JPH11292824A - Production of alpha-hydroxycarboxylate - Google Patents

Production of alpha-hydroxycarboxylate

Info

Publication number
JPH11292824A
JPH11292824A JP10102880A JP10288098A JPH11292824A JP H11292824 A JPH11292824 A JP H11292824A JP 10102880 A JP10102880 A JP 10102880A JP 10288098 A JP10288098 A JP 10288098A JP H11292824 A JPH11292824 A JP H11292824A
Authority
JP
Japan
Prior art keywords
reaction
mol
catalyst
ammonia
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10102880A
Other languages
Japanese (ja)
Inventor
Kenichi Nakamura
健一 中村
Futoshi Kawako
太 河高
Kazuhiro Yamada
和寛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10102880A priority Critical patent/JPH11292824A/en
Priority to ES99105238T priority patent/ES2200429T3/en
Priority to DE69908230T priority patent/DE69908230T2/en
Priority to EP99105238A priority patent/EP0945423B1/en
Priority to TW088104250A priority patent/TW442466B/en
Priority to US09/274,863 priority patent/US6310236B1/en
Priority claimed from US09/274,863 external-priority patent/US6310236B1/en
Priority to KR1019990010056A priority patent/KR19990078213A/en
Publication of JPH11292824A publication Critical patent/JPH11292824A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing α-hydroxycarboxylate by reacting α-hydroxycarboxylic acid with an alcohol in high selectivity and high yield. SOLUTION: An α-hydroxycarboxylate is produced by reacting α- hydroxycarboxylic acid amide with an alcohol in liquid phase in the presence of a catalyst while distilling ammonia generated as gas off vapor phase so as to maintain the concentration of ammonia at the level of 0.1 wt.% or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はα−ヒドロキシカル
ボン酸アミドとアルコールからα−ヒドロキシカルボン
酸エステルを製造する方法に関する。α−ヒドロキシカ
ルボン酸エステルは、例えば乳酸エステルは高沸点溶剤
として用いられる他、食品添加物や香料、医農薬の原
料、生分解性ポリマーの原料として用いられる。また、
α−ヒドロキシイソ酪酸エステルは溶剤として用いられ
る他、脱水によるメタクリル酸エステル、特にメタクリ
ル酸メチルの生成、アミノリシスによるα−アミノ酸の
生成などの原料として用いられる等、工業的に重要な化
合物である。
The present invention relates to a method for producing an α-hydroxycarboxylic acid ester from an α-hydroxycarboxylic acid amide and an alcohol. α-Hydroxycarboxylic acid esters, for example, lactic acid esters are used as high-boiling solvents, and are used as food additives, flavors, raw materials for medical and agricultural chemicals, and raw materials for biodegradable polymers. Also,
α-Hydroxyisobutyric acid ester is an industrially important compound that is used as a solvent and as a raw material for producing methacrylic acid ester, particularly methyl methacrylate by dehydration, and producing α-amino acid by aminolysis.

【0002】[0002]

【従来の技術】α−ヒドロキシカルボン酸エステルを製
造する方法としては酸触媒を用いる方法が古くから知ら
れている。例えば、α−ヒドロキシイソ酪酸メチルを製
造する方法として、酸触媒を用いてアセトンシアンヒド
リンから直接α−ヒドロキシイソ酪酸メチルが得られて
いる。米国特許第2041820号公報にはアセトンシ
アンヒドリンと硫酸とメタノールとを100゜C以下の
温度で加水分解並びにエステル化を行ったのち、無水硫
酸ナトリウムを加え蒸留する方法が開示されている。し
かし、この方法においては、多量の硫酸アンモニウムを
副生し、その処理に多大な費用を要すると共に硫酸を使
用するため反応装置は高価な耐蝕性材料を使用しなけれ
ばならなかった。
2. Description of the Related Art As a method for producing an α-hydroxycarboxylic acid ester, a method using an acid catalyst has been known for a long time. For example, as a method for producing methyl α-hydroxyisobutyrate, methyl α-hydroxyisobutyrate has been obtained directly from acetone cyanohydrin using an acid catalyst. U.S. Pat. No. 2,041,820 discloses a method in which acetone cyanohydrin, sulfuric acid, and methanol are hydrolyzed and esterified at a temperature of 100 ° C. or less, and then anhydrous sodium sulfate is added thereto for distillation. However, in this method, a large amount of ammonium sulfate is produced as a by-product, and the treatment requires a great deal of cost. In addition, since sulfuric acid is used, the reactor must use expensive corrosion-resistant materials.

【0003】α−ヒドロキシカルボン酸アミドとアルコ
ールからα−ヒドロキシカルボン酸エステルを製造する
方法としては特開昭52−3015号公報には金属カル
ボキシレートの存在下で反応を実施する方法が示されて
いる。このなかで、アルコーリシスを圧力反応器中でア
ルコールの沸点を越える温度で実施し、その際反応器を
間欠的にまたは部分的に放圧することにより、生じたア
ンモニアを除去する方法が提案されている。しかし、こ
の方法では収率が低く、副生成物も多く実用的でない。
特開平6−345692号公報、特開平7ー25815
4号公報及び特開平8−73408号公報において不溶
性の固体酸触媒または金属触媒の存在下で反応する方法
が提案されている。しかし、本研究者らが検討したとこ
ろ、高収率でα−ヒドロキシカルボン酸エステルを製造
するには、使用する触媒量が多く、反応に長時間を要
し、副生成物も多く、工業的には実用的ではなかった。
As a method for producing an α-hydroxycarboxylic acid ester from an α-hydroxycarboxylic acid amide and an alcohol, JP-A-52-3015 discloses a method in which a reaction is carried out in the presence of a metal carboxylate. I have. In this, a method has been proposed in which the alcoholysis is carried out in a pressure reactor at a temperature above the boiling point of the alcohol, whereby the reactor is intermittently or partially depressurized to remove the ammonia produced. I have. However, this method is not practical because the yield is low and there are many by-products.
JP-A-6-345492, JP-A-7-25815
No. 4 and JP-A-8-73408 propose a method of reacting in the presence of an insoluble solid acid catalyst or metal catalyst. However, the present inventors have studied that, in order to produce α-hydroxycarboxylic acid ester in high yield, a large amount of catalyst is used, a long time is required for the reaction, many by-products are produced, and Was not practical.

【0004】[0004]

【発明が解決しようとする課題】従来技術において、α
−ヒドロキシカルボン酸エステルを製造する際には多量
の硫酸などの副原料を必要としたり、触媒を用いる場合
でも使用量が多かったり、反応に長時間を要したり、副
生成物が多かったり、工業的には実用的ではなかった。
本発明の目的は、触媒を用いてα−ヒドロキシカルボン
酸アミドとアルコールからα−ヒドロキシカルボン酸エ
ステルの製造を工業的に有利に実施できる方法を提供す
ることにあり、具体的には、この反応の方式および条件
を変えることにより従来の問題点を解決することにあ
る。
In the prior art, α
-When producing a hydroxycarboxylic acid ester, a large amount of auxiliary materials such as sulfuric acid are required, or even when a catalyst is used, the amount used is large, the reaction takes a long time, the by-product is large, It was not industrially practical.
An object of the present invention is to provide a method capable of industrially and advantageously performing the production of an α-hydroxycarboxylic acid ester from an α-hydroxycarboxylic acid amide and an alcohol using a catalyst. To solve the conventional problems by changing the method and conditions of the above.

【0005】[0005]

【課題を解決するための手段】本発明者らは、液相で実
施される当該下式の反応について種々検討した結果、反
応液中のアンモニアの存在量を少なくするほど反応速度
が向上し高い転化率と選択率が得られ、副生成物も少な
いことを見出した。本反応は次式(1) で示される。 R1
R2C(OH)CONH2 + R3OH = R1R2C(OH)COOR3 + NH3
(1)( R1およびR2は水素またはアルキル基。R3OHはアル
コールを表す。) 本反応は平衡反応であるから生成系のアンモニアを留去
すると生成側に反応が進行することは当然である。従来
技術においても生成するアンモニアにより圧力上昇が生
じ、これを間欠的にまたは部分的に放圧し平衡を生成側
に進めることは先に述べたように公知である。しかしア
ンモニアは加圧下においてアルコールやα−ヒドロキシ
カルボン酸エステルに溶解するため、この操作方法のみ
では液相中のアンモニア濃度を低くすることは出来な
い。本研究者らは、反応液を沸騰状態にするか及び/又
は不活性ガスをバブリングすることにより、発生するア
ンモニアを気体として気相に留去し反応液中のアンモニ
ア濃度を低く保ちながら反応を実施することで、反応速
度が向上し高い転化率と選択率が得られ、副生成物も少
ないことを見出した。特に本研究者らは、反応液中のア
ンモニア濃度を0.1重量%以下に保つことが、今まで
誰も指摘していなかった副生成物の抑制に効果のあるこ
とを見出した。
The present inventors have conducted various studies on the reaction of the following formula carried out in the liquid phase. As a result, the smaller the amount of ammonia in the reaction solution, the higher the reaction rate and the higher the reaction rate. It was found that conversion and selectivity were obtained, and that there were few by-products. This reaction is represented by the following formula (1). R 1
R 2 C (OH) CONH 2 + R 3 OH = R 1 R 2 C (OH) COOR 3 + NH 3
(1) (R 1 and R 2 are hydrogen or alkyl groups; R 3 OH is an alcohol.) Since this reaction is an equilibrium reaction, it is natural that the reaction proceeds to the production side when ammonia in the production system is distilled off. It is. It is known in the prior art that, as described above, the pressure generated by the produced ammonia is increased intermittently or partially and the equilibrium is advanced to the production side. However, since ammonia dissolves in alcohol or α-hydroxycarboxylic acid ester under pressure, the ammonia concentration in the liquid phase cannot be reduced only by this operation method. By boiling the reaction solution and / or bubbling an inert gas, the researchers distill off the generated ammonia as a gas into the gas phase and maintain the reaction while keeping the ammonia concentration in the reaction solution low. It has been found that by carrying out, the reaction rate is improved, a high conversion and selectivity are obtained, and the amount of by-products is small. In particular, the present researchers have found that keeping the ammonia concentration in the reaction solution at 0.1% by weight or less is effective in suppressing by-products that no one has pointed out so far.

【0006】副生成物は、次式(2) で示すように反応液
中にアンモニアが存在すると生成物であるα−ヒドロキ
シカルボン酸エステルとアンモニアからα−ヒドロキシ
カルボン酸の4級アミン塩が生成し、次いでホフマン分
解経由でα−ヒドロキシカルボン酸(N−アルキル)ア
ミドが発生するのである。 R1R2C(OH)COOR3 + NH3 = [R1R2C(OH)COO] - [R3NH3] + = R1R2C(OH)CONR3H + H2O (2) 反応液中のアンモニア濃度が0.1重量%より多いと、
このα−ヒドロキシカルボン酸(N−アルキル)アミド
の生成が増加し、選択率を著しく低下させる。
As a by-product, when ammonia is present in the reaction solution as shown in the following formula (2), a quaternary amine salt of α-hydroxycarboxylic acid is formed from the product α-hydroxycarboxylic acid ester and ammonia Then, α-hydroxycarboxylic acid (N-alkyl) amide is generated via Hoffman decomposition. R 1 R 2 C (OH) COOR 3 + NH 3 = [R 1 R 2 C (OH) COO] - [R 3 NH 3 ] + = R 1 R 2 C (OH) CONR 3 H + H 2 O ( 2) If the ammonia concentration in the reaction solution is more than 0.1% by weight,
The formation of the α-hydroxycarboxylic acid (N-alkyl) amide increases, and the selectivity is significantly reduced.

【0007】また、本研究者らは、反応液中のアンモニ
ア濃度が高いと、ただ単に平衡反応で生成系に反応が進
行しにくくなる以外に、アンモニアが触媒に配位または
吸着し、原料であるα−ヒドロキシカルボン酸アミドの
配位または吸着を著しく阻害し反応速度の低下をまねく
ことも見出した。即ち、反応液中のアンモニア濃度が
0.1重量%より多いと、平衡転化率まで反応が進行し
なくなり、みかけの反応速度が遅くなり、反応が停止し
てしまうのである。
[0007] In addition, if the concentration of ammonia in the reaction solution is high, the present researchers not only make it difficult for the reaction to proceed to the production system by the equilibrium reaction, but also coordinate or adsorb ammonia to the catalyst, and It has also been found that the coordination or adsorption of a certain α-hydroxycarboxylic acid amide is significantly inhibited, leading to a reduction in the reaction rate. That is, when the ammonia concentration in the reaction solution is more than 0.1% by weight, the reaction does not proceed to the equilibrium conversion rate, the apparent reaction rate becomes slow, and the reaction stops.

【0008】反応液中のアンモニア濃度を0.1重量%
以下に保つ手段としては、発生したアンモニアにより生
じた圧力上昇分を間欠的にまたは部分的に放圧した程度
では不十分である。本研究者らは反応液を沸騰状態にす
るか及び/又は不活性ガスをバブリングし、アンモニア
とアルコールとを留去しながらアルコールを反応液相に
連続的に供給することにより容易にこれを達成できるこ
とを見出した。本発明の方法では常に強制的にアルコー
ルを反応液相に連続的に供給し、連続的に留出させるこ
とでアンモニアの液相からのガス化除去を促進させる。
The concentration of ammonia in the reaction solution is 0.1% by weight.
As a means for keeping the pressure below, it is not sufficient to release the pressure increase caused by the generated ammonia intermittently or partially. The researchers easily achieved this by boiling the reaction solution and / or bubbling an inert gas and continuously supplying alcohol to the reaction solution phase while distilling off ammonia and alcohol. I found what I could do. In the method of the present invention, the alcohol is always continuously supplied to the reaction liquid phase forcibly, and the alcohol is continuously distilled off, thereby promoting the gasification and removal of ammonia from the liquid phase.

【0009】[0009]

【発明の実施の形態】本反応に用いられるα−ヒドロキ
シカルボン酸アミドの代表例はラクトアミドまたはα−
ヒドロキシイソ酪酸アミドであるがこれらに限定される
ものではない。アルコールの代表例としては、メタノー
ル、エタノール、プロパノール、ブタノール、2ーエチ
ルヘキサノール、グリシジルアルコール、ベンジルアル
コール等が挙げられる。アルコールの使用量は、α−ヒ
ドロキシカルボン酸アミドに対して1〜50倍モル、好
ましくは2〜20倍モルの範囲で用いるのが良い。
BEST MODE FOR CARRYING OUT THE INVENTION Representative examples of α-hydroxycarboxylic acid amide used in this reaction are lactamamide and α-hydroxycarboxylic acid amide.
Hydroxyisobutyric acid amide, but is not limited thereto. Representative examples of alcohol include methanol, ethanol, propanol, butanol, 2-ethylhexanol, glycidyl alcohol, benzyl alcohol and the like. The alcohol is used in an amount of 1 to 50 times, preferably 2 to 20 times the mole of the α-hydroxycarboxylic acid amide.

【0010】反応温度は、100〜250℃、好ましく
は120〜230℃の範囲で行うのが良い。100℃よ
り低い温度では反応速度が小さくなり、また250℃よ
り高い温度ではα−アルコキシカルボン酸エステル、α
−ヒドロキシカルボン酸や脱水生成物であるオレフィン
誘導体などの副生成物量が多くなり好ましくない。本反
応は、反応系に水が存在しないほうが好ましいが、水の
量がα−ヒドロキシカルボン酸アミドに対して3倍モル
以下なら反応は進行する。
The reaction temperature is in the range of 100 to 250 ° C., preferably 120 to 230 ° C. At a temperature lower than 100 ° C., the reaction rate decreases, and at a temperature higher than 250 ° C., α-alkoxycarboxylic acid ester, α
-The amount of by-products such as hydroxycarboxylic acid and olefin derivatives which are dehydration products increases, which is not preferable. In this reaction, it is preferable that water is not present in the reaction system, but the reaction proceeds when the amount of water is 3 times or less the molar amount of α-hydroxycarboxylic acid amide.

【0011】反応圧は、使用されるアルコールの種類お
よび量、反応温度等により適時決められるが、1〜10
0気圧、好ましくは5〜50気圧の範囲で行うのがよ
い。本反応は、溶媒の共存下に反応を行うこともでき
る。また、反応の形式は、回分式、連続式の何れの方法
によっても行うことができる。
The reaction pressure is determined as appropriate depending on the type and amount of the alcohol used, the reaction temperature and the like.
It is good to carry out at 0 atm, preferably at 5 to 50 atm. This reaction can also be performed in the presence of a solvent. The reaction can be performed in any of a batch system and a continuous system.

【0012】本発明で使用される触媒は、反応条件にお
いて反応液に可溶性なものであっても、不溶性なもので
あってもよい。可溶性触媒としてはα−ヒドロキシカル
ボン酸アミドと錯体を形成する金属種の使用が好まし
く、特にチタンと錫が適しているが、これに限定される
ものではない。チタンを金属種として選んだ場合、チタ
ンテトライソプロポキシドのようなアルコキシラートを
反応系に直接仕込んで、系中で可溶性のチタンとα−ヒ
ドロキシカルボン酸アミドとからなる錯体を形成させて
もいいし、別途系外でチタンテトライソプロポキシドと
α−ヒドロキシカルボン酸アミドから錯体を形成し、こ
れを触媒として反応系に添加しても良い。錫を選んだ場
合にも同様のことが言え、触媒原料前駆体の金属化合物
は特に限定されない。
The catalyst used in the present invention may be soluble or insoluble in the reaction solution under the reaction conditions. As the soluble catalyst, use of a metal species which forms a complex with α-hydroxycarboxylic acid amide is preferable, and titanium and tin are particularly suitable, but not limited thereto. When titanium is selected as the metal species, an alkoxylate such as titanium tetraisopropoxide may be directly charged into the reaction system to form a complex of soluble titanium and α-hydroxycarboxylic acid amide in the system. Alternatively, a complex may be separately formed from titanium tetraisopropoxide and α-hydroxycarboxylic acid amide outside the system, and this may be added to the reaction system as a catalyst. The same can be said for the case of selecting tin, and the metal compound of the catalyst raw material precursor is not particularly limited.

【0013】不溶性触媒としては、Sb,Sc,Y,L
a,Ce,Ti,Zr,Hf,V,Nb,Ta,Cr,
Mo,W,Tc,Re,Fe,Co,Ni,Cu,A
l,Si,Sn,PbおよびBiからなる群より選ばれ
る少なくとも1種の元素を含む金属酸化物、またはT
i,Zr,Hf,V,Nb,Ta,Cr,Mo,W,F
e,Co,Ni,Cu,Ga,In,BiおよびTeか
らなる群より選ばれる少なくとも1種の元素を含む不溶
性の金属が好ましい。
As the insoluble catalyst, Sb, Sc, Y, L
a, Ce, Ti, Zr, Hf, V, Nb, Ta, Cr,
Mo, W, Tc, Re, Fe, Co, Ni, Cu, A
a metal oxide containing at least one element selected from the group consisting of 1, Si, Sn, Pb and Bi;
i, Zr, Hf, V, Nb, Ta, Cr, Mo, W, F
Insoluble metals containing at least one element selected from the group consisting of e, Co, Ni, Cu, Ga, In, Bi and Te are preferred.

【0014】可溶性触媒、不溶性触媒いずれも使用方法
は反応形式により適時決められる。不溶性触媒はスラリ
ーで使用するか、成形して使用するかはその使用方法に
合せて決められる。
The method of using both the soluble catalyst and the insoluble catalyst is appropriately determined depending on the reaction type. Whether the insoluble catalyst is used in a slurry or formed and used is determined according to the method of use.

【0015】[0015]

【実施例】以下に実施例をあげて本発明の方法を更に詳
しく説明する。 実施例1 α−ヒドロキシイソ酪酸アミド(HBD)65.3g
(0.634mol)をイソプロパノール1000gに
溶解させた。ここにチタンテトライソプロポキシド30
g(0.106mol)をイソプロパノール1000g
に溶解させた液を加えた。混合液をロータリーエバポレ
ーターを用いてイソプロパノールを留去し、840gに
濃縮した。室温で一昼夜放置し析出した沈殿をロ過し、
ヘプタンで洗浄後、真空乾燥して37.0gの結晶を得
た。得られた錯体の元素分析を行ったところ、 Ti:10.5
wt%, C:42.7wt%, H:7.91wt%, N:12.1wt%となった。この
錯体は Ti(HBD)4 と同定された(元素分析理論値:Ti:1
0.4wt%, C:41.8wt%, H:7.83wt%, N:12.2wt% )。ジャケ
ット式還流凝縮器および撹拌器付きの内容積300ml
のステンレス製オートクレーブにα−ヒドロキシイソ酪
酸アミド30.0g(0.291mol)、メタノール
100g、 Ti(HBD)4錯体4.85g(0.0106mo
l)を仕込み、圧力を3.0MPaに保ち、撹拌下、1
90℃でオートクレーブに窒素ガスを送り込み、生成す
るアンモニアをオートクレーブから窒素ガスと共に放出
しながら1.5時間反応を行った。この際、還流凝縮器
のジャケットに185℃のオイルを循環させ加温し、ア
ンモニアと共にメタノールの一部を30g/hrの速度
で還流凝縮器上部より抜出し、同時に反応器にメタノー
ルを30g/hrの速度で供給した。反応後、反応液を
冷却し、ガスクロマトグラフィーにより分析を行った。
生成液中のアンモニア濃度は0.01wt%以下であ
り、α−ヒドロキシイソ酪酸アミド転化率95.3mo
l%,α−ヒドロキシイソ酪酸メチルエステル選択率9
7.1mol%,α−ヒドロキシイソ酪酸(N−メチ
ル)アミド選択率2.9mol%が得られた。
The method of the present invention will be described in more detail with reference to the following examples. Example 1 65.3 g of α-hydroxyisobutyric acid amide (HBD)
(0.634 mol) was dissolved in 1000 g of isopropanol. Here titanium tetraisopropoxide 30
g (0.106 mol) in 1000 g of isopropanol
Was added. Isopropanol was distilled off from the mixture using a rotary evaporator, and the mixture was concentrated to 840 g. Leave it at room temperature for 24 hours to filter out the deposited precipitate,
After washing with heptane, vacuum drying gave 37.0 g of crystals. Elemental analysis of the obtained complex revealed that Ti: 10.5
wt%, C: 42.7 wt%, H: 7.91 wt%, N: 12.1 wt%. This complex was identified as Ti (HBD) 4 (theoretical element analysis: Ti: 1
0.4wt%, C: 41.8wt%, H: 7.83wt%, N: 12.2wt%). 300ml internal volume with jacketed reflux condenser and stirrer
30.0 g (0.291 mol) of α-hydroxyisobutyric amide, 100 g of methanol, 4.85 g of Ti (HBD) 4 complex (0.0106 mol) in a stainless steel autoclave
l), the pressure is maintained at 3.0 MPa, and 1
Nitrogen gas was fed into the autoclave at 90 ° C., and the reaction was carried out for 1.5 hours while releasing the produced ammonia together with the nitrogen gas from the autoclave. At this time, oil at 185 ° C. was circulated through the jacket of the reflux condenser and heated, and a portion of methanol was removed from the top of the reflux condenser together with ammonia at a rate of 30 g / hr, and at the same time, 30 g / hr of methanol was introduced into the reactor. Feeded at speed. After the reaction, the reaction solution was cooled and analyzed by gas chromatography.
The ammonia concentration in the product solution is 0.01 wt% or less, and the conversion of α-hydroxyisobutyric acid amide is 95.3 mol.
1%, α-hydroxyisobutyric acid methyl ester selectivity 9
7.1 mol% and α-hydroxyisobutyric acid (N-methyl) amide selectivity of 2.9 mol% were obtained.

