스테르화도 동시에 일어나고있으므로 에스테르선택율의 저하는 보이지않았다.Hydrolysis of α-hydroxyisobutyric acid with water occurs partially in the system, but since the catalyst does not lose activity, esterification with methanol also occurs simultaneously, so no decrease in ester selectivity was observed.

실시예 34Example 34

투입물로서 물을 α-히드록시이소부티르산아미드에 대해서 5중량% 첨가하고, 촉매로서 Yb(OTf)36.55g(0.0106몰)를 사용한 것 이외는 실시예 27과 같은방법으로 반응을 행했다.5 wt% of water was added to the α-hydroxyisobutyric acid amide as an input, and the reaction was carried out in the same manner as in Example 27 except that 6.55 g (0.0106 mol) of Yb (OTf) 3 was used as a catalyst.

α-히드록시이소부티르산아미드의 전환율 97.3몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 97.1몰%가 얻어졌다.97.1 mol% of conversion rates of (alpha) -hydroxyisobutyric acid amide, and 97.1 mol% of selectivity of (alpha)-hydroxyisobutyric acid methyl ester were obtained.

실시예 35Example 35

투입물로서 락트아미드 25.9g(0.291몰), 메탄올 100g, La(OTf)36.19g(0.0106몰)를 사용한 것 이외는 실시예 27과 같은 방법으로 반응을 행했다.The reaction was carried out in the same manner as in Example 27, except that 25.9 g (0.291 mol) of lactamide, 100 g of methanol, and 6.19 g (0.0106 mol) of La (OTf) 3 were used as the input.

락트아미드전환율 98.1몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 97.4몰%가 얻어졌다.As for the selectivity of 98.1 mol% of lactamide conversion rates, and (alpha)-hydroxyisobutyric acid methyl ester, 97.4 mol% was obtained.

실시예 36Example 36

투입물로서 락트아미드 25.9g(0.291몰), 메탄올 100g, Yb(OTf)36.55g(0.0106몰)를 사용한 것 이외는 실시예 27과 같은 방법으로 반응을 행했다.The reaction was carried out in the same manner as in Example 27, except that 25.9 g (0.291 mol) of lactamide, 100 g of methanol, and 6.55 g (0.0106 mol) of Yb (OTf) 3 were used as the input.

락트아미드전환율 96.2몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 98.4몰%가 얻어졌다.96.2 mol% of lactamide conversions and 98.4 mol% of the selectivity of (alpha)-hydroxyisobutyric acid methyl ester were obtained.

실시예 37Example 37

투입물로서 락트아미드 25.9g(0.291몰), 메탄올 100g, Sn(OTf)34.40g(0.0106몰)를 사용한 것 이외는 실시예 27과 같은 방법으로 반응을 행했다.The reaction was carried out in the same manner as in Example 27, except that 25.9 g (0.291 mol) of lactamide, 100 g of methanol, and 4.40 g (0.0106 mol) of Sn (OTf) 3 were used as an input.

락트아미드전환율 97.5몰%, α-히드록시이소부티르산메틸에스테르의 선택율은 98.7몰%가 얻어졌다.97.5 mol% of lactamide conversion rates and 98.7 mol% of the selectivity of (alpha)-hydroxyisobutyric acid methyl ester were obtained.

α-히드록시카르복실산아미드와 알코올로부터 α-히드록시카르복실산에스테르를 고선택율 고수율로 제조할 수 있다.(alpha) -hydroxycarboxylic acid ester can be manufactured from a (alpha)-hydroxycarboxylic acid amide and an alcohol with high selectivity and high yield.

