JPS59225131A - Preparation of difluoromethane - Google Patents

Preparation of difluoromethane

Info

Publication number
JPS59225131A
JPS59225131A JP58100464A JP10046483A JPS59225131A JP S59225131 A JPS59225131 A JP S59225131A JP 58100464 A JP58100464 A JP 58100464A JP 10046483 A JP10046483 A JP 10046483A JP S59225131 A JPS59225131 A JP S59225131A
Authority
JP
Japan
Prior art keywords
chromium
carrier
fluoride
catalyst
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58100464A
Other languages
Japanese (ja)
Inventor
Shigeru Takayama
高山 茂
Akira Takaichi
高市 侃
Hidetoshi Nakayama
秀俊 中山
Hiroaki Kawasaki
博明 川崎
Tetsukazu Hashimoto
哲一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP58100464A priority Critical patent/JPS59225131A/en
Publication of JPS59225131A publication Critical patent/JPS59225131A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the titled substance economically in high yield, by subjecting dishloromethane and HF to gaseous-phase reaction at a specific temperature in the presence of a catalyst consisting of chromium fluoride or obtained by mixing chromium fluoride with a carrier followed by molding the blend, or supporting it on the carrier. CONSTITUTION:CH2Cl2 is reacted with HF in a gaseous phase at 200-500 deg.C (preferably at 300-450 deg.C) in the presence of a catalyst consisting of chromium fluoride or obtained by blending it with a carrier(e.g., active carbon) followed by molding, or supporting it on the carrier, to give the titled substance. CrF3 is used as chromium fluoride, or it is obtained by fluorinating a chrominum compound(e.g., chromium oxide, chromium hydroxide, chromium chloride) and used, and, when the compound contains a chromiun compound except CrF3, it is necessary to fluorinate the compound after molding or supporting on the carrier.

Description

【発明の詳細な説明】 本発明はジフルオロメタンの製造方法に関し、さらに詳
しくはジクロルメタンとフン化水素の混よりなる触媒と
接触させるジフルオロメタンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing difluoromethane, and more particularly to a method for producing difluoromethane in which difluoromethane is brought into contact with a catalyst comprising a mixture of dichloromethane and hydrogen fluoride.

従来、脂肪族ハロゲン化炭化水累とフン化水素(HF)
を反応させてフルオロカーボン(フロン類)を生成させ
る方法は多数発表されている。しかし、上記の反応に用
いられるハロゲン化炭化水素はCが2つ以上のもの、お
よびメタン系では四塩化炭素(CCl2)、クロロホル
ム(CHCL3)で、ジクロルメタン(CH2CL2)
とHFとによるジフルオロメタン(CH2F2tたはフ
ロン32)の製法については殆んど発表がない。
Conventionally, aliphatic halogenated hydrocarbons and hydrogen fluoride (HF)
Many methods have been published for producing fluorocarbons (fluorocarbons) by reacting them. However, the halogenated hydrocarbons used in the above reaction are those with two or more carbon atoms, and in the case of methane, carbon tetrachloride (CCl2), chloroform (CHCL3), and dichloromethane (CH2CL2).
There is almost no publication regarding the method for producing difluoromethane (CH2F2t or Freon 32) using CH2F2t and HF.

一般に、ジクロルメタンと弗化水素との反応によって、
ジフルオロメタンを効率よく生成せしめることが困難な
ことは、椋々の報告に記載されでいる。例えば、シーエ
ムシー社、昭和52年12月発行、「フッ素化合物の化
学と工業1第267頁には、−cct3グループは反応
性が非常に高く段階的に−CC72F N   CCI
 F 2と置換されるが、CF 3まで弗素化すること
は困難であること、また、−CHCl2グループは反応
性が低く、−CHCtFには置換されるが、−CHF2
まで置換することが困難であること、さらに分子中の水
素が多ければ多い程、反応性が低くな〃、分解または副
反応を起し易いこと、が記載されている。
Generally, by reaction of dichloromethane and hydrogen fluoride,
The difficulty in efficiently producing difluoromethane is described in the report by Ryogo. For example, in "Chemistry and Industry of Fluorine Compounds 1, p. 267, published by CMC Co., Ltd., December 1977, the -cct3 group has very high reactivity, and -CC72F N CCI
Although it is substituted with F2, it is difficult to fluorinate up to CF3, and -CHCl2 group has low reactivity, and it is substituted with -CHCtF, but -CHF2
It is also stated that the more hydrogen in the molecule, the lower the reactivity and the more likely it is that decomposition or side reactions will occur.