【0016】比較例1 撹拌器付きの内容積300mlのステンレス製オートク
レーブにα−ヒドロキシイソ酪酸アミド30.0g
(0.291mol)、メタノール100g、Ti(HBD)4
錯体4.85g(0.0106mol)を仕込み、圧力
を3.0MPaに保ち、撹拌下、190℃でオートクレ
ーブを密閉し1.5時間反応を行った。生成液中のアン
モニア濃度は1.01wt%であり、α−ヒドロキシイ
ソ酪酸アミド転化率34.9mol%,α−ヒドロキシ
イソ酪酸メチルエステル選択率78.9mol%、α−
ヒドロキシイソ酪酸(N−メチル)アミド選択率18.
2mol%が得られた。
Comparative Example 1 30.0 g of α-hydroxyisobutyric acid amide was placed in a 300 ml stainless steel autoclave equipped with a stirrer.
(0.291 mol), 100 g of methanol, Ti (HBD) 4
4.85 g (0.0106 mol) of the complex was charged, the pressure was maintained at 3.0 MPa, and the autoclave was closed at 190 ° C. with stirring to carry out a reaction for 1.5 hours. The ammonia concentration in the product solution was 1.01% by weight, α-hydroxyisobutyric acid amide conversion was 34.9 mol%, α-hydroxyisobutyric acid methyl ester selectivity was 78.9 mol%, and α-hydroxyisobutyric acid methyl ester was 78.9 mol%.
Hydroxyisobutyric acid (N-methyl) amide selectivity
2 mol% was obtained.

【0017】比較例2 ジャケット式還流凝縮器および撹拌器付きの内容積30
0mlのステンレス製オートクレーブにα−ヒドロキシ
イソ酪酸アミド30.0g(0.291mol)、メタ
ノール100g、Ti(HBD)4錯体4.85g(0.010
6mol)を仕込み、圧力を3.0MPaに保ち、撹拌
下、190℃でオートクレーブに窒素ガスを送り込み、
生成するアンモニアをオートクレーブから窒素ガスと共
に放出しながら1.5時間反応を行った。この際、還流
凝縮器のジャケットに20℃の冷水を循環させ冷却し、
反応器で蒸発したメタノールは全量還流凝縮器で凝縮さ
れ、アンモニアを溶解したメタノールとして反応器に戻
るようにした。生成液中のアンモニア濃度は0.59w
t%であり、α−ヒドロキシイソ酪酸アミド転化率5
6.4mol%,α−ヒドロキシイソ酪酸メチルエステ
ル選択率87.1mol%、α−ヒドロキシイソ酪酸
(N−メチル)アミド選択率11.2mol%が得られ
た。
Comparative Example 2 Internal volume 30 with jacket-type reflux condenser and stirrer
In a 0 ml stainless steel autoclave, 30.0 g (0.291 mol) of α-hydroxyisobutyric acid amide, 100 g of methanol, 4.85 g of Ti (HBD) 4 complex (0.010 mol)
6 mol), the pressure was maintained at 3.0 MPa, and nitrogen gas was fed into the autoclave at 190 ° C. with stirring.
The reaction was carried out for 1.5 hours while releasing generated ammonia together with nitrogen gas from the autoclave. At this time, chilled water of 20 ° C. was circulated through the jacket of the reflux condenser to cool it.
All the methanol evaporated in the reactor was condensed in a reflux condenser, and returned to the reactor as methanol in which ammonia was dissolved. The ammonia concentration in the product liquid is 0.59w
% of α-hydroxyisobutyric acid amide conversion 5
6.4 mol%, α-hydroxyisobutyric acid methyl ester selectivity of 87.1 mol%, and α-hydroxyisobutyric acid (N-methyl) amide selectivity of 11.2 mol% were obtained.

【0018】実施例2 ラクトアミド(LD)56.5g(0.634mol)
をイソプロパノール500gに溶解させた。ここにチタ
ンテトライソプロポキシド30g(0.106mol)
をイソプロパノール150gに溶解させた液を加えた。
混合液をロータリーエバポレーターを用いてイソプロパ
ノールを留去し、200gに濃縮した。室温で一昼夜放
置し析出した沈殿をロ過し、ヘプタンで洗浄後、真空乾
燥して34.3gの結晶を得た。得られた錯体の元素分
析を行ったところ、 Ti:11.9wt%,C:36.0wt%, H:6.84wt
%,N:13.6wt%となった。この錯体は Ti(LD)4と同定され
た(元素分析理論値:Ti:11.9wt%, C:35.6wt%, H:6.93w
t%, N:13.9wt% )。ジャケット式還流凝縮器および撹拌
器付きの内容積300mlのステンレス製オートクレー
ブにラクトアミド25.9g(0.291mol)、メ
タノール100g、 Ti(LD)4錯体4.28g(0.01
06mol)を仕込み、圧力を3.0MPaに保ち、撹
拌下、190℃でオートクレーブに窒素ガスを送り込
み、生成するアンモニアをオートクレーブから窒素ガス
と共に放出しながら1.5時間反応を行った。この際、
還流凝縮器のジャケットに185℃のオイルを循環させ
加温し、アンモニアと共にメタノールの一部を30g/
hrの速度で還流凝縮器上部より抜出し、同時に反応器
にメタノールを30g/hrの速度で供給した。反応
後、反応液を冷却し、ガスクロマトグラフィーにより分
析を行った。生成液中のアンモニア濃度は0.01wt
%以下であり、ラクロアミド転化率95.6mol%,
α−ヒドロキシイソ酪酸メチルエステル選択率97.4
mol%,α−ヒドロキシイソ酪酸(N−メチル)アミ
ド選択率2.6mol%が得られた。
Example 2 Lactamide (LD) 56.5 g (0.634 mol)
Was dissolved in 500 g of isopropanol. Here, 30 g (0.106 mol) of titanium tetraisopropoxide
Was dissolved in 150 g of isopropanol.
Isopropanol was distilled off from the mixture using a rotary evaporator and concentrated to 200 g. The precipitate was left standing overnight at room temperature, and the precipitate was filtered, washed with heptane, and dried under vacuum to obtain 34.3 g of crystals. When the elemental analysis of the obtained complex was performed, Ti: 11.9 wt%, C: 36.0 wt%, H: 6.84 wt%
%, N: 13.6 wt%. This complex was identified as Ti (LD) 4 (theoretical elemental analysis: Ti: 11.9 wt%, C: 35.6 wt%, H: 6.93 w
t%, N: 13.9 wt%). 25.9 g (0.291 mol) of lactamide, 100 g of methanol, 4.28 g of Ti (LD) 4 complex were placed in a 300 ml stainless steel autoclave equipped with a jacket-type reflux condenser and a stirrer.
06 mol), the pressure was maintained at 3.0 MPa, a nitrogen gas was fed into the autoclave at 190 ° C. with stirring, and the reaction was carried out for 1.5 hours while releasing the produced ammonia together with the nitrogen gas from the autoclave. On this occasion,
The oil at 185 ° C. was circulated through the jacket of the reflux condenser and heated.
The methanol was withdrawn from the upper part of the reflux condenser at a rate of hr, and at the same time, methanol was supplied to the reactor at a rate of 30 g / hr. After the reaction, the reaction solution was cooled and analyzed by gas chromatography. Ammonia concentration in product solution is 0.01wt
% Or less, and a lacroamide conversion rate of 95.6 mol%,
α-Hydroxyisobutyric acid methyl ester selectivity 97.4
mol%, a selectivity for α-hydroxyisobutyric acid (N-methyl) amide of 2.6 mol% was obtained.

【0019】実施例3 硝酸ビスマス40gを10%硝酸水溶液50mlに溶解
し、撹拌しながら28%アンンモニア水でpH8に調整
し、水酸化ビスマスを沈殿させた。この沈殿物をロ過、
水洗した後、一昼夜110℃で乾燥し、450℃で3時
間焼成を行った。得られた酸化物3.0gを触媒として
用いた以外は、実施例1と同様の方法でメタノールによ
るエステル化反応を行った。反応後、反応液を冷却し、
ガスクロマトグラフィーにより分析を行った。生成液中
のアンモニア濃度は0.01wt%以下であり、α−ヒ
ドロキシイソ酪酸アミド転化率57.3mol%,α−
ヒドロキシイソ酪酸メチルエステル選択率97.3mo
l%,α−ヒドロキシイソ酪酸(N−メチル)アミド選
択率2.7mol%が得られた。
Example 3 Bismuth nitrate (40 g) was dissolved in a 10% aqueous nitric acid solution (50 ml), and the pH was adjusted to 28 with 28% aqueous ammonia while stirring to precipitate bismuth hydroxide. Filter this precipitate,
After washing with water, it was dried at 110 ° C. all day and night, and baked at 450 ° C. for 3 hours. An esterification reaction with methanol was carried out in the same manner as in Example 1 except that 3.0 g of the obtained oxide was used as a catalyst. After the reaction, the reaction solution is cooled,
The analysis was performed by gas chromatography. The ammonia concentration in the product solution is 0.01 wt% or less, the conversion of α-hydroxyisobutyric amide is 57.3 mol%,
Hydroxyisobutyric acid methyl ester selectivity 97.3mo
1% and a selectivity of α-hydroxyisobutyric acid (N-methyl) amide of 2.7 mol% were obtained.

【0020】比較例3 実施例3で得られた酸化ビスマス3.0gを触媒として
用い、比較例2と同様の方法でメタノールによるエステ
ル化反応を行った。生成液中のアンモニア濃度は0.4
7wt%であり、α−ヒドロキシイソ酪酸アミド転化率
32.7mol%,α−ヒドロキシイソ酪酸メチルエス
テル選択率80.3mol%,α−ヒドロキシイソ酪酸
(N−メチル)アミド選択率19.7mol%が得られ
た。
Comparative Example 3 Using 3.0 g of bismuth oxide obtained in Example 3 as a catalyst, an esterification reaction with methanol was carried out in the same manner as in Comparative Example 2. The ammonia concentration in the product liquid is 0.4
Α-hydroxyisobutyric acid amide conversion rate of 32.7 mol%, α-hydroxyisobutyric acid methyl ester selectivity of 80.3 mol%, and α-hydroxyisobutyric acid (N-methyl) amide selectivity of 19.7 mol%. Obtained.

【0021】実施例4 硝酸セリウム200gを水2000mlに溶解し、撹拌
しながら5%炭酸アンモニウム水溶液を加えpH8に調
整し、沈殿を生成させた。この沈殿物をロ過、水洗した
後、一昼夜110℃で乾燥し、450℃で3時間焼成を
行った。得られた酸化物3.0gを触媒として用いた以
外は、実施例1と同様の方法でメタノールによるエステ
ル化反応を行った。反応後、反応液を冷却し、ガスクロ
マトグラフィーにより分析を行った。生成液中のアンモ
ニア濃度は0.01wt%以下であり、α−ヒドロキシ
イソ酪酸アミド転化率81.7mol%,α−ヒドロキ
シイソ酪酸メチルエステル選択率97.4mol%,α
−ヒドロキシイソ酪酸(N−メチル)アミド選択率2.
6mol%が得られた。
Example 4 200 g of cerium nitrate was dissolved in 2000 ml of water, and a 5% aqueous solution of ammonium carbonate was added thereto with stirring to adjust the pH to 8, thereby producing a precipitate. After the precipitate was filtered and washed with water, it was dried at 110 ° C. all day and night and calcined at 450 ° C. for 3 hours. An esterification reaction with methanol was carried out in the same manner as in Example 1 except that 3.0 g of the obtained oxide was used as a catalyst. After the reaction, the reaction solution was cooled and analyzed by gas chromatography. The ammonia concentration in the product solution is 0.01 wt% or less, α-hydroxyisobutyric acid amide conversion is 81.7 mol%, α-hydroxyisobutyric acid methyl ester selectivity is 97.4 mol%, α
-Hydroxyisobutyric acid (N-methyl) amide selectivity 2.
6 mol% was obtained.