Claims (16)

α-히드록시카르복실산아미드와 알코올을 알코올의 존재하에 액상에서 반응시키고 이와 동시에, 발생된 암모니아기체를 기체상속에 배출시켜 반응액중의 암모니아농도를 0.1중량%이하로 유지하는 것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.[alpha] -hydroxycarboxylic acid amide and alcohol are reacted in the liquid phase in the presence of alcohol and at the same time, the generated ammonia gas is discharged in the gas phase to maintain the ammonia concentration in the reaction solution at 0.1% by weight or less. Method for producing α-hydroxycarboxylic acid ester. 제1항에 있어서,The method of claim 1, 반응액을 비등상태 또는 반응액 내의 불활성가스를 거품발생시키거나 혹은 그 양쪽의 조작에 의해 발생된 암모니아기체를 기체상속에 배출시키는것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.A method for producing α-hydroxycarboxylic acid ester, characterized in that the reaction solution is boiled or the inert gas in the reaction solution is bubbled or the ammonia gas generated by both operations is discharged in the gas phase. 제1항에 있어서,The method of claim 1, 알코올을 반응액에 연속공급함과 동시에 발생하는 암모니아를 그 알코올과 함께 연속적으로 배출시키는것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.A method for producing α-hydroxycarboxylic acid ester, characterized in that the ammonia generated simultaneously with the supply of alcohol to the reaction solution is continuously discharged together with the alcohol. 제1항에 있어서,The method of claim 1, 반응장치로서 가스발산장치를 사용하고, 알코올과 부수생성되는 암모니아를 함유하는 기체를 배출시키는 것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.A method for producing α-hydroxycarboxylic acid ester, characterized by using a gas dissipation device as a reaction device and discharging a gas containing alcohol and by-products of ammonia. 제4항에 있어서,The method of claim 4, wherein 가스 발산장치가 충전탑, 기포탑, 또는 평판탑인 것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.The gas-dispersing apparatus is a packed column, a bubble column, or a flat tower, The manufacturing method of the (alpha)-hydroxycarboxylic acid ester characterized by the above-mentioned. 제1항에 있어서,The method of claim 1, 발생하는 암모니아기체를 기체상으로 배출시킴과 동시에, 반응기로부터 반응액을 빼내서 증류구역에 유입하고, 미반응알코올과 생성 α-히드록시카르복실산에스테르를 증발분으로서 분리하고, 미증발분의 일부 또는 전부를 반응기에 재순환시키는것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.While discharging the generated ammonia gas into the gas phase, the reaction solution was taken out of the reactor and introduced into the distillation zone, and the unreacted alcohol and the produced α-hydroxycarboxylic acid ester were separated as evaporated fractions, and a part of the unevaporated fractions. Or a process for producing α-hydroxycarboxylic acid ester, wherein all are recycled to the reactor. 제1항에 있어서,The method of claim 1, 발생하는 암모니아를 기체로서 기체상으로 배출시킴과 동시에, 반응기로부터 반응액을 빼내서 제1증류구역으로 유입시키고, 미반응알코올과 생성 α-히드록시카르복실산에스테르를 증발분으로서 분리하고, 미증발분의 일부 또는 전부를 제2증류구역으로 유입시키고, α-히드록시카르복실산(N-알킬)아미드를 증발분으로서 분리하고, 미증발분의 일부 또는 전부를 반응기에 재순환시키는 것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.While discharging the ammonia generated as a gas into the gas phase, the reaction solution was withdrawn from the reactor and introduced into the first distillation zone, and the unreacted alcohol and the resulting α-hydroxycarboxylic acid ester were separated as an evaporation component and not evaporated. A part or all of the powder is introduced into the second distillation zone, the α-hydroxycarboxylic acid (N-alkyl) amide is separated as an evaporated fraction, and some or all of the unvaporized fraction is recycled to the reactor. Method for producing α-hydroxycarboxylic acid ester. 제1항에 있어서,The method of claim 1, (a) 복수의 반응구역이 직렬로 배치되고 인접한 반응구역간에 있어서는 액체와 기체가 반대방향으로 유통될수 있도록 연결된 반응장치를 사용하고,(a) using a reactor in which a plurality of reaction zones are arranged in series and connected to allow liquid and gas to flow in opposite directions between adjacent reaction zones; (b) 원료인 α-히드록시카르복실산아미드 및 알코올을 첫번째이후의 반응구역에 공급하고,(b) feed the raw material α-hydroxycarboxylic acid amide and alcohol into the reaction zone after the first time, (c) 각 반응구역을 비등상태로 유지하고, 알코올과 부수생성되는 암모니아를 함유하는 어떤 특정의 반응구역으로부터의 기체를 앞서의 반응구역에 공급하고, 그 반응구역의 원료와 생성물을 함유하는 반응액을 후의 반응구역에 공급하고,(c) maintaining each reaction zone in a boiling state, supplying gas from any particular reaction zone containing alcohol and by-product ammonia to the preceding reaction zone, containing the raw materials and products of the reaction zone; The liquid is fed to the later reaction zone, (d) 첫번째의 반응구역으로부터 기체를 배출시키고 최후의 반응구역으로부터 반응액을 배출시키는것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.