KR19990069791A - Platinum thin film and deposition method for dielectric lower electrode - Google Patents

Platinum thin film and deposition method for dielectric lower electrode Download PDF

Info

Publication number
KR19990069791A
KR19990069791A KR1019980004253A KR19980004253A KR19990069791A KR 19990069791 A KR19990069791 A KR 19990069791A KR 1019980004253 A KR1019980004253 A KR 1019980004253A KR 19980004253 A KR19980004253 A KR 19980004253A KR 19990069791 A KR19990069791 A KR 19990069791A
Authority
KR
South Korea
Prior art keywords
thin film
platinum
platinum thin
dielectric
deposition method
Prior art date
Application number
KR1019980004253A
Other languages
Korean (ko)
Other versions
KR100291203B1 (en
Inventor
안준형
윤순길
이원재
김호기
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR1019980004253A priority Critical patent/KR100291203B1/en
Publication of KR19990069791A publication Critical patent/KR19990069791A/en
Application granted granted Critical
Publication of KR100291203B1 publication Critical patent/KR100291203B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/65Vaporizers

Abstract

본 발명은 유전체 하부전극용 백금(Pt)박막의 화학증착 방법에 관한 것으로, 백금(Pt)의 전구체로 메틸사이클로펜타디에닐 트리메틸 백금:(CH3)3(CH3C5H4)Pt를 사용하여 증착한 결과 기존의 증착방법보다 우수한 특성을 갖는 Pt박막을 제조할 수 있다.The present invention relates to a chemical vapor deposition method of a platinum (Pt) thin film for dielectric lower electrodes, and methylcyclopentadienyl trimethyl platinum as a precursor of platinum (Pt): (CH 3 ) 3 (CH 3 C 5 H 4 ) Pt As a result of the deposition using the Pt thin film having a superior characteristic than the conventional deposition method can be prepared.

본 발명의 화학증착법으로 제조된 백금박막은 스텝 커버리지(층 덮힘도)도 우수하고 700℃의 고온에서도 폴리실리콘(polysilicon)과 반응이 거의 없는 우수한 경계 특성을 나타내므로 비휘발성 기억소자, 초고집적 기억소자등의 유전체와 폴리실리콘 플러그(polysilicon plug)의 접속층에 활용이 가능한 백금 박막의 제조방법에 관한 것이다.The platinum thin film prepared by the chemical vapor deposition method of the present invention has excellent step coverage (layer coverage) and exhibits excellent boundary characteristics that hardly react with polysilicon even at a high temperature of 700 ° C. The present invention relates to a method for producing a platinum thin film that can be used for a connection layer between a dielectric such as an element and a polysilicon plug.

Description

유전체 하부전극용 백금박막 및 증착방법Platinum thin film and deposition method for dielectric lower electrode

본 발명은 유전체 하부전극용 백금박막의 화학적 증착방법에 관한 것이다.The present invention relates to a chemical vapor deposition method of a platinum thin film for a dielectric lower electrode.

유전체하부전극용 백금박막은 반도체 제조에 주로 사용되는데 본 발명의 백금박막은 고온에서 폴리실리콘과 반응이 억제되어 비휘발성 기억소자 및 초고집적용 기억소자의 유전체와 폴리실리콘 플러그(polysilicon plug)의 접속층에 활용이 가능한 백금박막의 제조방법에 관한 것이다.Platinum thin film for dielectric lower electrode is mainly used in semiconductor manufacturing. The platinum thin film of the present invention is inhibited from reacting with polysilicon at high temperature so that the dielectric and polysilicon plug of nonvolatile memory device and ultra-high density storage device are connected. It relates to a method for producing a platinum thin film that can be utilized for the layer.

본 발명과 관련된 선행기술로서 선 등이 발표(J. Appl. phys., 40, 1009, 1973)한 것은 백금박막을 물리적 증착방법 중의 하나인 스퍼터링에 의해 증착하였다. 리 등이 발표(Japan J. Appl. phys., 34, 5220, 1995)한 반도체 DRAM소자의 고유전체 커패시터 하부전극을 위해 백금박막을 전자빔 증발법으로 제조하여 스퍼터링법 보다 우수하다고 하였다. 포에테등이 발표(Appl. phys. Lett. 24, 391, 1974)한 백금박막이 실리콘과 약 200℃ 낮은 온도에서 반응하여 실리사이드를 형성하는 방법을 발표한바 있다.As disclosed in the prior art related to the present invention (J. Appl. Phys., 40, 1009, 1973), a platinum thin film was deposited by sputtering, which is one of physical vapor deposition methods. Lee et al. (Japan J. Appl. Phys., 34, 5220, 1995) said that the platinum thin film was fabricated by electron beam evaporation method for the lower electrode of the high dielectric capacitor of the semiconductor DRAM device, which is superior to sputtering method. Poet et al. (Appl. Phys. Lett. 24, 391, 1974) reported how a platinum thin film reacts with silicon at a low temperature of about 200 ° C to form silicides.

일반적으로 백금(Pt)박막 제조 방법인 스퍼터링(Sputtering)법, 전자빔 증발법(Electron-beam evaporation)법은 넓은 면적의 증착과 스텝커버리지(Step coverage)가 나쁘고 현재 응용되고 있는 DRAM 등의 구조에서 처럼 트랜지스터와 유전체를 연결하는 폴리실리콘(polysilicon)과 낮은 온도 (약 300도 미만)에서 반응하여 실리사이드를 형성하는 문제점을 갖고 있다. 본 발명은 이러한 문제점을 해결하기 위하여 소스를 사용한 MOCVD방법으로 박막을 제조하여 치밀한 구조를 지니며, 스텝 커버리지가 뛰어나고 또한 높은 온도에서도 폴리실리콘과 반응을 하지 않으므로 실리사이드를 형성하지 않는 우수한 백금박막을 화학증착법으로 제조하는데 있다.In general, the sputtering method and the electron-beam evaporation method, which are Pt thin film manufacturing methods, have a large area deposition and poor step coverage, and are similar to those of DRAMs currently applied. Polysilicon, which connects the transistor and the dielectric, reacts at low temperatures (less than about 300 degrees) to form silicides. In order to solve this problem, the present invention has a compact structure by producing a thin film by MOCVD method using a source, has excellent step coverage, and does not react with polysilicon even at high temperature. It is prepared by the vapor deposition method.

도 1은 백금박막제조를 위한 화학 증착 장치의 개략도이다1 is a schematic diagram of a chemical vapor deposition apparatus for platinum thin film production

도 2는 유기금속화학기상증착법:MOCVD법(a)과 스퍼터링법(b)으로 제조된 백금박막의 상형성을 나타낸 것이다2 shows the formation of an organometallic chemical vapor deposition method: a platinum thin film prepared by the MOCVD method (a) and the sputtering method (b).

도 3은 MOCVD법(a,c)과 스퍼터링법(b,d)으로 제조된 백금박막의 표면사진이다3 is a surface photograph of a platinum thin film prepared by MOCVD (a, c) and sputtering (b, d).

도 4는 MOCVD법으로 제조된 백금박막의 스텝커버리지를 나타낸 것이다4 shows step coverage of a platinum thin film prepared by MOCVD.

도 5는 MOCVD법과 스퍼터링법으로 제조된 백금박막의 AESd분석결과이다5 is an AESd analysis result of a platinum thin film prepared by MOCVD and sputtering.

도 6은 반도체 소자 응용 상태를 나타낸 것이다6 illustrates a semiconductor device application state.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 유량조절기2 : 니들밸브1: Flow regulator 2: Needle valve

3 : 소스버블러4 : 압력게이지3: source bubbler 4: pressure gauge

5 : 수조6 : 가열테이프5: water tank 6: heating tape

7 : 열 게이지8 : 기판7: heat gauge 8: substrate

9 : 노즐10 : 펌프밸브9: nozzle 10: pump valve

11 : 로타리펌프12 : 가열소스11: rotary pump 12: heating source

20 : 기판30 : 상부전극20: substrate 30: upper electrode

40 : 고유전제50 : 하부전극40: high dielectric constant 50: lower electrode

60 : 폴리실리콘플러그70 : 트란지스터60: polysilicon plug 70: transistor

본 발명은 Pt(백금) 박막의 화학증착을 위하여, Pt의 전구체(precursor)로 메틸사이클로펜타디에닐 트리메틸백금: (CH3)3(CH3C5H4)Pt를 사용하여 제조한 Pt박막이 높은 온도에서도 polysilicon과 반응이 억제되는 양호한 특성이 있으므로 비휘발성 기억소자 및 초고집적용 기억소자의 유전체와 폴리실리콘 플러그의 접속층에 활용할 수 있는 백금 박막을 제조하는 것으로 다음에서 본 발명에 의한 제조방법과 열처리특성의 분석 등을 보다 상세하게 설명하고자 한다.In the present invention, for the chemical vapor deposition of Pt (platinum) thin film, Pt thin film prepared using methylcyclopentadienyl trimethyl platinum as a precursor of Pt: (CH 3 ) 3 (CH 3 C 5 H 4 ) Pt Since there is a good characteristic that the reaction with polysilicon is suppressed even at this high temperature, a platinum thin film which can be used for the connection layer of the dielectric and the polysilicon plug of the nonvolatile memory device and the ultra-high integration memory device is manufactured according to the present invention. The method and analysis of heat treatment characteristics will be described in more detail.

본 발명에서 사용한 장비는 도 1과 같고 일반적인 MOCVD(화학기상증착법) 장비이다. 본 실험에서 사용한 소스는 (CH3)3(CH3C5H4)Pt로 각각의 실험조건은 표 1과 같다. 반응가스는 산소를 사용하였고 Ar가스로 소스를 반응기까지 이동시켰으며 증착온도는 400℃를 선정하였다. 표 1과 같이 스퍼터링 방법은 본 기상증착법으로 제조한 백금박막의 우수한 특성과 비교하기 위하여 사용하였다.Equipment used in the present invention is the same as that of Figure 1 MOCVD (chemical vapor deposition) equipment. The source used in this experiment is (CH 3 ) 3 (CH 3 C 5 H 4 ) Pt, each experimental condition is shown in Table 1. Oxygen was used as the reaction gas and the source was transferred to the reactor by Ar gas, and the deposition temperature was set at 400 ° C. As shown in Table 1, the sputtering method was used to compare with the excellent characteristics of the platinum thin film prepared by the present vapor deposition method.

[표 1]TABLE 1

MOCVD법과 스퍼터링법으로 제조된 백금박막의 증착조건Deposition Conditions of Platinum Thin Films Prepared by MOCVD and Sputtering

박막제조를 위한 전체적인 공정의 흐름도는 표 2와 같다. 먼저 기판은 폴리실리콘을 사용했고 챔버를 진공상태로 만들고, 기판을 400℃까지 가열한다. 소스는 메틸사이클로펜타디에닐 트리메틸 백금; (CH3)3(CH3C5H4)Pt를 이용하였고 소스의 전달압력을 일정하게 하기 위하여 10℃로 버블러(bubbler)를 유지하였고 소스는 아르곤 개스에 의해 챔버에 전달되었다.The flow chart of the overall process for thin film production is shown in Table 2. First, the substrate was made of polysilicon and the chamber was vacuumed and the substrate was heated to 400 ° C. Sources are methylcyclopentadienyl trimethyl platinum; (CH 3 ) 3 (CH 3 C 5 H 4 ) Pt was used and a bubbler was maintained at 10 ° C. to maintain a constant delivery pressure of the source and the source was delivered to the chamber by argon gas.

[표 2]TABLE 2

백금박막 제조를 위한 공정 흐름도Process Flow for Platinum Thin Film Fabrication

도 2는 위 방법과 일반적인 스퍼터링방법에 따라 증착된 백금박막을 고온 산소분위기에서 열처리한 후 백금박막의 상형성을 보여주는데 스퍼터링방법에 의한 백금박막(b)은 polysilicon과 반응하여 실리사이드가 형성되나 MOCVD로 증착된 박막(a)의 경우 백금의 상만을 보인다.Figure 2 shows the formation of the platinum thin film after the heat treatment of the platinum thin film deposited according to the above method and the general sputtering method in a high temperature oxygen atmosphere. The platinum thin film (b) by the sputtering method reacts with polysilicon to form silicide, but with MOCVD. In the case of the deposited thin film a, only the phase of platinum is visible.

도 3은 스퍼터링에 의한 백금박막과 MOCVD방법에 의한 백금박막의 미세구조를 보여준다. MOCVD의 백금(a,c)박막이 균일하고 치밀한 조직을 보임과 반대로 스퍼터링에 의해 제조된 백금(b,d)박막은 표면이 거칠고 반응에 의해 조직이 치밀하지 못한 것으로 보인다. 도 4는 화학증착법에 의해 증착된 박막이 우수한 step coverage(층 덮힘도)를 보임을 나타내고 있다.3 shows the microstructure of the platinum thin film by sputtering and the platinum thin film by the MOCVD method. The platinum (b, d) thin film produced by sputtering, while the platinum (a, c) thin film of MOCVD shows a uniform and dense structure, appears to have a rough surface and a dense texture due to reaction. FIG. 4 shows that the thin film deposited by chemical vapor deposition shows excellent step coverage.

도 5는 MOCVD의 백금박막이 스퍼터링 박막보다 우수한 계면특성과 polysilicon과의 우수한 접합성을 갖고 있음을 보여주는 AES 분석결과를 나타낸다. 도 5에서 보는 것처럼 스퍼터링으로 제조한 백금박막(b)은 전 박막에 걸쳐 실리콘과의 반응물, 즉 실리사이드가 형성되어 있지만 MOCVD법으로 제조한 박막(a)은 반응층이 없는 우수한 박막을 형성하고 있다.FIG. 5 shows the results of AES analysis showing that the platinum thin film of MOCVD has better interfacial properties and better bonding with polysilicon than the sputtered thin film. As shown in FIG. 5, the platinum thin film (b) prepared by sputtering has a reactant with silicon, i.e., silicide, formed over the entire thin film, but the thin film (a) prepared by MOCVD method forms an excellent thin film without a reaction layer. .

이상에서 설명한 바와 같이 본 발명에 의한 백금박막의 화학증착법은 polysilicon과 접촉이 가능한 실제 응용에 유용한 발명인 것을 도 6에 나타내고 있다.As described above, the chemical vapor deposition of the platinum thin film according to the present invention is shown in FIG.

본 발명은 유기금속 화학증착법(MOCVD)을 이용함으로써, 기존에 많이 사용된 물리적 증착법에 비하여 넓은 면적의 증착과 좋은 덮임특성(step coverage), 그리고 치밀한 미세구조를 갖는 박막을 얻을 수 있으므로 백금박막이 기억소자(DRAM, FeRAM 등)에 응용이 가능하다. 특히 기존의 방법에 의한 백금 박막과는 달리 높은 온도에서도 polysilicon과의 반응이 억제되어 별도의 반응억제층(TiN, TiAlN, TaN 등)의 채용 없이 유전체와 폴리실리콘 플러그의 하부 전극 접속층으로 활용할 수 있다.The present invention provides a thin film having a large area deposition, a good step coverage, and a fine microstructure, by using an organometallic chemical vapor deposition (MOCVD), compared to the conventional physical vapor deposition method. Application to memory devices (DRAM, FeRAM, etc.) is possible. In particular, unlike the conventional platinum thin film, the reaction with polysilicon is suppressed even at a high temperature, so it can be used as a lower electrode connection layer of the dielectric and polysilicon plug without employing a separate reaction inhibitor layer (TiN, TiAlN, TaN, etc.). have.

Claims (2)

화학증착법에 의한 백금박막의 제조에 있어서, 백금의 전구체로 유기금속인 메틸사이클로펜타디에닐 트리메틸 백금(CH3)3(CH3C5H4)Pt를 사용하는 것을 특징으로 하는 유전체 하부 전극용 백금박막의 제조방법In the production of a platinum thin film by chemical vapor deposition, for the lower dielectric dielectric electrode, methylcyclopentadienyl trimethyl platinum (CH 3 ) 3 (CH 3 C 5 H 4 ) Pt, which is an organometallic, is used as a precursor of platinum. Manufacturing Method of Platinum Thin Film 제1항의 백금박막을 반도체소자로 구성함에 있어서, 별도의 중간층이 없이 백금박막과 폴리실리콘플러그를 직접 접촉시키는 것을 특징으로 하는 유전체 하부전극용 백금박막의 제조방법The method of manufacturing a platinum thin film for a dielectric lower electrode, wherein the platinum thin film of claim 1 is composed of a semiconductor device. The platinum thin film and the polysilicon plug are directly contacted without a separate intermediate layer.
KR1019980004253A 1998-02-13 1998-02-13 METHOD FOR MANUFACTURING PLATINUM(Pt) THIN FILM FOR LOWER ELECTRODE OF DIELECTRICS KR100291203B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980004253A KR100291203B1 (en) 1998-02-13 1998-02-13 METHOD FOR MANUFACTURING PLATINUM(Pt) THIN FILM FOR LOWER ELECTRODE OF DIELECTRICS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980004253A KR100291203B1 (en) 1998-02-13 1998-02-13 METHOD FOR MANUFACTURING PLATINUM(Pt) THIN FILM FOR LOWER ELECTRODE OF DIELECTRICS

Publications (2)

Publication Number Publication Date
KR19990069791A true KR19990069791A (en) 1999-09-06
KR100291203B1 KR100291203B1 (en) 2001-06-01

Family

ID=37525991

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980004253A KR100291203B1 (en) 1998-02-13 1998-02-13 METHOD FOR MANUFACTURING PLATINUM(Pt) THIN FILM FOR LOWER ELECTRODE OF DIELECTRICS

Country Status (1)

Country Link
KR (1) KR100291203B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751557B1 (en) * 2006-03-03 2007-08-23 한국에너지기술연구원 Preparation of platinum catalyst supported on carbon nanotube by chemical vapor deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751557B1 (en) * 2006-03-03 2007-08-23 한국에너지기술연구원 Preparation of platinum catalyst supported on carbon nanotube by chemical vapor deposition

Also Published As

Publication number Publication date
KR100291203B1 (en) 2001-06-01

Similar Documents

Publication Publication Date Title
US6943073B2 (en) Process for low temperature atomic layer deposition of RH
KR100304797B1 (en) Capacity Device and Method for Fabricating the Capacity Device, and Semiconductor Device
US6506666B2 (en) Method of fabricating an SrRuO3 film
US6723598B2 (en) Method for manufacturing aluminum oxide films for use in semiconductor devices
US5686151A (en) Method of forming a metal oxide film
KR100294963B1 (en) Semiconductor device and its manufacturing method
KR100382149B1 (en) Formation method for Sr-Ta-O thin films
JP2000058525A (en) Vapor growth method for metal oxide dielectric film
JP2001053253A (en) Capacitor of semiconductor memory element and its manufacture
US6297122B1 (en) Method of forming conductive film and capacitor
KR100291203B1 (en) METHOD FOR MANUFACTURING PLATINUM(Pt) THIN FILM FOR LOWER ELECTRODE OF DIELECTRICS
JP3176069B2 (en) Method of forming titanium monophosphide layer and use thereof
KR100395507B1 (en) Semiconductor device and the method of fabricating same
KR20030042106A (en) Capacitor in Semiconductor Device and method of fabricating the same
JPH08260148A (en) Formation of thin film, semiconductor device and its production
KR100265846B1 (en) A method for fabricating ferroelectric capacitor in semiconductor device
JPH0786270A (en) Formation of metal oxide film
JP2004079695A (en) Method of forming pzt ferroelectric thin film, pzt ferrodielectric thin film formed with the same method, and semiconductor device using the same thin film
JP2002305194A (en) Method and device for forming metal oxide thin film
KR100399073B1 (en) Capacitor in Semiconductor Device and method of fabricating the same
KR100422596B1 (en) Method for fabricating capacitor
KR100493707B1 (en) Ruthenium Thin Film Formation Method
KR100365739B1 (en) Method for forming w upper electrode of capacitor
JP3353835B2 (en) Vapor phase growth method of metal oxide dielectric film
KR19990006042A (en) Capacitor Manufacturing Method of Semiconductor Device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070228

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee