KR19990063633A - Difluoromethane Production Method - Google Patents

Difluoromethane Production Method Download PDF

Info

Publication number
KR19990063633A
KR19990063633A KR1019980702082A KR19980702082A KR19990063633A KR 19990063633 A KR19990063633 A KR 19990063633A KR 1019980702082 A KR1019980702082 A KR 1019980702082A KR 19980702082 A KR19980702082 A KR 19980702082A KR 19990063633 A KR19990063633 A KR 19990063633A
Authority
KR
South Korea
Prior art keywords
product
hydrogen fluoride
chlorofluoromethane
difluoromethane
under conditions
Prior art date
Application number
KR1019980702082A
Other languages
Korean (ko)
Inventor
폴 진 클레머
애디슨 마일즈 스미스
쉬에 성 텅
죤 스티븐 바스
Original Assignee
크리스 로저 에이치
알라이드시그날 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24114432&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR19990063633(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 크리스 로저 에이치, 알라이드시그날 인코포레이티드 filed Critical 크리스 로저 에이치
Publication of KR19990063633A publication Critical patent/KR19990063633A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 디플루오로메탄, HFC-32 제조를 위한 기체상 방법을 제공한다. 본 발명의 방법은 양호한 생산 수율과 선택성을 나타내는 방법에 의한 HFC-32의 제조법을 제공한다.The present invention provides a gas phase process for the preparation of difluoromethane, HFC-32. The method of the present invention provides a method for preparing HFC-32 by a method showing good production yield and selectivity.

Description

디플루오로메탄 제조 방법Difluoromethane Production Method

HFC-32는 환경적으로 불리한 클로로플루오로카본 냉매, 발포제, 및 에어로졸 촉진제의 대체물로 사용가능하다는 것이 이 기술분야에서 잘 알려져 있다. HCF-32의 기체상 제조에 대한 다양한 방법들이 알려져 있다.It is well known in the art that HFC-32 can be used as an alternative to environmentally disadvantaged chlorofluorocarbon refrigerants, blowing agents, and aerosol accelerators. Various methods for the gas phase preparation of HCF-32 are known.

예를들어, 미국특허번호 2,745,886에는 메틸렌 클로라이드, HCC-30을 포함하는 다양한 할로하이드로카본을 불소화하기 위한 기체상 방법이 개시되는데, 이 방법은 산소로 활성화된 수화된 크롬 플루오라이드 촉매를 사용한다. 마찬가지로, 미국특허번호 2,744,148에는 HF-활성화된 알루미나 촉매가 사용되는 할로하이드로카본 불소화 방법이 개시되어 있다.For example, US Pat. No. 2,745,886 discloses a gas phase process for fluorination of various halohydrocarbons, including methylene chloride, HCC-30, which uses an oxygen activated hydrated chromium fluoride catalyst. Likewise, US Pat. No. 2,744,148 discloses a halohydrocarbon fluorination method in which an HF-activated alumina catalyst is used.

미국특허번호 3,862,995에는 탄소상에 지지된 바나듐 유도체 촉매의 존재하에 비닐 클로라이드와 HF의 반응에 의한 HFC-32의 기체상 제조가 개시되어 있다. 미국특허번호 4,147,733에는 금속 불화물 촉매 존재하에 HCC-30과 HF에 의해 HFC-32 제조를 위한 기체상 반응이 개시되어 있다.US Pat. No. 3,862,995 discloses gas phase preparation of HFC-32 by reaction of vinyl chloride with HF in the presence of a vanadium derivative catalyst supported on carbon. US Patent No. 4,147,733 discloses a gas phase reaction for the production of HFC-32 by HCC-30 and HF in the presence of a metal fluoride catalyst.

실제로, 이와같은 HFC-32 제조 방법은 원료 분해와 같은 작업상 어려움뿐 아니라 낮은 생산 수율과 선택성을 포함하는 다양한 문제들로 어려움을 겪는다. 본 발명의 방법은 상기 알려진 방법의 몇몇 불이익을 극복하는 방법에 의한 HFC-32의 제조를 제공한다.Indeed, such HFC-32 manufacturing methods suffer from a variety of problems, including low production yields and selectivity, as well as operational difficulties such as raw material degradation. The method of the present invention provides for the production of HFC-32 by a method that overcomes some of the disadvantages of the known methods.

본 발명은 디플루오로메탄, HFC-32의 제조를 위한 기체상 방법에 관한 것이다. 보다 상세하게는, 본 발명은 양호한 생산 수율과 선택성을 나타내는 HFC-32의 제조 방법을 제공한다.The present invention relates to a gas phase process for the preparation of difluoromethane, HFC-32. More specifically, the present invention provides a method for producing HFC-32 which exhibits good production yield and selectivity.

본 발명은 양호한 수율과 선택성으로 HFC-32 제조를 위한 방법을 제공한다. 본 발명의 방법은 불소화 촉매 존재하에 HCC-30과 HF를 접촉시켜 디플루오로메탄, 클로로플루오로메탄("HCFC-31"), 염화수소, 디클로로메탄, 및 불화수소의 생성물 스트림을 제조하는 단계와 그 생성물 스트림으로부터 HFC-32를 분리하는 단계를 포함한다. 바람직한 실시예에서, 본 발명은 다음의 단계를 포함한다.:The present invention provides a method for preparing HFC-32 with good yield and selectivity. The process of the present invention comprises the steps of contacting HCC-30 with HF in the presence of a fluorination catalyst to produce a product stream of difluoromethane, chlorofluoromethane ("HCFC-31"), hydrogen chloride, dichloromethane, and hydrogen fluoride; Separating HFC-32 from the product stream. In a preferred embodiment, the present invention comprises the following steps:

(A) 불화수소("HF")와 HCC-30 및, 임의적으로 HCFC-31를 포함하는 조성물을 예열하여 증발되고 과열(superheat)된 조성물을 형성하는 단계;(A) preheating a composition comprising hydrogen fluoride (“HF”) and HCC-30 and, optionally, HCFC-31 to form an evaporated and superheated composition;

(B) HFC-32, HCFC-31 및 염화수소와 반응하지 않은 HCC-30 및 HF를 포함하는 생성물 스트림을 형성하는데 적합한 조건하에 불소화 촉매 존재하에 단계(A)의 예열된 조성물을 반응시키는 단계;(B) reacting the preheated composition of step (A) in the presence of a fluorination catalyst under conditions suitable to form a product stream comprising HFC-32, HCFC-31 and HCC-30 and HF not reacted with hydrogen chloride;

(C) HF, HCC-30, 및 HCFC-31을 포함하는 고비등점 분획과 HFC-32, HCl, HF 및 반응 부산물을 포함하는 저비등점의 분획을 단계(B)의 생성물 스트림으로부터 증류하여 재생하는 단계;(C) distillation of the high boiling point fraction comprising HF, HCC-30, and HCFC-31 and the low boiling point fraction containing HFC-32, HCl, HF and reaction by-products from distillation from the product stream of step (B) step;

(D) 단계(C)의 저비등점 분획으로부터 실질적으로 순수한 HFC-32를 회수하는 단계.(D) recovering substantially pure HFC-32 from the low boiling fraction of step (C).

단계(A)에서는, HF와 HCC-30를 포함하는 조성물이 최소 하나의 증발기에서 예열된다. "예열"은 조성물을 증발 및 과열시키는 것을 의미한다. 상기 조성물은 약 125℃ ~ 약 400℃, 바람직하게는 150℃~ 약 300℃, 보다 바람직하게는 약 175℃ ~ 약 275℃ 그리고 가장 바람직하게는 200℃ ~ 약 250℃의 온도로 가열한다. 본 방법에서 사용되는 다른 용기들 뿐 아니라 증발기도 적합한 부식 저항성 물질로 만들어져야 한다.In step (A), the composition comprising HF and HCC-30 is preheated in at least one evaporator. "Preheat" means evaporating and overheating the composition. The composition is heated to a temperature of about 125 ° C. to about 400 ° C., preferably 150 ° C. to about 300 ° C., more preferably about 175 ° C. to about 275 ° C., and most preferably 200 ° C. to about 250 ° C. The evaporator, as well as the other vessels used in this method, should be made of suitable corrosion resistant material.

단계 (A)에서는 새로운 HF와 HCC-30을 사용할 수 있다 하더라도, 바람직하게는 단계(A)의 조성물은 후술되는 바와 같이 단계(C)로부터의 재생 물질을 함유한다. 상기 공정을 연속 재순환없이 진행할 경우, HF 대 유기물의 몰비, 특히 HF대 HCC-30의 몰비는 약 1:1 ~ 10:1이며, 바람직하게는 약 1:1 ~ 약 4:1이다. 선택적으로, 새로운 HCFC-31을 단계(A)의 조성물에 첨가할 수 있다.Although fresh HF and HCC-30 can be used in step (A), the composition of step (A) preferably contains the regeneration material from step (C) as described below. If the process is carried out without continuous recycling, the molar ratio of HF to organics, in particular HF to HCC-30, is from about 1: 1 to 10: 1, preferably from about 1: 1 to about 4: 1. Optionally, fresh HCFC-31 can be added to the composition of step (A).

대안으로서, 단계(C)에서 얻은 상기 고 비등점 분획의 연속 재순환 스트림은 유기물에 대한 과량의 HF가 사용되는 단계(A)로 재순환된다. 본 발명의 방법에서, HF대 유기물의 몰비가 높을수록, HFC-32에 대한 수율과 선택도가 높다. 마찬가지로, 과량의 HF는 반응하지 않은 HCC-30의 농도뿐 아니라 생성된 HCFC-31을 감소하는 결과를 초래한다. 부가적으로, 특히 상기 반응이 3기압 이상에서 행해질 경우, 과량의 HF는 촉매의 탈활성 속도를 저하시켜서 예열기와 증발기내에서 분해를 감소시킨다. 일반적으로, 상기 생성물 스트림으로부터 HFC-32 분리 후 측정시, HF대 HCFC-31의 비는 최소 약 25:1 ~ 최소 약 300:1이며, 바람직하게는 최소 약 50:1 ~ 최소 약 200:1이며, 보다 바람직하게는 약 75:1 ~ 최소 약 150:1이 사용된다.As an alternative, the continuous recycle stream of the high boiling fraction obtained in step (C) is recycled to step (A) in which excess HF for organics is used. In the process of the invention, the higher the molar ratio of HF to organics, the higher the yield and selectivity for HFC-32. Similarly, excess HF results in a decrease in the concentration of unreacted HCC-30 as well as the produced HCFC-31. In addition, especially when the reaction is carried out above 3 atmospheres, excess HF lowers the rate of deactivation of the catalyst to reduce degradation in the preheater and evaporator. In general, the ratio of HF to HCFC-31 measured at least about 25: 1 to at least about 300: 1, preferably at least about 50: 1 to at least about 200: 1, as measured after separation of HFC-32 from the product stream. More preferably between about 75: 1 and at least about 150: 1.

단계(A)의 상기 예열된 조성물은 기체상 불소화 반응의 단계(B)에서 반응하여 생성물 스트림 혼합물을 형성한다. 상기 반응은 하나 이상의 등온 또는 단열 반응기에서 진행가능하다. 하나 이상의 반응기가 사용될 경우, 상기 반응기의 배치가 중요하지는 않지만, 순차적 배열이 바람직하다. 최상의 반응기 성능을 얻기 위해 인터 리액터(Inter-reactor)가열 또는 냉각이 사용가능하다.The preheated composition of step (A) is reacted in step (B) of the gas phase fluorination reaction to form a product stream mixture. The reaction can proceed in one or more isothermal or adiabatic reactors. If more than one reactor is used, the arrangement of the reactors is not critical, but sequential arrangement is preferred. Inter-reactor heating or cooling can be used to obtain the best reactor performance.

본 방법에 사용되는 반응기 또는 반응기들은 불소화 촉매로 충진되며 상기 유기물와 HF 증기는 반응 혼합물을 형성하는데 적합한 조건하에 상기 촉매와 접촉이 허용된다. 상기 반응기 온도는 약 125℃ ~ 약 425℃, 바람직하게는 150℃ ~ 약 300℃, 보다 바람직하게는 약 175℃ ~ 약 275℃, 가장 바람직하게는 200℃ ~ 약 250℃로 유지된다. 반응기 압력은 대기압, 부기압, 또는 초대기압(superatmospheric)이다. 반응기 압력은 약 0 psig ~ 약 250 psig로 유지되는 것이 바람직하다. 접촉 시간, 즉 100% 공극의 촉매 베드라고 가정시 반응물들이 촉매 베드를 통해 통과하는데 필요한 시간은 보통 약 1 ~ 약 120초이며, 바람직하게는 약 2 ~ 60초이며, 보다 바람직하게는 약 4 ~ 약 50초이며, 가장 바람직하게는 약 5 ~ 약 30초이다.The reactor or reactors used in the process are filled with a fluorination catalyst and the organics and HF vapor are allowed to contact the catalyst under conditions suitable to form a reaction mixture. The reactor temperature is maintained at about 125 ° C to about 425 ° C, preferably at 150 ° C to about 300 ° C, more preferably at about 175 ° C to about 275 ° C, most preferably at 200 ° C to about 250 ° C. The reactor pressure is atmospheric pressure, atmospheric pressure, or superatmospheric. The reactor pressure is preferably maintained at about 0 psig to about 250 psig. The contact time, ie the time required for the reactants to pass through the catalyst bed, assuming a 100% pore catalyst bed, is usually about 1 to about 120 seconds, preferably about 2 to 60 seconds, more preferably about 4 to About 50 seconds, most preferably about 5 to about 30 seconds.

어떠한 알려진 기체상 불소화 촉매도 본 발명에 사용가능하다. 촉매의 예로는, 이에 한정하지는 않으나, 크롬, 구리, 알루미늄, 코발트, 마그네슘, 망간, 아연, 니켈, 및 철 산화물, 수산화물, 할로겐화물, 옥시할로겐화물 및 이들의 무기염, Cr2O3/Al2O3, Cr2O3/AlF3, Cr2O3/탄소, CoCl2/Cr2O3/Al2O3, NiCl2/Cr2O3/Al2O3, CoCl2/AlF3및 NiCl2/AlF3를 포함한다. 이외에도, 크롬, 마그네슘, 또는 알루미늄상에 지지된 니켈, 코발트, 아연, 철, 및 구리와 같은 지지된 금속 촉매들이 사용가능하다. 크롬 산화물/알루미늄 산화물 촉매는 미국특허번호 5,155,082에 기재되어 있다. 바람직하게는, 상업적으로 시판되는 촉매인 크롬 산화물이 사용된다. 상기 크롬 산화물은 결정질이거나 비정질일 수 있다. 바람직하게는, 비정질 크롬 산화물이 사용된다. 상기 촉매는 반응을 유도하는데 효과적인 양으로 사용한다.Any known gaseous fluorination catalyst can be used in the present invention. Examples of catalysts include, but are not limited to, chromium, copper, aluminum, cobalt, magnesium, manganese, zinc, nickel, and iron oxides, hydroxides, halides, oxyhalides and their inorganic salts, Cr 2 O 3 / Al 2 O 3 , Cr 2 O 3 / AlF 3 , Cr 2 O 3 / carbon, CoCl 2 / Cr 2 O 3 / Al 2 O 3 , NiCl 2 / Cr 2 O 3 / Al 2 O 3 , CoCl 2 / AlF 3 And NiCl 2 / AlF 3 . In addition, supported metal catalysts such as nickel, cobalt, zinc, iron, and copper supported on chromium, magnesium, or aluminum can be used. Chromium oxide / aluminum oxide catalysts are described in US Pat. No. 5,155,082. Preferably, chromium oxide, which is a commercially available catalyst, is used. The chromium oxide may be crystalline or amorphous. Preferably, amorphous chromium oxide is used. The catalyst is used in an amount effective to induce the reaction.

불소화 촉매는 상기 반응 공급원료의 도입전에 전처리될 수 있으며, 이것이바람직하다. "전처리"는 반응이 일어나는 촉매상의 활성 부위를 만들기 위하여 촉매를 화학적으로 또는 물리적으로 변화시키는 것을 의미한다. 상기 촉매는 최소 약 1시간동안 약 200 ℃~ 약 450℃의 온도에서 질소와 같은 비활성 기체의 흐름하에 하소하여 전처리한다. 그 후 촉매는 최소 약 1 시간동안 약 200 ℃~ 약 450℃의 온도에서 HF 단독 또는 약 5 ~ 99 중량%의 비활성 기체와의 혼합물에 노출된다. 바람직하게는, 상기 촉매는 그후 염소 기체와 접촉되는 제3의 전처리 단계를 행한다. 바람직하게는, 상기 염소는 HF 약 60 ~ 약 75% 및/또는 비활성 기체 약 20 ~ 약 30%로 희석한다. 상기 염소는 총 염소 부피 대 총 촉매부피가 1:3,000 v/v, 바람직하게는 약 10:1,000 v/v, 보다 바람직하게는 약 50:500 v/v로 촉매를 통과한다. 노출 시간은 약 1 ~ 200 시간이며, 바람직하게는 5 ~ 70 시간이며 보다 바람직하게는 10 ~ 30 시간이다. 염소 노출은 불소화 반응에 편리한 어떠한 온도와 압력에서도 행할 수 있다.The fluorination catalyst may be pretreated before introduction of the reaction feedstock, which is preferred. "Pretreatment" means chemically or physically changing the catalyst to make an active site on the catalyst where the reaction takes place. The catalyst is pretreated by calcination under a flow of inert gas such as nitrogen at a temperature of about 200 ° C. to about 450 ° C. for at least about 1 hour. The catalyst is then exposed to HF alone or a mixture with about 5 to 99% by weight of inert gas at a temperature of about 200 ° C. to about 450 ° C. for at least about 1 hour. Preferably, the catalyst then undergoes a third pretreatment step in contact with chlorine gas. Preferably, the chlorine is diluted with about 60 to about 75% HF and / or about 20 to about 30% inert gas. The chlorine passes through the catalyst at a total chlorine volume to total catalyst volume of 1: 3,000 v / v, preferably about 10: 1,000 v / v, more preferably about 50: 500 v / v. The exposure time is about 1 to 200 hours, preferably 5 to 70 hours, more preferably 10 to 30 hours. Chlorine exposure can be carried out at any temperature and pressure convenient for the fluorination reaction.

전처리 완료후 염소 흐름은 중단되며 HF와 HCC-30 공급액이 도입된다. 바람직하게는, 약 1 ~ 200시간, 바람직하게는 약 5 ~ 70시간, 그리고 보다 바람직하게는 약 10 ~ 25시간동안 상기 불소화 반응을 진행하면서, 유기물 함량을 기준으로 약 0.1 ~ 약 10몰%, 바람직하게는 약 2 ~ 8%의 소량의 염소를 반응기에 첨가하여 촉매를 탈활성하여 활성을 회복하여야 한다.After completion of the pretreatment, the chlorine flow is stopped and HF and HCC-30 feed are introduced. Preferably, the fluorination reaction is performed for about 1 to 200 hours, preferably about 5 to 70 hours, and more preferably about 10 to 25 hours, and about 0.1 to about 10 mol% based on the organic content, Preferably a small amount of chlorine of about 2-8% should be added to the reactor to deactivate the catalyst to recover activity.