(d) A method for producing α-hydroxycarboxylic acid ester, characterized in that the gas is discharged from the first reaction zone and the reaction liquid is discharged from the last reaction zone. 제8항에 있어서,The method of claim 8, 각 반응구역에 있어서의 반응액중의 암모니아농도를 어느것이나 1중량%이하로 유지하는것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.A method for producing α-hydroxycarboxylic acid ester, wherein any concentration of ammonia in the reaction liquid in each reaction zone is maintained at 1% by weight or less. 제1항에 있어서,The method of claim 1, α-히드록시카르복실산아미드가 락트아미드 또는 α-히드록시이소부티르산아미드이고 알코올이 메탄올인 것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.A method for producing α-hydroxycarboxylic acid ester, wherein the α-hydroxycarboxylic acid amide is lactamide or α-hydroxyisobutyric acid amide and the alcohol is methanol. 제1항에 있어서,The method of claim 1, 촉매가 티타늄 또는 주석 혹은 그 양쪽의 α-히드록시카르복실산아미드로된 가용성의 금속착염인 것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.A process for producing α-hydroxycarboxylic acid ester, characterized in that the catalyst is a soluble metal complex salt made of titanium or tin or α-hydroxycarboxylic acid amides of both. 제1항에 있어서,The method of claim 1, 촉매가 금속트리플루오르메탄술폰산염인 것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.A method for producing α-hydroxycarboxylic acid ester, wherein the catalyst is a metal trifluoromethanesulfonate salt. 제12항에 있어서,The method of claim 12, 금속트리플루오르메탄술폰산염을 구성하는 금속이 주기율표의 제 1, 2, 3, 4, 11, 12, 13 및 14족에 속하는 원소중으로부터 선택되는 적어도 1종인 것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.? -Hydroxycarboxyl, characterized in that the metal constituting the metal trifluoromethanesulfonate salt is at least one selected from the elements belonging to groups 1, 2, 3, 4, 11, 12, 13 and 14 of the periodic table Production method of acid ester. 제13항에 있어서,The method of claim 13, 금속트리플루오르메탄술폰산염을 구성하는 금속이 란타노이드 원소중으로부터 선택되는 적어도 1종인 것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.A method for producing α-hydroxycarboxylic acid ester, wherein the metal constituting the metal trifluoromethanesulfonate salt is at least one selected from the lanthanoid elements. 제1항에 있어서,The method of claim 1, 촉매가 Sb, Sc, Y, La, Ce, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Tc, Re, Fe, Co, Ni, Cu, Al, Si, Sn, Pb, 및 Bi중으로부터 선택되는 적어도 1종의 원소를 포함하는 불용성의 금속산화물인 것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.The catalyst is Sb, Sc, Y, La, Ce, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Tc, Re, Fe, Co, Ni, Cu, Al, Si, Sn, Pb, And an insoluble metal oxide containing at least one element selected from Bi. 제1항에 있어서,The method of claim 1, 촉매가 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Cu, Ga, In, Bi 및 Te중에서 선택되는 적어도 1종의 원소를 포함하는 불용성의 금속인 것을 특징으로하는 α-히드록시카르복실산에스테르의 제조방법.The catalyst is an insoluble metal containing at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Cu, Ga, In, Bi and Te. Method for producing α-hydroxycarboxylic acid ester, characterized in that.
KR1019990010056A 1998-03-25 1999-03-24 Process for preparing alpha-hydroxycarboxylate KR19990078213A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP10-077369 1998-03-25
JP10077369A JPH11279120A (en) 1998-03-25 1998-03-25 Production of alpha-hydroxycarboylate
JP10102881A JPH11292825A (en) 1998-04-14 1998-04-14 Production of alpha-hydroxycarboxylate
JP10102880A JPH11292824A (en) 1998-04-14 1998-04-14 Production of alpha-hydroxycarboxylate
JP10-102880 1998-04-14
JP10-102881 1998-04-14
JP10-194447 1998-07-09
JP10194447A JP2000026370A (en) 1998-07-09 1998-07-09 Production of alpha-hydroxycarboxylic ester

Publications (1)

Publication Number Publication Date
KR19990078213A true KR19990078213A (en) 1999-10-25

Family

ID=54781338

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990010056A KR19990078213A (en) 1998-03-25 1999-03-24 Process for preparing alpha-hydroxycarboxylate

Country Status (1)

Country Link
KR (1) KR19990078213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100718954B1 (en) * 2002-12-03 2007-05-16 가부시키가이샤 닛폰 쇼쿠바이 Process for producing ?-hydroxycarboxylic ester
KR101365790B1 (en) * 2006-05-15 2014-02-20 에보니크 룀 게엠베하 Process for preparing alpha-hydroxycarboxylic esters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100718954B1 (en) * 2002-12-03 2007-05-16 가부시키가이샤 닛폰 쇼쿠바이 Process for producing ?-hydroxycarboxylic ester
KR101365790B1 (en) * 2006-05-15 2014-02-20 에보니크 룀 게엠베하 Process for preparing alpha-hydroxycarboxylic esters

Similar Documents

Publication Publication Date Title
CN1315772C (en) Process for production of organic acids and esters thereof
US7304176B2 (en) Process for producing easily polymerizable substance
JP5689904B2 (en) Acrylic acid production method
CN100422132C (en) Method for production of acrylic acid
EP0945423B1 (en) Process for preparing alpha-hydroxycarboxylate
TWI362375B (en) Process for continuously preparing alkylaminoacryl-amides
JP3592970B2 (en) Method for purifying hydroxyalkyl (meth) acrylate
JP2006503795A (en) Continuous production method of alkyl (meth) acrylate
KR101934604B1 (en) Process for preparing methacrylic acid
KR20050069982A (en) Method and device for producing formic acid formates and use of said formates
RU2534994C2 (en) Method of continuous production of dialkylcarbonate and alkyleneglycol
EP2113499B1 (en) Use of metal salts of trifuoromethane sulphonic acid as esterification catalyst and/or transesterification catalyst
TW200812957A (en) Process for preparing alpha-hydroxycarboxylic esters
EP0832872B1 (en) Process for producing diaryl carbonate
JP2014531410A (en) Method for producing α-hydroxycarboxylic acid ester
WO1995017369A1 (en) Process for manufacturing dialkyl carbonate from urea and alcohol
TWI468390B (en) Production method of α-hydroxycarboxylate
JP2005517003A (en) Continuous production method of aromatic carbonate using heterogeneous catalyst and reaction apparatus thereof
KR19990078213A (en) Process for preparing alpha-hydroxycarboxylate
WO2009056483A2 (en) Process for preparing chlorocyan
JP5059400B2 (en) Equilibrium limiting reaction method
JP2000169432A (en) Production of alpha-hydroxycarboxylic acid ester
JP4550431B2 (en) Method for producing methyl formate
JP2008247910A (en) Method for producing alpha-hydroxycarboxylic acid ester
TW202340348A (en) Improved method of depolymerization of polyethylene terephthalate

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid