KR19990066000A - 올레핀 중합용 촉매 및 이를 이용한 올레핀의중합방법 - Google Patents

올레핀 중합용 촉매 및 이를 이용한 올레핀의중합방법 Download PDF

Info

Publication number
KR19990066000A
KR19990066000A KR1019980001581A KR19980001581A KR19990066000A KR 19990066000 A KR19990066000 A KR 19990066000A KR 1019980001581 A KR1019980001581 A KR 1019980001581A KR 19980001581 A KR19980001581 A KR 19980001581A KR 19990066000 A KR19990066000 A KR 19990066000A
Authority
KR
South Korea
Prior art keywords
group
aluminoxane
catalyst
polymerization
olefin
Prior art date
Application number
KR1019980001581A
Other languages
English (en)
Other versions
KR100259940B1 (ko
Inventor
송보근
윤승웅
Original Assignee
이영일
호남석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이영일, 호남석유화학 주식회사 filed Critical 이영일
Priority to KR1019980001581A priority Critical patent/KR100259940B1/ko
Publication of KR19990066000A publication Critical patent/KR19990066000A/ko
Application granted granted Critical
Publication of KR100259940B1 publication Critical patent/KR100259940B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/6392Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/63922Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63908Component covered by group C08F4/62 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63912Component covered by group C08F4/62 containing a transition metal-carbon bond in combination with an organoaluminium compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 올레핀 중합용 촉매 및 이를 이용한 올레핀의 중합방법에 관한 것으로서, 더욱 상세하게는 적어도 하나의 시클로알카디에닐기와 테트라하이드로보레이트기를 포함하는 주기율표 상의 3∼5족 금속을 포함하는 전이금속화합물을 주촉매로 사용하고, 알루미녹산(aluminoxane) 또는 유기알루미늄 화합물을 조촉매로 사용하는 올레핀 중합용 촉매 및 이를 이용한 올레핀의 중합방법에 관한 것이다.