【0022】比較例4 実施例4で得られた酸化セリウム3.0gを触媒として
用い、比較例2と同様の方法でメタノールによるエステ
ル化反応を行った。生成液中のアンモニア濃度は0.8
6wt%であり、α−ヒドロキシイソ酪酸アミド転化率
52.7mol%,α−ヒドロキシイソ酪酸メチルエス
テル選択率86.5mol%,α−ヒドロキシイソ酪酸
(N−メチル)アミド選択率13.5mol%が得られ
た。
Comparative Example 4 Using 3.0 g of the cerium oxide obtained in Example 4 as a catalyst, an esterification reaction with methanol was carried out in the same manner as in Comparative Example 2. The ammonia concentration in the product liquid is 0.8
Α-hydroxyisobutyric acid amide conversion rate of 52.7 mol%, α-hydroxyisobutyric acid methyl ester selectivity of 86.5 mol%, and α-hydroxyisobutyric acid (N-methyl) amide selectivity of 13.5 mol%. Obtained.

【0023】実施例5 金属ビスマスの微粉末2.0gを触媒として用いた以外
は、実施例1と同様の方法でメタノールによるエステル
化反応を行った。反応後、反応液を冷却し、ガスクロマ
トグラフィーにより分析を行った。生成液中のアンモニ
ア濃度は0.01wt%以下であり、α−ヒドロキシイ
ソ酪酸アミド転化率64.7mol%,α−ヒドロキシ
イソ酪酸メチルエステル選択率97.3mol%,α−
ヒドロキシイソ酪酸(N−メチル)アミド選択率2.7
mol%が得られた。
Example 5 An esterification reaction with methanol was carried out in the same manner as in Example 1, except that 2.0 g of a fine powder of metallic bismuth was used as a catalyst. After the reaction, the reaction solution was cooled and analyzed by gas chromatography. The ammonia concentration in the product solution is 0.01 wt% or less, the conversion of α-hydroxyisobutyric acid amide is 64.7 mol%, the selectivity of α-hydroxyisobutyric acid methyl ester is 97.3 mol%,
Hydroxyisobutyric acid (N-methyl) amide selectivity 2.7
mol% was obtained.

【0024】比較例5 金属ビスマスの微粉末2.0gを触媒して用い、比較例
2と同様の方法でメタノールによるエステル化反応を行
った。生成液中のアンモニア濃度は0.75wt%であ
り、α−ヒドロキシイソ酪酸アミド転化率47.4mo
l%,α−ヒドロキシイソ酪酸メチルエステル選択率8
2.6mol%,α−ヒドロキシイソ酪酸(N−メチ
ル)アミド選択率17.4mol%が得られた。
Comparative Example 5 An esterification reaction with methanol was carried out in the same manner as in Comparative Example 2, using 2.0 g of a fine powder of metallic bismuth as a catalyst. The ammonia concentration in the product solution was 0.75 wt%, and the α-hydroxyisobutyric acid amide conversion was 47.4 mo.
1%, α-hydroxyisobutyric acid methyl ester selectivity 8
2.6 mol% and a selectivity of α-hydroxyisobutyric acid (N-methyl) amide of 17.4 mol% were obtained.

【0025】[0025]

【発明の効果】本発明の方法によりα−ヒドロキシカル
ボン酸アミドとアルコールとからα−ヒドロキシカルボ
ン酸エステルを高選択率、高収率で製造することができ
る。
According to the present invention, an α-hydroxycarboxylic acid ester can be produced from an α-hydroxycarboxylic acid amide and an alcohol in a high selectivity and a high yield.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C07B 61/00 300 C07B 61/00 300

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 α−ヒドロキシカルボン酸アミドとアル
コールとを触媒の存在下、発生するアンモニアを気体と
して気相に留去することにより反応液中のアンモニア濃
度を0.1重量%以下に保ちながら液相で反応させるこ
とを特徴とするα−ヒドロキシカルボン酸エステルの製
造方法。
1. A method according to claim 1, wherein the generated ammonia is distilled off as a gas in the gas phase in the presence of a catalyst from an α-hydroxycarboxylic acid amide and an alcohol to keep the ammonia concentration in the reaction solution at 0.1% by weight or less. A method for producing an α-hydroxycarboxylic acid ester, which comprises reacting in a liquid phase.
【請求項2】 反応液を沸騰状態にするか及び/又は不
活性ガスをバブリングすることにより発生するアンモニ
アを気体として気相に留去する請求項1記載の製造方
法。
2. The method according to claim 1, wherein ammonia generated by bringing the reaction solution into a boiling state and / or bubbling an inert gas is distilled off as a gas into a gas phase.
【請求項3】 アルコールを反応液相に連続的に供給し
ながら、連続的に留出する請求項1記載の製造方法。
3. The production method according to claim 1, wherein the alcohol is continuously distilled while continuously supplying the alcohol to the reaction liquid phase.
【請求項4】 α−ヒドロキシカルボン酸アミドが、ラ
クトアミド又はα−ヒドロキシイソ酪酸アミドで、アル
コールがメタノールである請求項1、2又は3記載の製
造方法。
4. The method according to claim 1, wherein the α-hydroxycarboxylic acid amide is lactoamide or α-hydroxyisobutyric acid amide, and the alcohol is methanol.
【請求項5】 触媒が可溶性のチタンおよび/または錫
とα−ヒドロキシカルボン酸アミドからなる金属錯体で
ある請求項1、2、3又は4記載の製造方法。
5. The process according to claim 1, wherein the catalyst is a metal complex comprising soluble titanium and / or tin and α-hydroxycarboxylic acid amide.
【請求項6】 触媒が、Sb,Sc,Y,La,Ce,
Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,
Tc,Re,Fe,Co,Ni,Cu,Al,Si,S
n,Pb及びBiからなる群より選ばれる少なくとも1
種の元素を含む不溶性の金属酸化物である請求項1、
2、3又は4記載の製造方法。
6. A catalyst comprising Sb, Sc, Y, La, Ce,
Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W,
Tc, Re, Fe, Co, Ni, Cu, Al, Si, S
at least one selected from the group consisting of n, Pb and Bi
Claim 1 which is an insoluble metal oxide containing a kind element.
5. The production method according to 2, 3 or 4.
【請求項7】 触媒が、Ti,Zr,Hf,V,Nb,
Ta,Cr,Mo,W,Fe,Co,Ni,Cu,G
a,In,Bi及びTeからなる群より選ばれる少なく
とも1種の元素を含む不溶性の金属である請求項1、
2、3又は4記載の製造方法。
7. The method according to claim 1, wherein the catalyst is Ti, Zr, Hf, V, Nb,
Ta, Cr, Mo, W, Fe, Co, Ni, Cu, G
2. An insoluble metal containing at least one element selected from the group consisting of a, In, Bi and Te.
5. The production method according to 2, 3 or 4.
JP10102880A 1998-03-25 1998-04-14 Production of alpha-hydroxycarboxylate Pending JPH11292824A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10102880A JPH11292824A (en) 1998-04-14 1998-04-14 Production of alpha-hydroxycarboxylate
ES99105238T ES2200429T3 (en) 1998-03-25 1999-03-13 ALFA-HYDROXICARBOXYLATE PREPARATION PROCEDURE.
DE69908230T DE69908230T2 (en) 1998-03-25 1999-03-13 Process for the preparation of alpha-hydroxycarboxylates
EP99105238A EP0945423B1 (en) 1998-03-25 1999-03-13 Process for preparing alpha-hydroxycarboxylate
TW088104250A TW442466B (en) 1998-03-25 1999-03-18 Process for preparing Α-hydroxycarboxylate
US09/274,863 US6310236B1 (en) 1998-03-25 1999-03-23 Process for preparing α-hydroxycarboxylate
KR1019990010056A KR19990078213A (en) 1998-03-25 1999-03-24 Process for preparing alpha-hydroxycarboxylate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10102880A JPH11292824A (en) 1998-04-14 1998-04-14 Production of alpha-hydroxycarboxylate
US09/274,863 US6310236B1 (en) 1998-03-25 1999-03-23 Process for preparing α-hydroxycarboxylate

Publications (1)

Publication Number Publication Date
JPH11292824A true JPH11292824A (en) 1999-10-26

Family

ID=26443569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10102880A Pending JPH11292824A (en) 1998-03-25 1998-04-14 Production of alpha-hydroxycarboxylate

Country Status (1)

Country Link
JP (1) JPH11292824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113964A1 (en) 2009-04-03 2010-10-07 三菱瓦斯化学株式会社 Method for producing α-hydroxycarboxylic acid ester
WO2019168135A1 (en) * 2018-02-28 2019-09-06 高砂香料工業株式会社 Method for converting n,n-dialkylamide compound into ester compound using complex of fourth-period transition metal as catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113964A1 (en) 2009-04-03 2010-10-07 三菱瓦斯化学株式会社 Method for producing α-hydroxycarboxylic acid ester
KR20120004432A (en) 2009-04-03 2012-01-12 미츠비시 가스 가가쿠 가부시키가이샤 Method for producing a-hydroxycarboxylic acid ester
WO2019168135A1 (en) * 2018-02-28 2019-09-06 高砂香料工業株式会社 Method for converting n,n-dialkylamide compound into ester compound using complex of fourth-period transition metal as catalyst
JPWO2019168135A1 (en) * 2018-02-28 2021-02-25 高砂香料工業株式会社 Method of converting N, N-dialkylamide compound catalyzed by the 4th period transition metal complex to an ester compound
US11377415B2 (en) 2018-02-28 2022-07-05 Takasago International Corporation Method for converting N,N-dialkylamide compound into ester compound using complex of fourth-period transition metal as catalyst

Similar Documents

Publication Publication Date Title
JP3295960B2 (en) Method for producing aldehydes
EP0418512B1 (en) Process for production of alpha-hydroxycarboxylic acid amide
US6310236B1 (en) Process for preparing α-hydroxycarboxylate
EP0406676B1 (en) Process for producing methyl methacrylate
KR101660560B1 (en) - method for producing -hydroxycarboxylic acid ester
JPH11508251A (en) Synthesis of N-acyl-N-alkyl carboxylate
JPH11292824A (en) Production of alpha-hydroxycarboxylate
JP2001158760A (en) Method of producing fumaric monoalkyl ester and sodium salt thereof
JP3229496B2 (en) Method for producing hydroxycarboxylic acid ester
JP2722645B2 (en) Process for producing carboxylic esters and formamides
JP3514525B2 (en) Method for producing hydroxyacetic acid ester
JPH11292825A (en) Production of alpha-hydroxycarboxylate
JP3191842B2 (en) Production method of lactate ester
JP2000026370A (en) Production of alpha-hydroxycarboxylic ester
JP4024388B2 (en) Method for producing aliphatic nitrile
CA2088124A1 (en) Process for preparing fatty peroxyacid precursors having amide moieties in the fatty chain
JP2829812B2 (en) Method for producing hydroxycarboxylic acid ester
JP2988638B2 (en) Method for producing tertiary butyl hydrazine
US6673964B1 (en) Process for producing a calcium carboxylate
JP3537489B2 (en) Method for producing N-long-chain acylamino acids and salts thereof, intermediate amidonitrile, and method for producing the same
JP3278925B2 (en) Process for producing octadienols and palladium complex
US5824818A (en) Process for preparing lactate
JPH11279120A (en) Production of alpha-hydroxycarboylate
JP3199618B2 (en) Method for producing 1,4-dihydroxy-2-naphthoic acid
JPH09151168A (en) Production of beta-alanine salt