단계(B)에서 제조한 생성물 스트림은 HF와 HCC-30과 같은 반응하지 않은 공급원료뿐 아니라 HFC-32, HCFC-31, 및 HCl인 반응 산물도 함유한다. 단계(B)의 생성물 스트림은 단계(C)의 재순환 칼럼으로 공급된다. 상기 재순환 칼럼은 이 기술분야에서 알려진 어떠한 표준 증류 칼럼도 가능하다. 상기 재순환 칼럼으로부터 나온 고비등점 분획, 또는 최하단 스트림은 반응하지 않은 HF와 HCC-30 및 중간체인 반응물 HCFC-31로 구성된다. 바람직하게는, 이 혼합물은 재생후에 단계(A)로 재순환된다. 나아가 단계(C)에서는, HFC-32, HCl, HF의 저비등점 분획, 또는 최상단 스트림, 및 반응 부산물이 회수된다.The product stream prepared in step (B) contains not only unreacted feedstocks such as HF and HCC-30, but also reaction products which are HFC-32, HCFC-31, and HCl. The product stream of step (B) is fed to the recycle column of step (C). The recycle column may be any standard distillation column known in the art. The high boiling point fraction, or bottom stream, from the recycle column consists of unreacted HF, HCC-30, and the reactant HCFC-31, which is an intermediate. Preferably, this mixture is recycled to step (A) after regeneration. Further in step (C), the low boiling point fraction of HFC-32, HCl, HF, or the top stream, and reaction byproducts are recovered.

대안으로서, 단계(C)는 두 부분으로 수행될 수 있다. 제1부분에서는, 단계(B)의 생성물 스트림이 냉각된다. "냉각(quenching)"이란 상기 반응 혼합물의 온도를 그 이슬점 미만으로 감소시키는 것을 의미한다. 냉각은 임의의 적합한 내부식성 패킹 물질과 HF, HCC-30, 및/또는 HCFC-31과 같은 적합한 재환류 액체를 함유하는 패킹된 칼럼에서 행해지며, 그후 상기 냉각된 생성물은 재순환 칼럼으로 공급된다.Alternatively, step (C) may be performed in two parts. In the first part, the product stream of step (B) is cooled. By "quenching" is meant to reduce the temperature of the reaction mixture below its dew point. Cooling is done in a packed column containing any suitable corrosion resistant packing material and a suitable reflow liquid such as HF, HCC-30, and / or HCFC-31, after which the cooled product is fed to a recycle column.

단계(D)에서, 실질적으로 순수한 HCFC-32는 이 기술분야에서 잘 알려진 임의의 방법에 의해 단계(C)의 상기 저비등점 분획으로부터 회수된다. 단계(D)는 HCl과 미량의 HF를 제거하는데 적합한 조건하에서 HCl 증류 칼럼 또는 수성 HCl 흡착탑에서 기체 혼합물을 처리하는 단계(E)를 포함하는 일련의 하부단계로써 수행하는 것이 바람직하다. 다음으로 단계(E)의 조질 HFC-32 산물은 단계(F)에서 잔여 산기를 중화함므로써 중화된 산물을 형성하는데 적합한 조건하에 제1 가성 세정기로 처리한다. 전형적으로, 상기 가성 세정기는 물, 수산화 나트륨, 또는 수산화 칼륨을 함유한다. 단계(F)의 다음으로는 잔여 염소를 제거하여 실제로 염소가 없는 산물을 형성하기에 적합한 조건하에 바람직하게는 아황산 나트륨과 같은 아황산과 함께 수산화 나트륨을 포함하는 제2 가성 세정기에서 단계(F) 산물을 처리하는 단계(G)로 이어진다. 단계(H)에서는, 상기 단계(G) 산물을 황산 세정기로 처리한 다음 기체 스트림으로부터 잔여 수분을 흡수하는 임의의 적합한, 상업용으로 시판되는 분자체와 같은 고체 건조제로 처리하여 실제로 수분이 없는 생성물을 형성한다. 이 다음으로는 잔여 불순물을 제거하여 99.97 중량% 이상의, 실질적으로 순수한 HFC-32를 생성하는데 충분한 조건하에 상기 단계(H)의 산물을 복수의 증류 칼럼을 통해 행하는 단계(I)이다.단계(I)에서 제거된 어떠한 잔여 HCFC-31도 단계(A)로 재순환된다.In step (D), substantially pure HCFC-32 is recovered from the low boiling point fraction of step (C) by any method well known in the art. Step (D) is preferably carried out as a series of substeps comprising the step (E) of treating the gas mixture in an HCl distillation column or an aqueous HCl adsorption column under conditions suitable for removing HCl and traces of HF. The crude HFC-32 product of step (E) is then treated with a first caustic scrubber under conditions suitable to form the neutralized product by neutralizing the remaining acid groups in step (F). Typically, the caustic scrubber contains water, sodium hydroxide, or potassium hydroxide. The product of step (F) in a second caustic scrubber comprising sodium hydroxide, preferably with sulfurous acid such as sodium sulfite, under conditions suitable for removing residual chlorine to form a product which is actually chlorine free after step (F). Processing (G) is followed. In step (H), the product of step (G) is treated with a sulfuric acid scrubber and then treated with a solid desiccant, such as any suitable, commercially available molecular sieve that absorbs residual moisture from the gas stream to give the product that is virtually moisture free. Form. This is followed by step (I), in which the product of step (H) is run through a plurality of distillation columns under conditions sufficient to remove residual impurities to produce at least 99.97% by weight to produce substantially pure HFC-32. Any remaining HCFC-31 removed in) is recycled to step (A).

이하 본 발명을 실시예에 따라 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1-2Example 1-2

1/2 inch Monel관 반응기에, Cr2O3/Al2O3(40/60 중량%)약 110 ml의 동시압출된 촉매를 채웠다. 상기 촉매는 공기를 사용하여 2-3 L/min로 약 16시간 동안 약 400℃에서 건조/하소하였다. 그 후, 온도를 200℃로 낮추고 약 0.5 - 1.5 L/min의 속도로 공기를 질소로 대체하였다. 발열반응이 반응기를 통과할 때까지 무수 HF를 반응기로 펌프하였다. 이어서, 온도를 반시간마다 25℃씩 상승시켜 온도가 약 350 - 400℃가 되면 그 온도에서 8시간동안 유지하였다. 그 후 온도를 원하는 반응 온도로 낮추었다. HF와 HCC-30은 4:1(HF:HCC-30)의 몰비로 반응기에 공급하였다. HF와 HCC-30의 혼합물은 두 예열기를 통과하였는데, 그중 첫번째는 약 100 - 185℃였으며 두번째는 약 200 - 275℃였다. 압력은 50 psig였으며 반응기 온도는 실시예 1에서는 275℃였고 실시예 2에서는 300 ℃였다. 실시예 1에 있어, 접촉 시간은 16초였으며 전환율 82%와 HFC-32 선택도 89.3%를 초래하였다. 생산성은 10lbs HFC-32/hr/ft3였다. 실시예 2에 있어 HFC-32의 생산성은 13.6 lbs/hr/ft3였으며 HFC-32의 선택율은 약 85%였다. 본 실시예의 결과를 표 I에 요약하였다.A 1/2 inch Monel tube reactor was charged with about 110 ml of Cr 2 O 3 / Al 2 O 3 (40/60 wt.%) Coextruded catalyst. The catalyst was dried / calcined at about 400 ° C. for about 16 hours at 2-3 L / min using air. The temperature was then lowered to 200 ° C. and air was replaced with nitrogen at a rate of about 0.5-1.5 L / min. Anhydrous HF was pumped into the reactor until the exotherm passed through the reactor. The temperature was then increased by 25 ° C. every half hour and maintained at that temperature for 8 hours when the temperature reached about 350-400 ° C. The temperature was then lowered to the desired reaction temperature. HF and HCC-30 were fed to the reactor in a molar ratio of 4: 1 (HF: HCC-30). The mixture of HF and HCC-30 passed through two preheaters, the first of which was about 100-185 ° C and the second about 200-275 ° C. The pressure was 50 psig and the reactor temperature was 275 ° C. in Example 1 and 300 ° C. in Example 2. For Example 1, the contact time was 16 seconds, resulting in 82% conversion and 89.3% HFC-32 selectivity. Productivity was 10 lbs HFC-32 / hr / ft 3 . The productivity of HFC-32 in Example 2 was 13.6 lbs / hr / ft 3 and the selectivity of HFC-32 was about 85%. The results of this example are summarized in Table I.

〔표 Ⅰ〕Table I

실시예 1Example 1 실시예 2Example 2 촉 매catalyst Cr2O3/Al2O3(40/60 중량%)Cr 2 O 3 / Al 2 O 3 (40/60 wt%) Cr2O3/Al2O3(40/60 중량%)Cr 2 O 3 / Al 2 O 3 (40/60 wt%) 압 력pressure 50 psig50 psig 50 psig50 psig HF/HCC-30HF / HCC-30 44 44 온 도 ℃Temperature ℃ 275275 300300 접촉 시간(초)Contact time (seconds) 1616 1010 전환율 % CH2Cl2 % Conversion 2 CH 2 Cl 2 8282 7777 선택도(%)HFC-32HCFC-31HCC-40Selectivity (%) HFC-32HCFC-31HCC-40 89.310.60.189.310.60.1 84.715.20.184.715.20.1 생산성(lbs/hr/ft3):HFC-32Productivity (lbs / hr / ft 3 ): HFC-32 10.310.3 13.613.6

실시예 3 - 6Examples 3-6

실시예 1과 2의 상기 관 반응기에, 중량비 78/22의 Cr2O3/Al2O3약 100-110 ml를 패킹하였다. 촉매는 실시예 1&2와 동일한 절차를 사용하여 건조/하소하고 HF 처리하였다. HF와 HCC-30 혼합물을 실시예 1&2에 표시된 것과 동일한 예열기를 통과시켰다. 압력, 접촉 시간, 및 결과를 표 Ⅱ에 나타내었다.In the tube reactors of Examples 1 and 2, about 100-110 ml of Cr 2 O 3 / Al 2 O 3 in a weight ratio of 78/22 was packed. The catalyst was dried / calcined and HF treated using the same procedure as in Examples 1 & 2. The HF and HCC-30 mixture was passed through the same preheater as shown in Examples 1 & 2. Pressures, contact times, and results are shown in Table II.

〔표 Ⅱ〕Table II

실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 촉 매catalyst Cr2O3/Al2O3(78/22 중량%)Cr 2 O 3 / Al 2 O 3 (78/22 wt%) Cr2O3/Al2O3(78/22 중량%)Cr 2 O 3 / Al 2 O 3 (78/22 wt%) Cr2O3/Al2O3(78/22 중량%)Cr 2 O 3 / Al 2 O 3 (78/22 wt%) Cr2O3/Al2O3(78/22 중량%)Cr 2 O 3 / Al 2 O 3 (78/22 wt%) 압력(psig)Pressure (psig) 5050 200200 225225 225225 HF/CH2Cl2의몰비Molar ratio of HF / CH 2 Cl 2 44 44 44 44 온 도(℃)Temperature (℃) 275275 275275 275275 275275 접촉 시간(초)Contact time (seconds) 1111 3636 4040 2626 전환율(%CH2Cl2)Conversion Rate (% CH 2 Cl 2 ) 7171 7070 7070 6161 선택도 :HFC-32HCFC-31HCC-40Selectivity: HFC-32HCFC-31HCC-40 82180.0582180.05 81190.0581190.05 81190.0581190.05 77230.0577230.05 생산성(lbs/hr/ft3):HFC-32Productivity (lbs / hr / ft 3 ): HFC-32 1212 1212 1212 1515

실시예 7Example 7

4 inch 지름의 Monel 400 반응기에 크롬 산화물 촉매 4L를 장입하였다. 촉매는 350℃ 온도에서 8시간동안 20 slpm 질소 흐름하에서 건조시켰다. 촉매 베드 온도를 250℃로 감소시킨 후, 유속 0.2 lbs/hr로 무수 HF를 흐르는 질소에 첨가하였다. 상기 HF의 유속은 1.0lb/hr로 점진적으로 증가시키고 온도는 350℃로 상승시켜 4시간동안 유지하였다. 다음으로 상기 촉매 베드는 250℃로 감소시키고 염소는 24시간동안 500 sccm의 속도로 HF/N2혼합물에 도입하였다.4 L of chromium oxide catalyst was charged to a 4 inch diameter Monel 400 reactor. The catalyst was dried under 20 slpm nitrogen flow for 8 hours at 350 ° C. After reducing the catalyst bed temperature to 250 ° C., anhydrous HF was added to flowing nitrogen at a flow rate of 0.2 lbs / hr. The flow rate of the HF gradually increased to 1.0 lb / hr and the temperature was raised to 350 ° C. and maintained for 4 hours. The catalyst bed was then reduced to 250 ° C. and chlorine was introduced into the HF / N 2 mixture at a rate of 500 sccm for 24 hours.

이 전처리 과정후에, 상기 염소와 질소 흐름은 중단되었으며 HCC-30을 HF와 혼합하여 185℃의 예열기를 통과시켰다. 증발된 HCC-30과 HF 혼합물은 압력 45 psig 반응기에 공급하였으며, 상기 반응기로부터의 유출액은 열 교환기를 사용하여 냉각시켜 50 psig로 유지된 증류 칼럼으로 주입하였다. 저비등점 증류 성분인, HCFC-31, HF, 및 HCC-31은 다시 재순환하여 새로운 HF와 HCC-30 공급 스트림과 혼합시켜 예열기에 공급하고, 4.6 lbs/hr의 속도로 반응기에 주입하였다. 상기 재순환 스트림은 HF:HCFC-31를 360:1의 몰비로 함유하였다. 상기 재순환 물질은 촉매상에 통과하기 전에, 각각 유속 0.5 및 1.0 lbs/hr로 부가적인 HF와 HCC-30과 혼합하였다. 결과적인 접촉 시간은 12초였다. 증류 칼럼에서 분리된 저비등점 성분인 HCl과 HCl-32은 KOH 10%를 함유한 가성 세정기를 통과시켰으며 여기서 HCl이 제거되었다. 정제된 HFC-32는 건조하여 수집하였다. 결과물인 HCC-30의 전환율은 90%였으며 HFC-32에 대한 선택도는 90%이고 HCFC-31에 대한 선택도는 9%였다.After this pretreatment, the chlorine and nitrogen streams were stopped and HCC-30 was mixed with HF and passed through a preheater at 185 ° C. The evaporated HCC-30 and HF mixture was fed to a pressure 45 psig reactor, and the effluent from the reactor was cooled using a heat exchanger and injected into a distillation column maintained at 50 psig. The low boiling distillation components, HCFC-31, HF, and HCC-31, were recycled again, mixed with fresh HF and HCC-30 feed streams, fed to the preheater, and injected into the reactor at a rate of 4.6 lbs / hr. The recycle stream contained HF: HCFC-31 in a molar ratio of 360: 1. The recycle material was mixed with additional HF and HCC-30 at flow rates of 0.5 and 1.0 lbs / hr, respectively, before passing over the catalyst. The resulting contact time was 12 seconds. The low boiling point components HCl and HCl-32 separated in the distillation column were passed through a caustic scrubber containing 10% KOH where HCl was removed. Purified HFC-32 was collected by drying. The conversion of the resulting HCC-30 was 90%, the selectivity for HFC-32 was 90% and the selectivity for HCFC-31 was 9%.

상기한 바와 같이, 양호한 생산 수율과 선택성을 나타내는 HFC-32를 제조할 수 있다.As described above, HFC-32 can be produced that exhibits good production yield and selectivity.

Claims (10)

(A) 불화수소와 디클로로메탄을 포함하는 조성물을 예열하여 증발되고 과열된 조성물을 형성하는 단계;(A) preheating the composition comprising hydrogen fluoride and dichloromethane to form an evaporated and superheated composition; (B) 디플루오로메탄, 클로로플루오로메탄, 염화수소, 디클로로메탄 및 불화수소를 포함하는 생성물 스트림을 형성하는데 적합한 조건하에 불소화 촉매 존재하에 단계(A)의 상기 예열된 조성물을 반응시키는 단계;(B) reacting the preheated composition of step (A) in the presence of a fluorination catalyst under conditions suitable to form a product stream comprising difluoromethane, chlorofluoromethane, hydrogen chloride, dichloromethane and hydrogen fluoride; (C) 단계(B)의 생성물 스트림으로부터 불화수소, 디클로로메탄, 및 클로로플루오로메탄을 포함하는 고비등점 분획과 디플루오로메탄, 염화수소, 불화수소, 및 반응 부산물을 포함하는 저비등점 분획을 증류하여 회수시키는 단계; 및(C) distilling from the product stream of step (B) a high boiling fraction comprising hydrogen fluoride, dichloromethane, and chlorofluoromethane and a low boiling fraction comprising difluoromethane, hydrogen chloride, hydrogen fluoride, and reaction byproducts Recovering by; And (D) 단계(C)의 상기 저비등점 분획으로부터 실질적으로 순수한 디플루오로메탄을 회수하는 단계;(D) recovering substantially pure difluoromethane from the low boiling fraction of step (C); 를 포함하여 이루어지는 디플루오로메탄 제조 방법.Difluoromethane production method comprising a. 제1항에 있어서, 상기 불화수소와 디클로로메탄은 약 1:1 ~ 약 10:1의 몰비로 존재함을 특징으로 하는 방법.The method of claim 1 wherein the hydrogen fluoride and dichloromethane are present in a molar ratio of about 1: 1 to about 10: 1. 제1항에 있어서, 상기 단계(A)의 조성물은 나아가 클로로플루오로메탄을 포함함을 특징으로 하는 방법.The method of claim 1 wherein the composition of step (A) further comprises chlorofluoromethane. 제1항 또는 제3항에 있어서, 상기 불화수소와 클로로플루오로메탄은 상기 생성물 스트림내에 최소 약 25:1 ~ 최소 약 300:1의 몰비로 존재함을 특징으로 하는 방법.The method of claim 1 or 3, wherein the hydrogen fluoride and chlorofluoromethane are present in the product stream in a molar ratio of at least about 25: 1 to at least about 300: 1. 제1항 또는 제3항에 있어서, 상기 불화수소와 클로로플루오로메탄은 상기 생성물 스트림내에 최소 약 50:1 ~ 약 200:1의 몰비로 존재함을 특징으로 하는 방법.The process of claim 1 or 3, wherein the hydrogen fluoride and chlorofluoromethane are present in the product stream in a molar ratio of at least about 50: 1 to about 200: 1. 제1항 또는 제3항에 있어서, 상기 불화수소와 클로로플루오로메탄은 상기 생성물 스트림내에 최소 약 75:1 ~ 최소 약 150:1의 몰비로 존재함을 특징으로 하는 방법.The process of claim 1, wherein the hydrogen fluoride and chlorofluoromethane are present in the product stream in a molar ratio of at least about 75: 1 to at least about 150: 1. 제1항에 있어서, 상기 불소화 촉매는 예비처리된 불소화 촉매임을 특징으로 하는 방법.The method of claim 1 wherein the fluorination catalyst is a pretreated fluorination catalyst. 제1항 또는 7항에 있어서, 상기 불소화 촉매는 산화 크롬임을 특징으로 하는 방법.8. The method of claim 1 or 7, wherein the fluorination catalyst is chromium oxide. 제1항에 있어서, 단계(C)의 상기 고비등점 분획은 단계(A)로 재순환됨을 특징으로 하는 방법.The method of claim 1 wherein the high boiling point fraction of step (C) is recycled to step (A). 제1항에 있어서, 단계(D)는 나아가The method of claim 1, wherein step D further (E) HCl과 미량의 HF를 제거하는데 적합한 조건하에 HCl 증류 칼럼 또는 수성 HCl 흡착탑내의 단계(C)의 저비등점 혼합물을 처리하여 조질 HFC-32 생성물을 형성하는 단계;(E) treating the low boiling point mixture of step (C) in an HCl distillation column or an aqueous HCl adsorption column under conditions suitable to remove HCl and traces of HF to form a crude HFC-32 product; (F) 중화된 생성물을 형성하는데 적합한 조건하에 단계(E)에서 형성된 조질 HFC-32 생성물을 제1 가성 세정기로 처리하는 단계;(F) treating the crude HFC-32 product formed in step (E) with a first caustic scrubber under conditions suitable to form a neutralized product; (G) 실제로 염소가 없는 생성물을 형성하는데 적합한 조건하에 제2 가성 세정기내에서 단계(F)의 상기 중화된 생성물을 처리하는 단계;(G) treating said neutralized product of step (F) in a second caustic scrubber under conditions suitable to form a product which is actually chlorine free; (H) 단계(G)의 실제로 염소가 없는 생성물을 황산 세정기로 처리한 다음 고체 건조제로 처리하여 실제로 수분이 없는 생성물을 형성하는 단계; 및(H) treating the substantially chlorine free product of step (G) with a sulfuric acid scrubber followed by a solid desiccant to form a product that is virtually moisture free; And (I) 실제로 순수한 디플루오로메탄을 제조하는데 적합한 조건하에 단계(H)의 상기 실제로 수분이 없는 생성물을 증류시키는 단계(I) distilling said substantially moisture free product of step (H) under conditions suitable for producing substantially pure difluoromethane. 로 구성되는 하부단계를 포함함을 특징으로 하는 방법.Method comprising a lower step consisting of.
KR1019980702082A 1995-09-20 1996-09-13 Difluoromethane Production Method KR19990063633A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/530,649 US5763708A (en) 1995-09-20 1995-09-20 Process for the production of difluoromethane
US8/530,649 1995-09-20
PCT/US1996/014734 WO1997011043A1 (en) 1995-09-20 1996-09-13 Process for the production of difluoromethane