Description

올레핀 중합용 촉매 및 이를 이용한 올레핀의 중합방법
본 발명은 올레핀 중합용 촉매 및 이를 이용한 올레핀의 중합방법에 관한 것으로서, 더욱 상세하게는 적어도 하나의 시클로알카디에닐기와 테트라하이드로보레이트기를 포함하는 주기율표 상의 3∼5족 금속을 포함하는 전이금속화합물을 주촉매로 사용하고, 알루미녹산(aluminoxane) 또는 유기알루미늄화합물을 조촉매로 사용하는 올리펜 중합용 촉매 및 이를 이용한 올레핀의 중합방법에 관한 것이다.
폴리올레핀의 제조에 있어서 다양한 촉매와 중합방법에 공지되어 있다,
종래 4∼8족의 전이금속과 1∼3족의 유기금속 화합물를 사용한 TiCl4와 같은 전이 금속화합물의 합 촉매계로서 TiCl3(1 세대), TiCl4/MgCl2(2 세대) 및 TiCl4/MgCl2+Donor(3 세대)의 형태를 갖는 지글러-나타계(Ziegler-Natta) 촉매 및 Ti 대신에 V를 전이금속으로 사용한 촉매계를 갖는 지글러-나타계 촉매가 계발되면서 올레핀의 중합에 이를 주로 사용하고 있다.
또한, 최근에는 리간드로 시클로펜타디에닐 유도체를 함유하는 전이금속화합물(일반적으로 메탈로센계(metallocene) 촉매라 함)을 함유하는 촉매계가 개발되어 이를 올레핀의 중합에 사용하고 있다. 특히, 티타늄, 지르코늄 또는 하프늄과 같은 4족 전이금속으로 이루어진 메탈로센 촉매가 폴리에틸렌, 에틸렌 공중합체 또는 폴리프로필렌 등의 제조에 사용되고 있다.
이에, 다양한 메탈로센계 촉매들을 이용하여 올레핀 중합체를 제조하는 방법들이 소개되고 있는데, 예를 들면, 독일특허 3127133호에는 하기 화학식 1로 표시되는 전이금속화합물과, 하기 화학식 2로 표시되는 선상 또는 환상 구조의 알루미녹산 화합물로 구성된 촉매계 및 이를 이용하여 에틸렌 및 α-올레핀을 -50∼200℃의 온도에서 단독중합 또는 공중합시키는 방법이 공지되어 있다.
(C5H5)2MeRHal
상기 식에서,
R은 시클로펜타디에닐기, C1∼6의 알킬기 또는 할로겐 원자이고,
Me는 티타늄과 지르코늄과 같은 전이금속이며,
Hal은 할로겐 원자이다.
Al2OR4(Al(R)-O)n또는 (Al(R)-O)n+2
상기 식에서,
n은 4∼20의 정수이고, R은 메틸기 또는 에틸기이다.
또한, 유럽특허 416815호에는 컨스트레인드 지오메트리(constrained geometry)를 갖는 하기 화학식 3으로 표시되는 전이금속화합물과, 알루미녹산과 같은 활성화 작용기가 있는 조촉매로 구성된 촉매계 및 이를 이용하여 에틸렌과 α-올레핀의 공중합체를 제조하는 방법이 공지되어 있다.
상기 식에서,
M은 스칸듐을 제외한 3∼10족의 전이금속 또는 란탄계열의 금속이고,
Cp*은 시클로펜타디에닐기 또는 치환된 시클로펜타디에닐기이며,
Z는 붕소 또는 14족 원소로부터 유도되는 기이고,
X는 음이온 리간드 또는 중성의 루이스 염기 리간드이며,
Y는 질소, 인, 산소 또는 황으로부터 유도되는 음이온 또는 중성의 리간드이다.
또한, 유럽특허 277003호에는 메탈로센계 화합물과, 수소이온 공여 양이온과 벌크(bulk) 음이온으로 구성되는 이온성 화합물 및 이를 이용한 올레핀의 중합방법이 기재되어 있고, 유럽특허 344887호에는 실리콘 다리구조를 갖는 라세믹메탈로센계 화합물과 이를 이용한 높은 이소탁틱시티를 갖는 프로필렌 중합체에 관한 내용이 기재되어 있다. 미국특허 5243001호에는 인데닐기를 리간드로 갖는 메탈로센계 촉매계에 의한 고분자량의 올레핀 중합체의 제조방법이 기재되어 있고, 미국특허 5434116호에는 π-결합 구조를 갖는 헤테로시클릭 리간드를 갖는 3∼8족 전이금속의 새로운 메탈로센 화합물, 예를 들어 포스파메탈로센 화합물을 이용한 올레핀 중합방법이 기재되어 있다. 또한, 미국특허 5548404호에는 시클로옥타테트라에닐기가 리간드인 메탈로센계 촉매계에 의한 올레핀 중합방법이 기재되어 있다.
이러한 선행기술들은 메탈로센계 화합물들의 시클로알카디에닐 리간드를 다른 화합물로 교환하거나 몇몇 성분들을 치환함으로써 우수한 촉매특성을 보이는 촉매계와 우수한 물성을 갖는 중합체를 얻을 수 있는 특징을 기재하고 있다. 그러나, 메탈로센계 화합물을 구성하고 있는 시클로알카디에닐기 이외의 리간드에 대한 기술은 아직까지 발표되고 있지 않다. 본 발명자들은 시클로알카디에닐기 이외의 리간드를 변경함으로써 메탈로센계 화합물의 구조를 변경시키고 이에 따른 촉매특성에 대한 연구를 시도하게 되었다.
이에, 본 발명자들은 시클로알카디에닐기 이외의 리간드를 변경한 새로운 메탈로센계 화합물을 올레핀 중합에 효과적으로 적용하기 위해 연구를 거듭한 결과, 적어도 하나의 시클로알카디에닐기와 테트라하이드로보레이트기를 포함하는 주기율표 상의 3∼5족 금속을 포함하는 전이금속화합물을 주촉매로 사용하고, 알루미녹산(aluminoxane) 또는 유기알루미늄 화합물을 조촉매로 사용하는 중합촉매를 사용하여 올레핀을 중합하는 경우 상기한 문제점을 해결할 수 있음을 발견하고 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 폴리올레핀의 제조에 있어서 우수한 활성을 보이며 좁은 분자량 범위를 갖는 폴리올레핀을 효과적으로 제공할 수 있는 올레핀 중합용 촉매를 제공하는 것이다.