事実、ジフルオロメタンの製造法としては、僅カニ、三
酸化第ニクロムを触媒として ジクロルメタンと弗化水
素とから、気相反応で、合成する方法(特公昭42−3
004)があるのみである。
In fact, difluoromethane is produced by a gas phase reaction from dichloromethane and hydrogen fluoride using dichromium trioxide as a catalyst (Japanese Patent Publication No. 42-3
004).

しかも、その結果は、原料CH2Cl2に対し、≠3%
のCH2F2を得ているにすぎないばかりか、副反応そ
の他によると思われるC H2Cl 2ノ多量なロスを
伴なっている。
Moreover, the result was ≠3% with respect to the raw material CH2Cl2.
Not only was only 100% of CH2F2 obtained, but a large amount of CH2Cl2 was lost, presumably due to side reactions and other factors.

しかるに、本発明者らは、ジクロルメタント弗化水素と
を、気相で反応せしめる製造方法について、広範かつ詳
細な研究を進めた結果、フン化クロム又は、フン化クロ
ムを担体と混合成型あるいはフン化クロムを担体に担持
させたことよりなる触媒を用い、適切な条件で反応を行
なわせる事によシ、副反応が極めて少なく、目的とする
ジフルオロメタンを、高収率で得られる事を見い出し、
経済的に極めて有利な、ジフルオロメタン製造方法を発
明するに至った。
However, as a result of extensive and detailed research into a production method in which dichloromethane and hydrogen fluoride are reacted in the gas phase, the present inventors have found that chromium fluoride or chromium fluoride is mixed with a carrier or molded with fluoride. It was discovered that by using a catalyst consisting of chromium chloride supported on a carrier and carrying out the reaction under appropriate conditions, the desired difluoromethane could be obtained in high yield with extremely few side reactions. ,
An economically extremely advantageous method for producing difluoromethane has been invented.

本発明は上記の知見に基づいてなされたもので、その要
旨は、CH2C42とHFとをフン化クロム又はフン化
クロムを担体と混合成型あるいはフン化クロムを担体に
担持させたことよシなる触媒を用い、反応温度、:zo
o−joθ℃の1条件で気相反応させるC M 2 F
 2の製造方法にある。
The present invention has been made based on the above findings, and the gist thereof is to form a catalyst in which CH2C42 and HF are mixed and molded with chromium fluoride or chromium fluoride with a carrier, or chromium fluoride is supported on a carrier. and the reaction temperature: zo
C M 2 F subjected to gas phase reaction under one condition of o-joθ°C
It is in the manufacturing method of 2.

以下本発明を詳しく祝明する。The present invention will now be celebrated in detail.

本発明で用いるフン化クロム触媒は、それが三フフ化ク
ロム(CrF3)であれはそのまま或いはこれを活性炭
等の多孔質担体と混合成形又は上記担体に担持させて使
用する。
The fluorinated chromium catalyst used in the present invention is chromium trifluoride (CrF3) and is used as it is, mixed with a porous carrier such as activated carbon, or supported on the carrier.

またクロム化合物をフッ素化したフン化クロムを用いる
場合には、クロム化合物としては、例えは、酸化り四ム
、水酸化クロム、塩化クロム、硝酸クロム等の無水物或
いは結晶水を有するもの、又はクロム酸塩類が用いられ
る。
In addition, when using chromium fluoride, which is a fluorinated chromium compound, examples of the chromium compound include chromium oxide, chromium hydroxide, chromium chloride, chromium nitrate, etc., which have anhydrous or crystal water, or Chromates are used.

上記クロム化合物は単独又は混合物でもxくまたC r
F3を一部混合してもよい。しかしCrFa以外のクロ
ム化合物を含有する場合には、成形又は活性炭等の多孔
質担体に担持させた後、弗素化処理することが必要であ
る。
The above chromium compound may be used alone or in a mixture.
A portion of F3 may be mixed. However, when containing a chromium compound other than CrFa, it is necessary to perform a fluorination treatment after molding or supporting it on a porous carrier such as activated carbon.