Publications (1)

Publication Number Publication Date
KR19990063633A true KR19990063633A (en) 1999-07-26

Family

ID=24114432

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980702082A KR19990063633A (en) 1995-09-20 1996-09-13 Difluoromethane Production Method

Country Status (21)

Country Link
US (4) US5763708A (en)
EP (1) EP0854848B1 (en)
JP (1) JPH11512454A (en)
KR (1) KR19990063633A (en)
CN (1) CN1201446A (en)
AT (1) ATE234797T1 (en)
AU (1) AU702786B2 (en)
BR (1) BR9610669A (en)
CA (1) CA2232596C (en)
DE (1) DE69626834T2 (en)
EA (1) EA199800302A1 (en)
ES (1) ES2193261T3 (en)
HU (1) HUP9901285A3 (en)
IL (1) IL123351A0 (en)
IS (1) IS4670A (en)
MX (1) MX9801855A (en)
PL (1) PL325554A1 (en)
PT (1) PT854848E (en)
TR (1) TR199800505T1 (en)
TW (1) TW388751B (en)
WO (1) WO1997011043A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2736048B1 (en) * 1995-06-27 1997-08-01 Atochem Elf Sa SYNTHESIS OF DIFLUOROMETHANE
FR2736050B1 (en) 1995-06-29 1997-08-01 Atochem Elf Sa PROCESS FOR PRODUCING DIFLUOROMETHANE
US5763708A (en) * 1995-09-20 1998-06-09 Allied Signal Inc. Process for the production of difluoromethane
FR2746674B1 (en) * 1996-03-29 1998-04-24 Atochem Elf Sa REGENERATION OF GAS PHASE FLUORATION CATALYSTS
FR2748022B1 (en) * 1996-04-29 1998-07-24 Atochem Elf Sa PROCESS FOR PRODUCING DIFLUOROMETHANE
WO1998008789A1 (en) * 1996-08-27 1998-03-05 Daikin Industries, Ltd. Process for producing difluoromethane
AU1419399A (en) * 1997-11-18 1999-06-07 Honeywell International, Inc. Process for the preparation of difluoromethane
EP1034156A2 (en) * 1997-11-21 2000-09-13 AlliedSignal Inc. Method of producing hydrofluorocarbons
US6235265B1 (en) * 1998-10-28 2001-05-22 Alliedsignal Inc. Evaporative coolant for topical anesthesia comprising hydrofluorocarbons and/or hydrochlorofluorocarbons
US6080899A (en) * 1999-01-25 2000-06-27 Alliedsignal Inc. Method of producing fluorinated organic compounds
AU2001292985A1 (en) * 2000-09-28 2002-04-08 Honeywell International, Inc. Fluorination process
US7189311B2 (en) * 2001-03-23 2007-03-13 Honeywell International Inc. Purification of difluoromethane
US6605193B2 (en) * 2001-04-25 2003-08-12 Atofina Chemicals, Inc. Recovery of HFC-32
US6551469B1 (en) * 2001-11-27 2003-04-22 Honeywell International Photochlorination of 1,1,1,3,3-pentafluoropropane
WO2004007410A1 (en) * 2002-07-10 2004-01-22 Srf Limited A process for the production of difluoromethane
EP1542949B1 (en) * 2002-07-10 2009-01-21 Srf Limited A process for the production of difluoromethane
KR100512845B1 (en) * 2002-11-21 2005-09-07 울산화학주식회사 manufacturing method for difluoromethane
US7214839B2 (en) * 2003-05-23 2007-05-08 Honeywell International Inc. Method of making hydrofluorocarbons
TW200516068A (en) * 2003-09-10 2005-05-16 Showa Denko Kk Process for production of hydrofluorocarbons, products thereof and use of the products
US7371905B2 (en) * 2003-10-17 2008-05-13 Honeywell International Inc. Method of producing hydrofluorocarbons
CN1313423C (en) * 2005-01-27 2007-05-02 鹰鹏化工有限公司 Method for preparing difluoromethane by stage continuous fluorination
EP2528622A2 (en) 2010-01-26 2012-12-05 The Regents of the University of Colorado Influenza virus epitopes templated into double-stranded coiled coils and use thereof in immunization
US8901360B2 (en) 2010-05-21 2014-12-02 Honeywell International Inc. Process for cis 1,1,1,4,4,4-hexafluoro-2-butene
JP2014221727A (en) * 2013-05-13 2014-11-27 昭和電工株式会社 Dichloromethane purification method and method of producing difluoromethane using the same
CN106554247A (en) * 2016-06-29 2017-04-05 宁夏海诚电化信息科技有限公司 A kind of cold-producing medium R32 production technologies

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2005707A (en) * 1932-08-31 1935-06-18 Kinetic Chemicals Inc Production of organic fluorine compounds
US2748177A (en) * 1951-08-03 1956-05-29 Allied Chem & Dye Corp Fluorination
US2744148A (en) * 1952-02-04 1956-05-01 Dow Chemical Co Process for fluorination of haloalkanes using a hydrogen fluoride activated catalyst containing alumina, a metal fluoride and basic aluminum fluoride
US2745886A (en) * 1955-01-31 1956-05-15 Dow Chemical Co Process for fluorinating aliphatic halohydrocarbons with a chromium fluoride catalyst and process for preparing the catalyst
US3313692A (en) * 1958-04-21 1967-04-11 Armour Pharma Method of inducing calming and muscle relaxation with carbamates
US3258500A (en) * 1959-08-17 1966-06-28 Du Pont Process for fluorinating halohydro-carbons
US3265728A (en) * 1962-07-18 1966-08-09 Armour Pharma Substituted phenethyl carbamates
BE766395A (en) * 1971-04-28 1971-10-28 Solvay PROCESS FOR MANUFACTURING 1,1-DIFLUORETHANE,
US4147733A (en) * 1978-05-22 1979-04-03 The Dow Chemical Company Fluorination of chlorinated hydrocarbons
JPS59225131A (en) * 1983-06-06 1984-12-18 Showa Denko Kk Preparation of difluoromethane
EP0128510A3 (en) * 1983-06-07 1985-05-15 Showa Denko Kabushiki Kaisha Process for producing difluoromethane
GB9107677D0 (en) * 1991-04-11 1991-05-29 Ici Plc Chemical process
US5208395A (en) * 1992-04-06 1993-05-04 Elf Atochem North America, Inc. Manufacture of hydrofluorocarbons
KR100295306B1 (en) * 1992-04-13 2001-09-17 이노우에 노리유끼 How to remove hydrogen fluoride
JPH06263657A (en) * 1993-03-11 1994-09-20 Showa Denko Kk Production of difluoromethane
GB9404703D0 (en) * 1993-03-24 1994-04-27 Ici Plc Production of difluoromethane
US6274781B1 (en) * 1993-11-01 2001-08-14 E. I. Du Pont De Nemours And Company Production of dihalomethanes containing fluorine and azeotropes of dihalomethanes containing chlorine with HF
US5763708A (en) * 1995-09-20 1998-06-09 Allied Signal Inc. Process for the production of difluoromethane
US5698588A (en) * 1996-01-16 1997-12-16 Yukong Limited Halogen substituted carbamate compounds from 2-phenyl-1,2-ethanediol

Also Published As

Publication number Publication date
ES2193261T3 (en) 2003-11-01
PT854848E (en) 2003-07-31
MX9801855A (en) 1998-05-31
US6365580B1 (en) 2002-04-02
BR9610669A (en) 1999-07-13
US6844474B1 (en) 2005-01-18
TW388751B (en) 2000-05-01
HUP9901285A3 (en) 2000-02-28
PL325554A1 (en) 1998-08-03
EP0854848B1 (en) 2003-03-19
HUP9901285A2 (en) 1999-07-28
CA2232596C (en) 2008-04-15
DE69626834D1 (en) 2003-04-24
US5763708A (en) 1998-06-09
CA2232596A1 (en) 1997-03-27
AU6977596A (en) 1997-04-09
CN1201446A (en) 1998-12-09
IL123351A0 (en) 1998-09-24
EA199800302A1 (en) 1998-10-29
US20050004408A1 (en) 2005-01-06
DE69626834T2 (en) 2003-12-18
TR199800505T1 (en) 1998-06-22
EP0854848A1 (en) 1998-07-29
WO1997011043A1 (en) 1997-03-27
IS4670A (en) 1998-02-17
ATE234797T1 (en) 2003-04-15
AU702786B2 (en) 1999-03-04
JPH11512454A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
US6365580B1 (en) Process for the production of difluoromethane
US5895825A (en) Preparation of 1,1,1,3,3-pentafluoropropane
US5811603A (en) Gas phase fluorination of 1230za
JP2843694B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
US7094936B1 (en) Process for preparing halogenated alkanes
US20030028057A1 (en) Methods and materials for the preparation and purification of halogenated hydrocarbons
US5763707A (en) Production of pentafluoroethane
WO2000024696A1 (en) Method of producing hydrofluorocarbons
JPS62221639A (en) Manufacture of 1,2-dichloroethane
US3178484A (en) Process for preparing vinyl fluoride and 1, 1-difluoroethane
US5382722A (en) Chemical process for the manufacture of 1,1,1,2-tetrafluoroethane
KR100346285B1 (en) Process for the production of difluoromethane
US5744658A (en) Chemical process
US7371905B2 (en) Method of producing hydrofluorocarbons
US5559276A (en) Process for the manufacture of 1,1,1,2-tetrafluoroethane
EP1034156A2 (en) Method of producing hydrofluorocarbons
US3965201A (en) Fluorination of hexachlorobutadiene
CN117425639A (en) Process for producing trifluoroethylene and recycling chlorotrifluoroethylene streams
JPS5943932B2 (en) Manufacturing method of methyl chloride
MXPA00004992A (en) Method of producing hydrofluorocarbons

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B90T Transfer of trial file for re-examination
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20041217

Effective date: 20061020