본 발명의 다른 목적은 상기한 중합용 촉매를 사용하여 올레핀을 중합하는 방법을 제공하는 것이다.
상기한 목적을 달성하기 위하여, 본 발명에 따른 올레핀 중합용 촉매는
(A) 시클로알카디에닐 골격을 갖는 기와 테트라하이드로보레이트기를 리간드로 갖는 전이금속화합물과,
(B) 알루미녹산 화합물 또는 유기알루미늄 화합물
을 함유하는 것을 특징으로 한다.
이하 본 발명을 보다 상세히 설명한다.
본 발명의 올레핀의 중합에 사용되는 중합촉매는 (A) 시클로알카디에닐 골격을 갖는 기와 테트라하이드로보레이트기를 리간드로 갖는 전이금속화합물을 주촉매로 하고, (B) 알루미녹산 화합물 또는 유기알루미늄 화합물을 조촉매로 하여 이루어진다.
본 발명의 올레핀 중합용 촉매에 있어서, 주촉매인 전이금속화합물(A)는 시클로알카디에닐 골격을 갖는 기와 테트라하이드로보레이트를 갖는 기를 리간드로 갖는 화합물로서, 하기 일반식 (I)과 일반식 (II)로 나타낼 수 있다.
상기 식에서,
Q1은 시클로알카디에딜 골격을 갖는 리간드로서 탄소원자에 수소원자, 알킬기, 알콕시기 또는 실릴기가 결합되어 있는 것으로, 예를 들면, 시클로펜타디에닐기, 에틸시클로펜타디에닐기, 부틸시클로펜타디에닐기, 디메틸시클로펜타디에닐기, 테트라메틸시클로펜타디에닐기, 펜타메틸시클로펜타디에닐기, 메톡시시클로펜타디에닐기, 디메톡시시클로펜타디에닐기, 인데닐기, 메틸인데닐기, 에틸인데닐기, 부틸인데닐기, 메톡시인데닐기, 디메틸인데닐기, 디메톡시인데닐기, 테트라하이드로인데닐기, 플루오레닐기, 메틸플루오레닐기, 디메틸플루오레닐기, 메톡시플루오레닐기, 디메톡시플루오레닐기, 트리메틸실릴시클로펜타디에닐기, 트리메톡시실릴시클로펜타디에닐기, 비스(트리메틸실릴)시클로펜타디에닐기 또는 비스(트리메톡시실릴)시클로펜타디에닐기 이고,
Q2는 상기 Q1에서 정의된 바와 같거나 다른 시클로알카디에딜 골격을 갖는 리간드 또는 메틸기, 에틸기, 프로필기, 부틸기, 헥실기, 옥틸기, 데실기 등의 알킬기, 메톡시기, 에톡시기, 프로폭시기, 부톡시기 등의 알콕시기, 클로라이드기, 브로마이드 기등의 할로겐기 또는 테트라하이드로보레이트기이며,
M은 3∼5족의 전이금속이고,
X는 테르라하이드로보레이트이며,
n은 전이금속 M의 족에 따라 결정되는 것으로, 1∼3의 정수이다.
상기 식에서,
Q1, Q2, M, X, n는 일반식 (Ⅰ)에서 정의된 바와 동일하며,
G는 전이금속 M에 직접 배위하지 않고 리간드 Q1과 Q2를 연결하는 성분으로, C1∼10의 알킬렌 또는 -Si(A1A2)-(여기서, A1과 A2는 서로 같거나 다른 것으로서, 수소원자, 염소원자, 브롬원자, 메틸기, 에틸기, 프로필기, 부틸기, 헥실기, 옥틸기, 데실기, 페닐기)이다.
상기한 전이금속화합물(A)을 제조하는 방법은 특별히 한정되지 않지만, 예를 들면, 테트라하이드로보레이트기를 포함하는 전이금속화합물과 주기율표상의 1∼3족 금속의 시클로알카디에나이드염을 반응시키거나, 시클로알카디에닐기와 할로겐기를 갖는 전이금속화합물과 주기율표상의 1∼3족 금속의 테트라하이드로보레이트염을 반응시키는 방법 등이 있다.
본 발명의 올레핀 중합용 촉매에서 주촉매인 전이금속화합물(A)을 테트라하이드로보레이트기를 포함하는 전이금속화합물과 주기율표상의 1∼3족 금속의 시클로알카디에나이드염을 반응시켜 제조하는 경우, 테트라하이드로보레이트기를 포함하는 전이금속화합물로는 예를 들면, 소디움 지르코늄펜타키스(테트라하이드로보레이트) 디메톡시에탄, 소디움 하프늄펜타키스(테트라하이드로보레이트) 디메톡시에탄, 소디움 바나듐펜타키스(테트라하이드로보레이트) 디메톡시에탄 등이 있고, 주기율표상의 1∼3족 금속으로는 리튬, 소디움, 포타슘, 마그네슘, 알루미늄 등이 있으며, 시클로알카디에나이드로는 시클로펜타디에나이드, 메틸시클로펜타디에나이드, 에틸시클로펜타디에나이드, 부틸시클로펜타디에나이드, 디메틸시클로펜타디에나이드, 펜타메틸시클로펜타디에나이드, 메톡시시클로펜타디에나이드, 디메톡시시클로펜타디에나이드, 인데나이드, 메틸인데나이드, 에틸인데나이드, 부틸인데나이드, 메톡시인데나이드, 디메틸인데나이드, 디메톡시인데나이드, 테트라하이드로인데나이드, 플루오레나이드, 메틸플로오레나이드, 디메틸플루오레나이드, 메톡시플루오레나이드, 디메톡시플루오레나이드, 트리메틸실릴시클로펜타디에나이드, 트리메톡시실릴시클로펜타디에나이드, 비스(트리메틸실릴)시클로펜타디에나이드, 비스(트리메톡시실릴)시클로펜타디에디에나이드 등이 있다. 이 방법에서 알카리금속의 시클로알카디에나이드염은 두 종류 이상이 사용될 수 있으며, 이 경우 동시에 또는 순서대로 반응을 진행시킬 수 있다.
본 발명의 전이금속화합물(A)을 시클로알카디에닐기와 할로겐기를 갖는 전이금속화합물과 주기율표상의 1∼3족 금속의 테트라하이드로보레이트염과 반응시키는 경우에 시클로알카디에닐기와 할로겐기를 갖는 전이금속화합물은 상기 일반식 (Ⅰ) 또는 일반식 (Ⅱ)에서 X 성분이 염소, 브롬, 요오드인 경우이다.
상기한 방법으로 제조된 전이금속화합물(A)은 올레핀의 중합시 분자량 분포의 조절을 위해 2종 이상 혼합하여 사용할 수 있다.
본 발명의 중합용 촉매에 있어서, 조촉매인 알루미녹산 화합물(B)은 하기 일반식 (Ⅲ)으로 표시되는 것으로, 선상 또는 환상의 구조를 가지며, 구체적으로 메틸알루미녹산, 에틸알루미녹산, 부틸알루미녹산, 이소부틸알루미녹산, 헥실알루미녹산, 옥틸알루미녹산, 데실알루미녹산 등이 있다.
상기 식에서,
R은 C1∼10의 알킬기이고,
n은 1∼70의 정수이다.
또한, 본 발명의 중합용 촉매에 있어서, 유기 알루미늄 화합물(B)은 하기 일반식 (Ⅳ)로 표시되는 것으로, 트리메틸알루미늄, 트리에틸알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 트리데실알루미늄 등의 트리알킬알루미늄; 디메틸알루미늄 메톡사이드, 디에틸알루미늄 메톡사이드, 디부틸알루미늄 메톡사이드, 디이소부틸알루미늄 메톡사이드 등의 디알킬알루미늄 메톡사이드; 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디부틸알루미늄 클로라이드, 디이소부틸알루미늄 클로라이드 등의 디알킬알루미늄 할라이드; 메틸알루미늄 디메톡사드, 에틸알루미늄 디메톡사이드, 부틸알루미늄 디메톡사이드, 이소부틸알루미늄 디메톡사이드 등의 알킬알루미늄 디알콕사이드; 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 부틸알루미늄 디클로라이드, 이소부틸알루미늄 디클로라이드 등의 알킬알루미늄 디할라이드 등이 있다.
상기 식에서,
R1, R2및 R3는 서로 같거나 다른 것으로서, C1∼10의 알킬기, 알콕시기 또는 할라이드기이고, R1, R2및 R3중에 적어도 하나 이상의 알킬기를 포함한다.
본 발명의 중합용 촉매에서 조촉매인 알루미녹산 화합물 또는 유기알루미늄 화합물은 올레핀의 중합시 단독 또는 혼합물로 사용할 수 있다.
본 발명의 올레핀 중합용 촉매를 사용하여 올레핀을 중합하는 경우에, 중합은 슬러리상, 액상 또는 기상에서 실시될 수 있다. 중합이 액상 또는 슬러리상에서 실시되는 경우, 용매 또는 올레핀 자체를 매질로 사용할 수 있다. 사용되는 용매는 예를 들면, 부탄, 이소부탄, 펜탄, 헥산, 옥탄, 데칸, 도데칸, 시클로펜탄, 메틸시클로펜탄, 시클로헥산, 벤젠, 톨루엔, 자일렌, 디클로로메탄, 클로로에탄, 1,2-클로로에탄, 클로로벤젠 등이 있다.
본 발명에 따른 올레핀의 중합에 사용되는 올레핀은 예를 들면, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 3-메틸-1-부텐, 1-헥센, 4-메틸-1-펜텐, 4-메틸-1-헥센, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-옥타데센, 1-에이코센, 1,3-부타디엔, 1,4-헥사디엔, 1,5-헥사디엔, 4-메틸-1,4-헥사디엔, 5-메틸-1,4-헥사디엔, 1,6-옥타디엔, 1,4-도데카디엔 등이 있다. 본 발명에서는 상기한 올레핀의 단독 중합시키거나 2 이상의 올레핀을 공중합시킬 수 있다.
본 발명의 중합용 촉매를 사용하여 올레핀을 중합하는데 있어서, 전이금속화합물과 알루미녹산 화합물 또는 유기알루미늄 화합물의 사용량은 특별히 한정되지 않지만, 전이금속 화합물은 중합반응기내의 전이금속 원자의 농도로 10-8∼10-3mole/ℓ, 바람직하게는 10-7∼10-3mole/ℓ의 양으로 사용된다. 또한, 알루미녹산 화합물 또는 유기알루미늄 화합물은 중합반응기내의 알루미늄 원자의 농도로 10-4∼1.0 mole/ℓ, 바람직하게는 10-3∼10-1mole/ℓ의 양으로 함유된다.
본 발명에 따른 올레핀의 중합에 있어서, 중합온도는 특별히 한정되지 않지만, -50∼200℃ 바람직하게는 0∼150℃로서, 배치식, 반연속식 또는 연속식으로 중합을 실시한다.
또한, 중합압력은 보통 1.0∼3000기압이며, 바람직하게는 2∼1000기압하에서 실시한다.
이하, 실시예를 들어 본 발명을 보다 상세히 설명하지만, 본 발명이 이들 예로만 한정되는 것은 아니다.
[제조예 1]비스시클로펜타디에닐지르코늄(IV) 비스(테트라하이드로보레이트)의 제조
(1) 소디움 지르코늄(IV)펜타키스(테트라하이드로보레이트) 디메톡시에탄
500㎖의 2구 플라스크 내부를 질소로 치환한 후, 지르코늄테트라클로라이드 4.9g을 넣은 후, 플라스크의 온도를 아세톤-드라이아이스 배스를 이용하여 -78℃로 유지하고 디메톡시에탄 250㎖를 적가하였다. 이후 아세톤-드라이아이스 배스를 제거하여 플라스크의 온도를 상온으로 서서히 올린 후, 소디움 테트라하이드로보레이트 4.9g을 첨가하고 교반을 하면서 상온에서 18시간동안 유지하였다. 이후 유리필터를 이용하여 고체부분을 걸러내고 얻어진 용액부분을 진공 건조시켜 흰색의 소디움지르코늄(IV)펜타키스(테트라하이드로보레이트) 디메톡시에탄 8.7g을 얻었다.
IR: 2560㎝-1[ν(BHt)], 2180, 2121㎝-1[ν(BHbr)], 1282㎝-1[δ(HBH)], 1211[ν(ZrH)], 505㎝-1[ν(ZrB)]
(2) 포타슘 시클로펜타디에나이드
500㎖의 2구 플라스크 내부를 질소로 치환한 후, 미세분말형태의 포타슘하이드록사이드 29.7g과 테트라하이드로퓨란 250㎖를 넣은 후 교반하면서 디시클로펜타디엔을 열분해하여 얻어진 시클로펜타디엔 14.0g을 적하하였다. 이후 플라스크의 온도를 올려 리플럭스시킨 후에 플라스크내의 용액부분을 따로 준비한 1ℓ의 플라스크에 붓고, 플라스크의 온도를 상온으로 식히면서 생성된 포타슘시클로펜타디에나이드를 석출하였다. 이후 유리필터를 이용하여 고체부분을 걸러내고, 과량의 테트라하이드로퓨란으로 세척한 후, 80℃의 온도에서 24시간 진공건조시켜 흰색결정의 포타슘 시클로펜타디에나이드 19.9g을 얻었다.
(3) 비스시클로펜타디에닐지르코늄(IV) 비스(테트라하이드로보레이트)
500㎖의 2구 플라스크 내부를 질소로 치환한 후, 상기 (1)에서 제조한 소디움 지르코늄(IV)펜타키스(테트라하이드로보레이트) 디메톡시에탄 7.8g, 상기 (2)에서 제조한 포타슘 시클로펜타디에나이드 4.4g 및 테트라하이드로퓨란 150㎖를 넣은 후 교반하면서 상온에서 18시간동안 유지하였다. 이후 유리필터를 이용하여 고체부분을 걸러내고, 얻어진 용액부분을 진공 건조시켜 흰색의 고체를 얻었다. 얻어진 흰색 고체를 디에틸에테르 500㎖가 담긴 1ℓ 플라스크에 옮긴 후 상온에서 5시간 동안 교반하였다. 이후, 필터를 이용하여 불용부분을 제거하고 진공하에서 디에틸에테르를 날려 비스시클로펜타디에닐지르코늄(IV) 비스(테트라하이드로보레이트) 2.7g을 얻었다.
1H NMR(C6D6) : δ 5.65(10H, s), δ 0.78(8H, q, J=85Hz)
IR: 2440, 2385㎝-1[ν(BHt)], 2143㎝-1[ν(BHbr)], 1295㎝-1[δ(HBH)], 1124[ν(ZrH)]
[제조예 2]비스(n-부틸시클로펜타디에닐)지르코늄(IV) 비스(테트라하이드로보레이트)의 제조
(1) 소디움 지르코늄(IV)펜타키스(테트라하이드로보레이트) 디메톡시에탄
500㎖의 2구 플라스크 내부를 질소로 치환한 후, 지르코늄테트라클로라이드 4.9g을 넣은 후, 플라스크의 온도를 아세톤-드라이아이스 배스를 이용하여 -78℃로 유지하고 디메톡시에탄 250㎖를 적가하였다. 이후 아세톤-드라이아이스 배스를 제거하여 플라스크의 온도를 상온으로 서서히 올린 후, 소디움 테트라하이드로보레이트 4.9g을 첨가하고 교반을 하면서 상온에서 18시간동안 유지하였다. 이후 유리필터를 이용하여 고체부분을 걸러내고 얻어진 용액부분을 진공 건조시켜 흰색의 소디움 지르코늄(IV)펜타키스(테트라하이드로보레이트) 디메톡시에탄 8.7g을 얻었다.
IR: 2560㎝-1[ν(BHt)], 2180, 2121㎝-1[ν(BHbr)], 1282㎝-1[δ(HBH)], 1211[ν(ZrH)], 505㎝-1[ν(ZrB)]
(2) 포타슘 n-부틸시클로펜타디에나이드
500㎖의 2구 플라스크 내부를 질소로 치환한 후, 미세분말형태의 포타슘하이드록사이드 6.6g과 테트라하이드로퓨란 250㎖를 넣은 후 교반하면서 n-부틸시클로펜타디엔 7.2g을 적가하였다. 이후 플라스크의 온도를 올려 리플럭스시킨 후에 플라스크내의 용액부분을 따로 준비한 1ℓ의 플라스크에 붓고, 플라스크의 온도를 상온으로 식히면서 n-헥산을 가해 생성된 포타슘 n-부틸시클로펜타디에나이드를 석출하였다. 이후 유리필터를 이용하여 고체부분을 걸러내고, 과량의 n-헥산으로 세척한 후, 80℃의 온도에서 24시간 진공건조시켜 흰색결정의 포타슘 n-시클로펜타디에나이드 7.1g을 얻었다.
(3)비스(n-부틸시클로펜타디에닐)지르코늄(IV) 비스(테트라하이드로보레이트)
250㎖의 2구 플라스크 내부를 질소로 치환한 후, 상기 (1)에서 제조한 소디움 지르코늄(IV)펜타키스(테트라하이드로보레이트) 디메톡시에탄 7.0g, 상기 (2)에서 제조한 포타슘 n-부틸시클로펜타디에나이드 6.1g 및 테트라하이드로퓨란 150㎖를 넣은 후 교반하면서 상온에서 18시간동안 유지하였다. 이후 유리필터를 이용하여 고체부분을 걸러내고, 얻어진 용액부분을 진공 건조시켜 흰색의 고체를 얻었다. 얻어진 흰색 고체를 디에틸에테르 500㎖가 담긴 1ℓ 플라스크에 옮긴 후 상온에서 5시간 동안 교반하였다. 이후, 필터를 이용하여 불용부분을 제거하고 진공하에서 디에틸에테르를 날려 비스(n-부틸시클로펜타디에닐)지르코늄(IV) 비스(테트라하이드로보레이트) 2.7g을 얻었다.
1H NMR(C6D6) : δ 5.57(8H, s), δ 2.12(4H, t), δ 1.37(8H, m) δ 0.90(6H, t), δ 0.74(8H, q, J=85Hz)
IR: 2443, 2385㎝-1[ν(BHt)], 2145㎝-1[ν(BHbr)], 1294㎝-1[δ(HBH)], 1120[ν(ZrH)]
[제조예 3]비스시클로펜타디에닐지르코늄(IV) 비스(테트라하이드로보레이트)의 제조
500㎖의 2구 플라스크 내부를 질소로 치환한 후, 비스시클로펜타디에닐지르코늄 디클로라이드 4.6g, 소디움 테트라하이드로보레이트 1.9g 및 디메톡시에탄 200㎖를 넣은 후 교반하면서 상온에서 18시간동안 유지하였다. 이후 유리필터를 이용하여 고체부분을 걸러내고, 얻어진 용액부분을 진공 건조시켜 흰색의 고체를 얻었다. 얻어진 흰색 고체를 디에틸에테르 500㎖가 담긴 1ℓ 플라스크에 옮긴 후 상온에서 5시간 동안 교반하였다. 이후, 필터를 이용하여 불용부분을 제거하고 진공하에서 디에틸에테르를 날려 비스시클로펜타디에닐지르코늄(IV) 비스(테트라하이드로보레이트) 3.0g을 얻었다.
1H NMR(C6D6) : δ 5.64(10H, s), δ 0.78(8H, q, J=85Hz)
IR: 2439, 2383㎝-1[ν(BHt)], 2142㎝-1[ν(BHbr)], 1295㎝-1[δ(HBH)], 1123[ν(ZrH)]
[실시예 1]
내부 용량 2ℓ인 스테인레스 스틸 오토클레이브의 내부를 질소로 치환한 후, 톨루엔 1000㎖를 채운 후, 메틸알루미녹산(MAO(Akzo Nobel, MMAO-4))을 알루미늄 원자 기준으로 10mmole과 상기 제조예 1의 비스시클로펜타디에닐지르코늄(IV) 비스(테트라하이드로보레이트) 0.5μmole을 순서대로 주입하였다.
이 후 승온하여 60℃가 되면 에틸렌 가스를 공급하고, 전체압력 5bar·g, 온도 60℃를 유지하면서 1시간동안 중합 반응을 실시하였다. 중합 종료후 얻어진 폴리머를 과량의 에탄올로 세척한 후, 60℃에서 15시간 동안 진공건조하였다. 중합 결과는 표 1에 나타내었다.
[실시예 2∼6]
메틸알루미녹산의 양 및 중합온도를 변화시키는 것을 제외하고, 실시예 1과 동일하게 중합을 실시하였다. 중합 결과는 표 1에 나타내었다.
[실시예 7]
메틸알루미녹산 대신에 트리메틸알루미늄(TMA)을 사용하는 것을 제외하고, 실시예 1과 동일하게 중합을 실시하였다. 중합 결과는 표 1에 나타내었다.
[실시예 8]
내부 용량 2ℓ인 스테인레스 스틸 오토클레이브의 내부를 질소로 치환한 후, 톨루엔 1000㎖를 채운 후, 메틸알루미녹산(MAO(Akzo Nobel, MMAO-4))을 알루미늄 원자 기준으로 10mmole과 상기 제조예 2의 비스(n-부틸시클로펜타디에닐)지르코늄(IV) 비스(테트라하이드로보레이트) 0.5μmole을 순서대로 주입하였다.
이 후 승온하여 60℃가 되면 에틸렌 가스를 공급하고, 전체압력 6bar·g, 온도 60℃를 유지하면서 1시간동안 중합 반응을 실시하였다. 중합 종료후 얻어진 폴리머를 과량의 에탄올로 세척한 후, 60℃에서 15시간 동안 진공건조하였다. 중합 결과는 표 1에 나타내었다.
[실시예 9]
제조예 3의 방법에 따라 제조된 비스시클로펜타디에닐지르코늄(IV) 비스(테트라하이드로보레이트) 0.5μmole을 사용하는 것을 제외하고, 실시예 1과 동일한 방법으로 중합을 실시하였다. 중합 결과는 표 1에 나타내었다.
[비교예 1∼3]
비스시클로펜타디에닐지르코늄(IV) 비스(테트라하이드로보레이트) 대신에 비스시클로펜타디에닐지르코늄(IV) 디클로라이드 0.5μmole을 사용하고, 조촉매로 메틸알루미녹산 또는 트리메틸알루미늄을 사용하는 것을 제외하고, 실시예 1과 동일한 방법으로 중합을 실시하였다. 중합 결과는 표 1에 나타내었다.
실시예 주촉매 조촉매 조촉매량(mmol) 온도(℃) 수율(g) Mwⅰ) Mw/Mnⅱ)
1 CPⅲ) MAO 10.0 60 24.3 413,800 1.98
2 CP MAO 5.0 60 11.6 380,600 1.96
3 CP MAO 20.0 60 35.2 472,900 1.91
4 CP MAO 10.0 70 31.0 365,200 2.06
5 CP MAO 10.0 30 7.5 844,500 2.09
6 CP MAO 10.0 50 13.6 527,500 2.01
7 CP TMA 5.0 60 2.6 327,100 2.11
8 NBCPⅳ) MAO 10.0 60 26.9 552,100 2.03
9 CP MAO 10.0 60 25.5 428,000 2.08
비교예 1 Cp2ZrCl2 ⅴ) MAO 5.0 60 7.9 276,700 1.99
비교예 2 Cp2ZrCl2 MAO 10.0 60 21.4 353,400 2.02
비교예 3 Cp2ZrCl2 TMA 5.0 60 trace - -
ⅰ) Mw : 분자량 ⅱ) Mw/Mn(Molecular Weight Distribution) :분자량 분포 ⅲ) CP:비스시클로펜타디에닐지르코늄(IV) 비스(테트라하이드로보레이트) ⅳ) NBCP: 비스(n-부틸시클로펜타디에닐)지르코늄(IV) 비스테트라하이드로보레이트 ⅴ) Cp2ZrCl2: 비스시클로펜타디에닐지르코늄(IV) 디클로라이드
이상에서 설명한 바와 같이, 본 발명의 올레핀 중합용 촉매는 적어도 하나의 시클로알카디에닐기와 테트라하이드로보레이트기를 포함하는 주기율표 상의 3∼5족 금속을 포함하는 전이금속화합물을 주촉매로, 알루미녹산(aluminoxane) 또는 유기알루미늄 화합물을 조촉매로 함유하므로, 우수한 활성을 보이며 좁은 분자량 범위를 갖는 폴리올레핀을 효과적으로 제공할 수 있다