上記弗素化処理の方法としては、塩類を含むか、又は含
まないフッ素化低級脂肪族炭化水素(いわゆるフロン類
)、或いはHFをそのまま又はN2等の不活性ガスで希
釈してクロム化合物又はそれを担持したものあるいは担
体と混合成型したものと接触させる。上記フッ素化処理
は、/30〜J−00℃において、導入したHFあるい
はフロン類の消費が実質土兄られなくなるまで処理する
ことが望ましい。
The above-mentioned method of fluorination treatment includes using fluorinated lower aliphatic hydrocarbons (so-called fluorocarbons) containing or not containing salts, or HF as it is or diluting it with an inert gas such as N2 to form a chromium compound or HF. Contact with the supported material or the material mixed with the carrier and molded. The above-mentioned fluorination treatment is preferably carried out at /30 to J-00° C. until consumption of the introduced HF or fluorocarbons is substantially eliminated.

フッ素化処理によって得られた触媒の化学的な組成、物
理的構造については明らかでないが、少なくとも一部は
フッ化物となシ、その結果、活性でかつ副反応の極めて
少ない優れた触媒が得られるものと思料する。
Although the chemical composition and physical structure of the catalyst obtained by fluorination treatment are not clear, at least a portion of it is fluoride, and as a result, an excellent catalyst that is active and has very few side reactions can be obtained. think about something.

なお、轟然のことながら、CrF3を触媒とした場合は
、フッ素化処理は必要ないが、すたフッ素化処理を行な
っても、触媒としても何等問題はない。
It should be noted that when CrF3 is used as a catalyst, fluorination treatment is not necessary, but there is no problem in using it as a catalyst even if fluorination treatment is performed.

上記触媒は、単独又は担体に担持さぜるだけでよく、助
触媒等を必要とせず、さらに弗素化処理を必要とする場
合には、反応装置がそのまま使用出来るので工業的に有
利である。
The above-mentioned catalyst can be used alone or by being supported on a carrier, and does not require a co-catalyst. Furthermore, if a fluorination treatment is required, the reaction apparatus can be used as is, which is industrially advantageous.

また、反応温度は原料であるHFとCN2 C12の比
率、触媒との接触時間等の条件に依り異なるが、低くす
ぎると反応率が低下し、CH2F2の生成率が低下する
。また高すぎると触媒の劣化、反応器構造材料の腐蝕等
問題を生じるおそれがある。反応温度範囲としては1.
200〜SOO℃が良く、特に3θO−≠!θ℃が好ま
しい。
Further, the reaction temperature varies depending on conditions such as the ratio of the raw materials HF and CN2C12 and the contact time with the catalyst, but if it is too low, the reaction rate will decrease and the production rate of CH2F2 will decrease. Moreover, if it is too high, problems such as deterioration of the catalyst and corrosion of reactor structural materials may occur. The reaction temperature range is 1.
200~SOO℃ is good, especially 3θO-≠! θ°C is preferred.

また原料であるHFとCH2Cl2の比率は、HFが少
ないとCH2F2の生成が少iい。HFの比率を増すと
CH2F2の生成率は増加する。
In addition, regarding the ratio of raw materials HF and CH2Cl2, when HF is small, less CH2F2 is produced. Increasing the proportion of HF increases the production rate of CH2F2.

しかし、ある程度の増加は効果があるが、それ以上増加
してもCH2F2の生成率はあまシ上昇しない。さらに
過剰又は未反応のHFは、廃棄又は回収処理をする必吸
があるので HFの割合を増す事tま、処理の煩雑さと
、経済的不利を招く。したがッテHF / CH2Ct
 2 tD モル比id / 〜、20 。
However, although an increase to a certain degree is effective, even if it increases beyond that, the production rate of CH2F2 does not increase significantly. Furthermore, excess or unreacted HF must be disposed of or recovered, so increasing the proportion of HF will complicate the process and cause economic disadvantage. Gatte HF / CH2Ct
2 tD molar ratio id / ~, 20.

特に2〜10とすることが好ましい。In particular, it is preferably 2 to 10.

この反応は気相反応であるので、原料はあらかじめ気化
器等によシ、ガス化させておく必要がある。また、操作
圧力は、原料及び生成物が液化し7ない範囲であれば、
特に制限Fi、ないが、簡易化、経済性の1より常圧又
は僅か加圧で反応を行なわせるのがよい。
Since this reaction is a gas phase reaction, it is necessary to gasify the raw material in advance using a vaporizer or the like. In addition, as long as the operating pressure is within a range where the raw materials and products do not liquefy,
Although there is no particular restriction Fi, it is preferable to carry out the reaction at normal pressure or slightly increased pressure for reasons of simplicity and economy.

触媒と原料との接触方式は、流動床、固定床等、特に制
限はないが、装U1の簡単なことから、固定床方式が好
寸しい1、 以上述べたように、本発明に係るCH2F2の製造方法
は、殆どAil、l生なく高収率でCH2F 2が得ら
れる工業的に極めて優れた方法である。
The method of contact between the catalyst and the raw material is not particularly limited, such as fluidized bed or fixed bed, but the fixed bed method is preferable because of the simplicity of the equipment 1. As mentioned above, the CH2F2 according to the present invention The production method is an extremely excellent industrial method that allows CH2F2 to be obtained in high yield with almost no Ail or I production.

次に実施例を示し、本発明を具体的に説明する。Next, examples will be shown to specifically explain the present invention.

実施例1 市販のCrFs、3H2〇二3009をArrrrn’
2:)X4mmHのペレット状に成形した後、N2気流
中で、徐々に加熱乾燥し、約μOO℃に一時間保持し、
CrF3触媒とした。
Example 1 Commercially available CrFs, 3H2〇23009, was Arrrrn'
2:) After forming into a pellet shape of 4mmH, it was gradually heated and dried in a N2 stream, and kept at about μOO℃ for 1 hour.
It was used as a CrF3 catalyst.

この触媒100−を内径、20mm、長さ7mの71ス
テロイC製反応器に充填し、常5圧下、反応器内温度を
310℃に保ちながらCH2Cl2:ぷグ1i’ / 
h rおよびHF:’Z4(f/hrを気化器で蒸発さ
せながら、気相で反応器に導入した。系が十分に安定し
た後、5時間にわたシ、反応器よシ出るガス中の未反応
HF、生成したHClをアルカリによシ捕果し、酸分を
除去し、残りの有機物を凝縮液化して回収した。
This catalyst 100- was packed into a reactor made of 71 Steroid C with an inner diameter of 20 mm and a length of 7 m, and CH2Cl2:Pug1i'/
h r and HF: 'Z4 (f/hr) were introduced into the reactor in the gas phase while being evaporated in a vaporizer. Unreacted HF and generated HCl were collected by alkali, acid content was removed, and the remaining organic matter was condensed and recovered.

回収した有機物の組成をガスクロマトグラフィーにより
分析した結果、次の値を得た。
The composition of the recovered organic matter was analyzed by gas chromatography, and the following values were obtained.

CH2F2:it、1.?  CHzCAF:ユ♂1C
H2C12: 2F? この結果よシ供給したCH2Cl2に対する生成率は、
CH2Fzニア091r、CI(2ctF:/Jチであ
ることがわかる。
CH2F2:it, 1. ? CHzCAF: Yu♂1C
H2C12: 2F? As a result, the production rate for the supplied CH2Cl2 is:
It can be seen that CH2Fz near 091r, CI (2ctF:/Jchi).

実施例2 CrCta ・6H207jfを水1oofVc溶解し
た塩化クロム水溶液全作成し、別に300℃N2雰囲気
中で2時間乾燥したり叫φ×を圏Hの粒状活性炭100
1を上記水溶液に浸漬混合した後、エバポレーターによ
シ減圧乾燥することによシ、Cr CL 3を活性炭に
担持させ、このCrCl2を担持した活性炭100虎1
を内径コθwn 、長さ17nのハステロイC製反応器
に充填した。
Example 2 A chromium chloride aqueous solution was prepared by dissolving CrCta 6H207jf in 100Vc of water, and separately dried in a N2 atmosphere at 300°C for 2 hours.
After immersing and mixing 1 in the above aqueous solution, Cr CL 3 was supported on activated carbon by drying it under reduced pressure in an evaporator.
was filled into a Hastelloy C reactor having an inner diameter of θwn and a length of 17n.

次いでN2ガスを30m1/−の流速で流しつつ、ヒー
ターによって反応器内温度を徐々に上げ、330℃に2
時間保持して上記触媒を乾燥した。乾燥後、これKHF
を流して徐々にN2を停止するとともに、内部温度を≠
oo′Cまで加熱し、管内を通過するHFの消費が見ら
れなくなった後、■−IFの供給を停止し、N2気流中
で冷却した。
Next, while flowing N2 gas at a flow rate of 30ml/-, the temperature inside the reactor was gradually raised to 330°C by a heater.
The catalyst was dried by holding for a period of time. After drying, this is KHF
While gradually stopping the N2 supply, the internal temperature was lowered to ≠
After heating to oo'C and no consumption of HF passing through the tube was observed, the supply of ①-IF was stopped and the tube was cooled in a N2 stream.

次いで反応器内部温度をaOO℃に加熱保持しながら、
CH2Cl2ユII ? / h r 1およびI(F
3りt / h rを気化器で気化させて、上記反応器
に供給した。系が十分安定した後、5時間にわたシ、反
応器よシ出るガス中の酸分をアルカリによシ捕集し、脱
酸後の有機物を凝縮液化して回収した。
Next, while maintaining the reactor internal temperature at aOO℃,
CH2Cl2Yu II? / h r 1 and I(F
3 t/hr was vaporized in a vaporizer and fed to the reactor. After the system became sufficiently stable, the acid content in the gas coming out of the reactor was collected with an alkali for 5 hours, and the organic matter after deoxidation was condensed and liquefied and recovered.

回収した有機物の組成をガスクロマトグラフィーにより
分析した結果、次の値を得た。
The composition of the recovered organic matter was analyzed by gas chromatography, and the following values were obtained.

CH2F1よグ2、CHzCAF: t、of、CH2
Cl2 : l≠1、 この結果は、供給したC H2Ct2に対する生成率が CH2F2 ニア弘チ、CH2CtF ’ / 0チで
あることを示す。
CH2F1 Yog2, CHzCAF: t, of, CH2
Cl2: l≠1, This result shows that the production rate for the supplied CH2Ct2 is CH2F2 near Hirochi, CH2CtF'/0chi.

実施例3 μ調φ×l/−1lanHのペレット状に成形した三酸
化第2クロム100H]を内径−θ薗、長さ7mのハス
テロイC製反応器に充填した。
Example 3 [Chromium trioxide 100H] formed into pellets with a μ scale of φ×l/−1 lanH] was packed into a Hastelloy C reactor having an inner diameter of −θ and a length of 7 m.

次いでN2ガスをJ Orttl / ytxの流速で
流しながらヒーターによシ、反応器内温度を徐々に上昇
させ、200℃において乾燥した後、これにHFガスを
加え、徐々にN2を停止するとともに、内部温度をグO
Q′Cまで加熱し、1−IFの消費が見られなくなった
後、f(Fの供給を停止し、三酸化第ニクロムの弗素化
触媒を得た。
Next, while flowing N2 gas at a flow rate of J Orttl / ytx, the temperature inside the reactor was gradually raised by a heater, and after drying at 200 ° C., HF gas was added thereto, and while N2 gas was gradually stopped, Check the internal temperature
After heating to Q'C and no consumption of 1-IF was observed, the supply of f(F was stopped, and a fluorination catalyst of dichromium trioxide was obtained.

次いで上記反応器の内部温度を3jO℃に保ちつつ、C
HzCt2Q7P/hr、HF3.It/hrを気化器
で蒸発させ上記反応器に供給した。
Next, while maintaining the internal temperature of the reactor at 3jO℃, C.
HzCt2Q7P/hr, HF3. It/hr was evaporated in a vaporizer and supplied to the reactor.

系が十分安定した後、3時間に渡シ、反応器よシ出るガ
ス中の酸分をアルカリにより捕集し、脱酸後の有機物を
凝縮液化して回収した。
After the system became sufficiently stable, the acid content in the gas coming out of the reactor was collected with an alkali for 3 hours, and the organic matter after deoxidation was condensed and liquefied and recovered.

回収した有機物の組成をガスクロマトグラフィーによシ
分析した結果、次の値を得た。
The composition of the recovered organic matter was analyzed by gas chromatography, and the following values were obtained.

CH2F2:ま7? N CH2C/−F:lグ1、C
H2Cl2:ユコグ 上記結果は、供給したCH2C1Fに対する生成率が CH2F2:69チ)C)tzcAF: i 3%であ
ることを示す。
CH2F2: Ma7? N CH2C/-F:lg1,C
H2Cl2:Yukog The above results show that the production rate with respect to the supplied CH2C1F is CH2F2:69CH)C)tzcAF:i 3%.

実施例4 市販のCrF3・3H!0粉末/jOtllc、活性炭
粉末2009を加え、よく混合した後、成型機によりグ
論φ×μm+nHの円筒状に成型し、更に十分乾燥する
ことによシ、活性炭1重量部に対し、CrF3約05重
量部の割合で混合成型したベレットを得た。
Example 4 Commercially available CrF3.3H! After adding 0 powder/jOtllc and activated carbon powder 2009 and mixing well, it was molded into a cylindrical shape with a diameter of φ×μm+nH using a molding machine, and then thoroughly dried. A pellet was obtained which was mixed and molded in proportions of parts by weight.

このペレット100−を、内径、20rtrmφ、高さ
7mのハステロイC製反応器に充填した。
These pellets 100- were filled into a Hastelloy C reactor having an inner diameter of 20 rtrmφ and a height of 7 m.

次いで、窒素ガスをj Orttl / ttMの流速
で流しつつ、ヒーターによシ加熱し、反応器内部温度を
370℃まで昇温し、窒素ガスを止めた。
Next, while flowing nitrogen gas at a flow rate of j Orttl/ttM, the reactor was heated by a heater to raise the internal temperature of the reactor to 370°C, and the nitrogen gas was stopped.

続いて、反応器内部温度を370℃に保ちつつCH2C
42:&!f/hr及びHF:’lAf/brを気化器
で蒸発させながら、気相で反応器に供給した。系が十分
安定した後、5時間に渡り、反応器出口ガス中の酸分を
アルカリによシ捕集し、脱酸後の有機物を凝縮液化して
回収した。
Next, CH2C was added while maintaining the reactor internal temperature at 370°C.
42: &! f/hr and HF:'lAf/br were fed to the reactor in the gas phase while being evaporated in a vaporizer. After the system became sufficiently stable, the acid content in the reactor outlet gas was collected with an alkali over a period of 5 hours, and the organic matter after deoxidation was condensed and liquefied and recovered.

回収した有機物の組成をガスクロマトグラフィーによシ
分析した結果、次の値を得た。
The composition of the recovered organic matter was analyzed by gas chromatography, and the following values were obtained.

CH2F2 : / Ift  CH2C1F: Qt
fCH2C42: ’A / lii’ この結果は、供給したCH2Cl2に対し、CI(2F
2及びCH2C1Fが、各々7)%及びlコチ生成した
ことを示している0 以上実施例で示すように、本発明の方法によれば・好ま
しくない副反応生成物か極めて少なく、CJ(2F2を
高収率で得ることか出来ろ。
CH2F2: / If CH2C1F: Qt
fCH2C42: 'A/lii' This result indicates that CI(2F
2 and CH2C1F were produced by 7% and 1%, respectively. Is it possible to obtain it with high yield?

出願人 昭和屯工株式会社Applicant Showa Tunko Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)  ジクロルメタンとフン化水素とを、フン化ク
ロム又はフン化クロムを担体と混合成型あるいはフン化
クロムを担体に担持させたことよシなる触媒を用い、反
応温度roo℃〜200℃の東件で気相反応させること
を特徴とするジフルオロメタンの製造方法。
(1) Dichloromethane and hydrogen fluoride are mixed with chromium fluoride, chromium fluoride is mixed with a carrier, or chromium fluoride is supported on a carrier, using a catalyst other than that, at a reaction temperature of roo ℃ to 200 ℃. A method for producing difluoromethane, characterized by carrying out a gas phase reaction.
(2) フン化クロムが三フン化クロムである特許請求
の範囲第1項記載のジフルオロメタンの製造方法。
(2) The method for producing difluoromethane according to claim 1, wherein the chromium fluoride is chromium trifluoride.
(3)  フン化クロムが、クロム化合物をフッ素化処
理してなるものである特許請求の範囲第7項記載のジフ
ルオロメタンの製造方法。
(3) The method for producing difluoromethane according to claim 7, wherein the chromium fluoride is obtained by fluorinating a chromium compound.
(4)担体が活性炭である特許請求の範囲第7項記載の
ジフルオロメタンの製造方法。
(4) The method for producing difluoromethane according to claim 7, wherein the carrier is activated carbon.
JP58100464A 1983-06-06 1983-06-06 Preparation of difluoromethane Pending JPS59225131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58100464A JPS59225131A (en) 1983-06-06 1983-06-06 Preparation of difluoromethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58100464A JPS59225131A (en) 1983-06-06 1983-06-06 Preparation of difluoromethane

Publications (1)

Publication Number Publication Date
JPS59225131A true JPS59225131A (en) 1984-12-18

Family

ID=14274626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58100464A Pending JPS59225131A (en) 1983-06-06 1983-06-06 Preparation of difluoromethane

Country Status (1)

Country Link
JP (1) JPS59225131A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661906A1 (en) * 1990-05-11 1991-11-15 Atochem PROCESS FOR THE PRODUCTION OF 1,1,1,2-TETRAFLUORO-CHLOROETHANE AND PENTAFLUOROETHANE
WO1995012563A1 (en) * 1993-11-01 1995-05-11 E.I. Du Pont De Nemours And Company Production of dihalomethanes containing fluorine and azeotropes of dihalomethanes containing chlorine with hf
US5763708A (en) * 1995-09-20 1998-06-09 Allied Signal Inc. Process for the production of difluoromethane
US6311515B1 (en) 1992-04-13 2001-11-06 Daikin Industries, Ltd. Process for removal of hydrogen fluoride
US6676809B1 (en) * 1992-02-07 2004-01-13 Daikin Industries Ltd. Process for removal of hydrogen fluoride

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661906A1 (en) * 1990-05-11 1991-11-15 Atochem PROCESS FOR THE PRODUCTION OF 1,1,1,2-TETRAFLUORO-CHLOROETHANE AND PENTAFLUOROETHANE
US6676809B1 (en) * 1992-02-07 2004-01-13 Daikin Industries Ltd. Process for removal of hydrogen fluoride
US6311515B1 (en) 1992-04-13 2001-11-06 Daikin Industries, Ltd. Process for removal of hydrogen fluoride
WO1995012563A1 (en) * 1993-11-01 1995-05-11 E.I. Du Pont De Nemours And Company Production of dihalomethanes containing fluorine and azeotropes of dihalomethanes containing chlorine with hf
US5955637A (en) * 1993-11-01 1999-09-21 E. I. Du Pont De Nemours And Company Production of dihalomethanes containing fluorine and azeotropes of dihalomethanes containing chlorine with HF
US6274781B1 (en) 1993-11-01 2001-08-14 E. I. Du Pont De Nemours And Company Production of dihalomethanes containing fluorine and azeotropes of dihalomethanes containing chlorine with HF
US5763708A (en) * 1995-09-20 1998-06-09 Allied Signal Inc. Process for the production of difluoromethane
US6844474B1 (en) 1995-09-20 2005-01-18 Allied Signal Inc. Process for the production of difluoromethane

Similar Documents

Publication Publication Date Title
US4465786A (en) Catalyst composition for the preparation of 3,3,3-trifluoropropene
CN1035812C (en) Process for manufacture of pentafluoroethane
JP6827246B2 (en) Method for producing halogenated butene compound
JPH04226927A (en) Process for producing 1,1,1,2-tetrafluorochloroethane and pentafluoroethane
US5763705A (en) Method of producing 1,1,1,3,3-pentafluoropropane, a method of producing 1,1,1,3,3-pentafluoro-2-halogeno-3-chloropropane, and a method of producing 1,1,1,2,3,3-hexachloropropene
PL148109B1 (en) Method of obtaining nithomethane
AU700839B2 (en) Process for the manufacture of difluoromethane
US3904701A (en) Process for the catalytic hydrofluorination of halogenated hydrocarbons
JPS59225131A (en) Preparation of difluoromethane
EP0128510A2 (en) Process for producing difluoromethane
JPS60116637A (en) Preparation of fluoromethane
JP3552887B2 (en) Method for producing 1,1,1,2,2-pentafluoroethane
JPS6013726A (en) Preparation of fluoromethane
JPS6016943A (en) Production of fluoromethane
JPS608235A (en) Production of fluoromethane
JPS59231030A (en) Preparation of difluoromethane
US6274780B1 (en) Catalysts for halogenated hydrocarbon processing and their preparation and use
JPS608234A (en) Production of fluoromethane
JPS60115537A (en) Production of fluoromethane
JPS59231029A (en) Preparation of difluoromethane
JPS60115536A (en) Production of fluoromethane
JPH0791202B2 (en) Process for producing 1,1-dichloro-2,2,2-trifluoroethane
JPH03181428A (en) Purifying dichloropentafluoropropane
US3965038A (en) Regeneration of bismuth containing catalyst used in the hydrofluorination of halogenated hydrocarbons
KR930007990B1 (en) Fluorine substitution in 1,1,1 trichloro ethane