Claims (4)

  1. 올레핀 중합을 위한 촉매로서,
    (A) 하기 일반식 (Ⅰ) 또는 일반식 (Ⅱ)로 표시되는 전이금속화합물과,
    상기 식에서,
    Q1은 시클로알카디에딜 골격을 갖는 리간드로서, 시클로펜타디에닐기, 에틸시클로펜타디에닐기, 부틸시클로펜타디에닐기, 디메틸시클로펜타디에닐기, 테트라메틸시클로펜타디에닐기, 펜타메틸시클로펜타디에닐기, 메톡시시클로펜타디에닐기, 디메톡시시클로펜타디에닐기, 인데닐기, 메틸인데닐기, 에틸인데닐기, 부틸인데닐기, 메톡시인데닐기, 디메틸인데닐기, 디메톡시인데닐기, 테트라하이드로인데닐기, 플루오레닐기, 메틸플루오레닐기, 디메틸플루오레닐기, 메톡시플루오레닐기, 디메톡시플루오레닐기, 트리메틸실릴시클로펜타디에닐기, 트리메톡시실릴시클로펜타디에닐기, 비스(트리메틸실릴)시클로펜타디에닐기 또는 비스(트리메톡시실릴)시클로펜타디에닐기이고,
    Q2는 상기 Q1에서 정의된 바와 같거나 다른 시클로알카디에딜 골격을 갖는 리간드, 메틸기, 에틸기, 프로필기, 부틸기, 헥실기, 옥틸기, 데실기 등의 알킬기, 메톡시기, 에톡시기, 프로폭시기, 부톡시기 등의 알콕시기, 클로라이드기, 브로마이드기 등의 할로겐기 또는 테트라하이드로보레이트기이며,
    M은 3∼5족의 전이금속이고,
    X는 테르라하이드로보레이트이며,
    n은 전이금속 M의 족에 따라 결정되는 것으로, 1∼3의 정수이다.
    상기 식에서,
    Q1, Q2, M, X, n는 상기 일반식 (I)에서 정의된 바와 동일하며,
    G는 C1∼10의 알킬렌 또는 -Si(A1A2)-(여기서, A1과 A2는 서로 같거나 다른 것으로서, 수소원자, 염소원자, 브롬원자, 메틸기, 에틸기, 프로필기, 부틸기, 헥실기, 옥틸기, 데실기, 페닐기)이다.
    (B) 하기 일반식 (Ⅲ)으로 표시되는 알루미녹산 화합물 또는 하기 일반식 (Ⅳ)로 표시되는 유기알루미늄 화합물
    상기 식에서,
    R은 C1∼10의 알킬기이고,
    n은 1∼70의 정수이다.
    상기 식에서,
    R1, R2및 R3는 서로 같거나 다른 것으로서, C1∼10의 알킬기, 알콕시기 또는 할라이드기이고, R1, R2및 R3중에 적어도 하나 이상의 알킬기를 포함한다.
    을 포함하는 것을 특징으로 하는 올레핀 중합용 촉매.
  2. 제 1항에 있어서, 상기 알루미녹산 화합물은 메틸알루미녹산, 에틸알루미녹산, 부틸알루미녹산, 이소부틸알루미녹산, 헥실알루미녹산, 옥틸알루미녹산 또는 데실알루미녹산 임을 특징으로 하는 올레핀 중합용 촉매.
  3. 제 1항에 있어서, 상기 유기 알루미늄 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 트리데실알루미늄 등의 트리알킬알루미늄; 디메틸알루미늄 메톡사이드, 디에틸알루미늄 메톡사이드, 디부틸알루미늄 메톡사이드, 디이소부틸알루미늄 메톡사이드 등의 디알킬알루미늄 메톡사이드; 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디부틸알루미늄 클로라이드, 디이소부틸알루미늄 클로라이드 등의 디알킬알루미늄 할라이드; 메틸알루미늄 디메톡사드, 에틸알루미늄 디메톡사이드, 부틸알루미늄 디메톡사이드, 이소부틸알루미늄 디메톡사이드 등의 알킬알루미늄 디알콕사이드; 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 부틸알루미늄 디클로라이드, 이소부틸알루미늄 디클로라이드 등의 알킬알루미늄 디할라이드임을 특징으로 하는 올레핀 중합용 촉매.
  4. 제 1항 기재의 올레핀 중합용 촉매를 사용하여, -50∼200℃의 온도, 1.0∼3000기압의 압력하에서 올레핀을 중합함을 특징으로 하는 올레핀의 중합방법.
KR1019980001581A 1998-01-20 1998-01-20 올레핀중합용촉매및이를이용한올레핀의중합방법 KR100259940B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980001581A KR100259940B1 (ko) 1998-01-20 1998-01-20 올레핀중합용촉매및이를이용한올레핀의중합방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980001581A KR100259940B1 (ko) 1998-01-20 1998-01-20 올레핀중합용촉매및이를이용한올레핀의중합방법

Publications (2)

Publication Number Publication Date
KR19990066000A true KR19990066000A (ko) 1999-08-16
KR100259940B1 KR100259940B1 (ko) 2000-06-15

Family

ID=19531830

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980001581A KR100259940B1 (ko) 1998-01-20 1998-01-20 올레핀중합용촉매및이를이용한올레핀의중합방법

Country Status (1)

Country Link
KR (1) KR100259940B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101233924B1 (ko) * 2009-12-30 2013-02-15 롯데케미칼 주식회사 폴리(1-부텐) 제조용 촉매 및 이를 이용한 폴리(1-부텐) 제조방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228582B1 (ko) * 2010-12-29 2013-01-31 롯데케미칼 주식회사 폴리올레핀 제조용 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940966B2 (ja) * 1989-12-29 1999-08-25 三井化学株式会社 オレフィンの重合方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101233924B1 (ko) * 2009-12-30 2013-02-15 롯데케미칼 주식회사 폴리(1-부텐) 제조용 촉매 및 이를 이용한 폴리(1-부텐) 제조방법

Also Published As

Publication number Publication date
KR100259940B1 (ko) 2000-06-15

Similar Documents

Publication Publication Date Title
US5902866A (en) Azaborolinyl metal complexes as olefin polymerization catalysts
AU669317B2 (en) Polymer-bound ligands, and metallocenes useful in catalyst systems for olefin polymerization
US5489659A (en) Catalyst component for use in the polymerization of α-olefins and process for producing α-olefin polymers using the same
EP1363955B1 (en) Multinuclear metallocene catalyst
JP3429026B2 (ja) 触媒系の調製法、オレフィンの単独重合及び共重合法並びに少なくとも一種のオレフィンのポリマー及びコポリマー
US5449650A (en) Catalyst components for polymerization of olefins and use thereof
MXPA97008182A (en) S $! azaborolinilo metallic complexs as olefi polymerization catalysts
EP0816386A2 (en) Olefin polymerization catalyst having a multidentate ligand
SK138796A3 (en) Catalyst for producing olefinic polymers
EP1401880A1 (en) Metallocene catalysts containing an indenyl moiety substituted at the 4-, 5-, 6- or 7-position by a siloxy or germyloxy group
EP1214357A4 (en) METALLOCENE COMPOUNDS AND THEIR USE IN THE POLYMERIZATION OF OLEFINS
US5912311A (en) Olefin polymerization method comprising allyl-cycloalkadienyl dianions as catalyst precursors
CA2298772A1 (en) Process for the production of stereoregular polymers and elastomers of .alpha.-olefins and certain novel catalysts therefor
EP0714920B1 (en) Catalyst for polymerization of olefins
KR100259940B1 (ko) 올레핀중합용촉매및이를이용한올레핀의중합방법
KR100259941B1 (ko) 올레핀 중합용 촉매 및 이를 이용한 올레핀의중합방법
KR100583822B1 (ko) 비대칭성 비가교형 메탈로센 화합물 및 이를 포함하는촉매 조성물
US6228958B1 (en) Azaborolinyl metal complexes as olefin polymerization catalysts
JPH1180230A (ja) オレフィン重合用触媒およびそれを用いたポリオレフィンの製造方法
JPH10110009A (ja) オレフィンポリマー製造用触媒
MXPA96004380A (en) Catalyst for the production of olef polymers
MXPA98009115A (en) Procedure for the co-polymerization of an olefine and an aromat vinyl monomer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120302

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee