JPS5943932B2 - Manufacturing method of methyl chloride - Google Patents

Manufacturing method of methyl chloride

Info

Publication number
JPS5943932B2
JPS5943932B2 JP57011304A JP1130482A JPS5943932B2 JP S5943932 B2 JPS5943932 B2 JP S5943932B2 JP 57011304 A JP57011304 A JP 57011304A JP 1130482 A JP1130482 A JP 1130482A JP S5943932 B2 JPS5943932 B2 JP S5943932B2
Authority
JP
Japan
Prior art keywords
ammonium chloride
chloride
reaction
methyl chloride
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57011304A
Other languages
Japanese (ja)
Other versions
JPS58128329A (en
Inventor
孝 小島
「たか」正 川上
博文 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP57011304A priority Critical patent/JPS5943932B2/en
Publication of JPS58128329A publication Critical patent/JPS58128329A/en
Publication of JPS5943932B2 publication Critical patent/JPS5943932B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、塩化アンモニウムとメチルアミンを反応させ
て、塩化メチルを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing methyl chloride by reacting ammonium chloride and methylamine.

塩化メチルは、塩化メチレン、クロロホルム、四塩化炭
素などのクロロメタン類製造の中間原料として用いられ
る他、シリコーン樹脂製造の中間原料およびブチルゴム
製造時の溶剤として用いられるなど、工業的に重要な化
合物である。従来、塩化メチルを製造する方法としては
、メタンの塩素による熱塩素化や光塩素化、あるいは、
メタノールと塩酸の脱水縮合反応によるものなどが知ら
れている。
Methyl chloride is an industrially important compound that is used as an intermediate raw material in the production of chloromethanes such as methylene chloride, chloroform, and carbon tetrachloride, as well as as an intermediate raw material in the production of silicone resins and as a solvent in the production of butyl rubber. be. Conventionally, methods for producing methyl chloride include thermal chlorination of methane with chlorine, photochlorination, or
One known method is a dehydration condensation reaction between methanol and hydrochloric acid.

一方、アンモニア・ソーダ法による炭酸ソーダの製造法
において大量の塩化アンモニウムが副生するが、これは
肥料として処理するには需要面からの制約をうける為生
産の低下を強いられ、引いてはアンモニア・ソーダ法の
合理化に支障をきたしている。この為塩化アンモニウム
から種々の方法で、塩素又は塩酸およびアンモニアを回
収する方法も提案されているが、何れも反応あるいは操
作が複雑で、満足すべき方法は見出されていない。本発
明者は塩化アンモニウムを原料として使用する有利な塩
化メチルの製造方法について、鋭意検討した結果、塩化
アンモニウムとメチルアミン類を反応させる事により塩
化メチルが得られることを見出し本発明を完成した。
On the other hand, a large amount of ammonium chloride is produced as a by-product in the production of soda carbonate using the ammonia-soda method, but production is forced to decline due to demand constraints when processing this as fertilizer.・It is hindering the rationalization of the soda law. For this reason, various methods have been proposed for recovering chlorine or hydrochloric acid and ammonia from ammonium chloride, but all of them involve complicated reactions and operations, and no satisfactory method has been found. The present inventor conducted extensive studies on an advantageous method for producing methyl chloride using ammonium chloride as a raw material, and as a result, discovered that methyl chloride can be obtained by reacting ammonium chloride with methylamines, and completed the present invention.

すなわち本発明は、塩化アンモニウムとメチルアミン類
を、固体触媒の存在下気相接触反応せしめ塩化メチルを
製造する方法である。
That is, the present invention is a method for producing methyl chloride by subjecting ammonium chloride and methylamines to a gas phase catalytic reaction in the presence of a solid catalyst.

本発明において、原料として使用する塩化アンモニウム
としては天然産のもの、アンモニア・ソーダ法や硫安と
食塩の複分解等によつて得られるものなど特に制限なく
広く用いることができる。
In the present invention, as the ammonium chloride used as a raw material, a wide range of ammonium chloride can be used without particular limitation, such as naturally occurring ones, those obtained by the ammonia-soda method, double decomposition of ammonium sulfate and salt, etc.

又これらの塩化アンモニウム中に、メチルアミン類やこ
れらの塩酸塩又はテトラメチルアンモニウムクロライド
などが混入したものでも支障なく用いることができる。
更にその形態においても固体状のもの、水溶液状又はス
ラリー状のもの等広く用いることが出来、これらを反応
器内、あるいは反応器外で昇華させて用いる。一方の原
料として用いるメチルアミン類は、その組成比に特に制
限はなく、トリメチルアミン、ジメチルアミン、モノメ
チルアミンを単独もしくは任意の割合で混合したものを
、ガス状もしくは水溶液で用いることができ、更にアン
モニアやメタノールが混入したものでもよい。本発明に
使用する触媒は固体触媒であり、例えばアルミナ、シリ
カ、チタニア、マグネシア、クロミアなどの種々の酸化
物、シリカ−アルミナ、ゼオライト、アルミナーボリア
、シリカ−マグネシア、シリカ−ジルコニア、亜鉛一ク
ロマイト、鉄一クロミア、チタニアーボリアなどの種々
の複合酸化物や活性炭及び活性炭にアルミン酸ソーダア
ルミン酸カリを担持したものの中から選ばれる1種又は
2種以上の混合物が使用できる他、更に、これらの触媒
は種々の金属の塩酸塩、硫酸塩、リン酸塩、アルミン酸
塩、モリブデン酸塩、硝酸塩等を含有していてもよい。
Also, these ammonium chlorides mixed with methylamines, their hydrochlorides, or tetramethylammonium chloride can be used without any problem.
Furthermore, it can be used in a wide variety of forms, including solid forms, aqueous solutions, and slurry forms, and these are sublimed inside or outside the reactor. The composition ratio of methylamines used as one of the raw materials is not particularly limited, and trimethylamine, dimethylamine, and monomethylamine may be used alone or in a mixture of any ratio in gaseous or aqueous solution. It may also be mixed with methanol. The catalysts used in the present invention are solid catalysts, such as various oxides such as alumina, silica, titania, magnesia, chromia, silica-alumina, zeolite, aluminaboria, silica-magnesia, silica-zirconia, zinc monochromite, etc. , various composite oxides such as iron-chromia, titania arboria, activated carbon, and activated carbon supported with sodium aluminate potassium aluminate, or a mixture of two or more of these catalysts can be used. may contain hydrochlorides, sulfates, phosphates, aluminates, molybdates, nitrates, etc. of various metals.

又、これらの触媒の形状にも特に制限はなく、原料ガス
と触媒の接触形式も固定床、流動床など、任意の適当な
形式で行なうことができる。原料塩化アンモニウムとメ
チルアミン類の供給割合は任意に選べるが、メチルアミ
ン類のメチル基の合計モル数に対する、塩化アンモニウ
ムのモル比として0.1〜5.0、好ましくは0.2〜
1.5の範囲である。
Further, there is no particular restriction on the shape of these catalysts, and the contact between the raw material gas and the catalyst can be carried out in any suitable manner, such as a fixed bed or a fluidized bed. The supply ratio of raw material ammonium chloride and methylamines can be arbitrarily selected, but the molar ratio of ammonium chloride to the total number of moles of methyl groups in methylamines is 0.1 to 5.0, preferably 0.2 to 5.0.
It is in the range of 1.5.

この値が大きくなると、未反応の塩化アンモニウム量が
増大し、その回収、リサイクルの為に多量のエネルギー
を必要とし、一方、そのモル比が小さくなると、未反応
のメチルアミン類が増加し、メチルアミン類の分解や高
沸化などの副反応が起きやすくなる。本発明を実施する
に際しての反応温度は250〜600℃の範囲であり、
好ましくは380〜450℃の範囲である。
As this value increases, the amount of unreacted ammonium chloride increases, requiring a large amount of energy to recover and recycle it. On the other hand, as the molar ratio decreases, unreacted methylamines increase and methyl Side reactions such as decomposition of amines and high boiling temperatures become more likely to occur. The reaction temperature in carrying out the present invention is in the range of 250 to 600°C,
Preferably it is in the range of 380 to 450°C.

250℃以下の温度では、実質的な反応速度が得られず
、又、塩化アンモニウムの蒸気圧が低いため、原料ガス
中の塩化アンモニウム濃度が低下してしまう。
At temperatures below 250° C., a substantial reaction rate cannot be obtained and the vapor pressure of ammonium chloride is low, resulting in a decrease in the ammonium chloride concentration in the raw material gas.

また600℃以上の温度では分解反応が多くなり、塩化
メチル選択率が低下する。反応圧力には特に制限はなく
、常圧、加圧あるいは減圧のいずれでもよいが、通常は
常圧または若干加圧にて操作するのが便利である。
Further, at a temperature of 600° C. or higher, decomposition reactions increase and the methyl chloride selectivity decreases. The reaction pressure is not particularly limited and may be normal pressure, increased pressure or reduced pressure, but it is usually convenient to operate at normal pressure or slightly increased pressure.

反応器への原料の供給空間速度(SV)はかなり広い範
囲で変えうるが、通常100〜3000hrH,好まし
くは200〜2000hr−1の範囲である。
The feeding space velocity (SV) of the raw materials to the reactor can vary within a fairly wide range, but is usually in the range of 100 to 3000 hrH, preferably 200 to 2000 hr.

本発明によれば反応生成物として塩化アンモニウム、塩
化メチル、アンモニア及びメチルアミン類の混合物が得
られるが、これらは例えば乾式捕集法や熱水クエンチ等
の通常よく知られた方法により、未反応塩化アンモニウ
ムを容易に分離することができる。
According to the present invention, a mixture of ammonium chloride, methyl chloride, ammonia and methylamines is obtained as a reaction product. Ammonium chloride can be easily separated.

未反応の塩化アンモニウムはリサイクルし反応原料とし
て再使用することができる。未反応塩化アンモニウムと
分離された塩化メチル、アンモニア及びメチルアミン類
は、更に水吸収法などの既知の方法により、塩化メチル
とアンモニア及びメチルアミン類に分離される。アンモ
ニアとメチルアミン類は更に蒸留等の手段により分離し
、メチルアミン類は反応原料として再び使用するか、あ
るいは必要に応じこれらの混合物をメチルアミンプラン
トの反応系や精製系に循環してもよい。本発明は、隣接
するメチルアミンプラントを有している場合には、メチ
ルアミンプラント内を多量に循環しているメチルアミン
類を有効に利用できるばかりか、本発明によつて生成し
た総メチル数の減じたメチルアミン類やアンモニアを再
度、メチルアミンプロセスに原料として再使用したり、
あるいは、精製系に送ることができるので、メタノール
と塩化水素を反応させて塩化メチルを製造する場合と同
様に、実質的に塩化メチルのみを製造することができる
ことになり、しかも安価な塩化アンモニウムから塩素を
有効に利用し、アンモニアを回収できるので特に有利で
ある。
Unreacted ammonium chloride can be recycled and reused as a reaction raw material. Methyl chloride, ammonia and methylamines separated from unreacted ammonium chloride are further separated into methyl chloride, ammonia and methylamines by a known method such as a water absorption method. Ammonia and methylamines may be further separated by means such as distillation, and the methylamines may be used again as a reaction raw material, or the mixture may be recycled to the reaction system or purification system of the methylamine plant as necessary. . When the present invention has an adjacent methylamine plant, it is possible not only to effectively utilize the methylamines circulating in large quantities within the methylamine plant, but also to reduce the total number of methyl amines produced by the present invention. The reduced methylamines and ammonia can be reused as raw materials in the methylamine process,
Alternatively, since it can be sent to a purification system, it is possible to produce essentially only methyl chloride, in the same way as methyl chloride is produced by reacting methanol and hydrogen chloride, and moreover, it can be produced from cheap ammonium chloride. This is particularly advantageous because chlorine can be used effectively and ammonia can be recovered.

さらに、本発明においては塩化アンモニウム中に塩化水
素や塩酸水溶液、更にはメチルアミン類塩酸塩等が混入
している場合でも有利に使用できるので、例えば副生物
としてこれらが利用できる場合は更に経済性を高めるこ
とができる。
Furthermore, in the present invention, it can be advantageously used even when ammonium chloride is mixed with hydrogen chloride, aqueous hydrochloric acid, or even methylamine hydrochloride, so it is even more economical if these can be used as by-products. can be increased.

実施例1 電気炉で加熱された内径22mmφの反応器に、平均粒
径50Itm(マイクロメーター)のMSr−アルミナ
流動触媒40m1を充填し、トリメチルアミンと塩化ア
ンモニウムの混合ガスを、トリメチルアミンに対する塩
化アンモニウムのモル比を1.0.SV560hr′−
1、反応温度400℃の条件で接触させた。
Example 1 A reactor with an inner diameter of 22 mmφ heated in an electric furnace was filled with 40 ml of MSr-alumina fluidized catalyst with an average particle size of 50 Itm (micrometers), and a mixed gas of trimethylamine and ammonium chloride was added to the reactor with a molar ratio of ammonium chloride to trimethylamine. Set the ratio to 1.0. SV560hr'-
1. Contact was carried out at a reaction temperature of 400°C.

高温の反応生成ガスをフィルターを備えた円筒型のガラ
ス製空冷捕集器に導き、150℃程度まで徐冷して、未
反応塩化アンモニウムの全量を固体として捕集したのち
、水吸収でメチルアミン類、アンモニアを塩化メチル含
有ガスより分離、捕集した。
The high-temperature reaction product gas is introduced into a cylindrical glass air-cooled collector equipped with a filter, where it is gradually cooled to about 150°C to collect the entire amount of unreacted ammonium chloride as a solid.Then, it is converted into methylamine by water absorption. and ammonia were separated and collected from the methyl chloride-containing gas.

その結果、塩化アンモニウム転1仁率66.7%、トリ
メチルアミン転化率43.1%、塩化アンモニウム基準
の塩化メチル収率66.6%、トリメチルアミンのメチ
ル基基準の塩化メチル収率22.2%、ジメチルアミン
収率14.1%、モノメチルアミン収率5.7%、供給
トリメチルアミンのモル数基準のアンモニア収率は30
.0%であつた。
As a result, the conversion rate of ammonium chloride was 66.7%, the conversion rate of trimethylamine was 43.1%, the yield of methyl chloride was 66.6% based on ammonium chloride, the yield of methyl chloride was 22.2% based on the methyl group of trimethylamine, Dimethylamine yield: 14.1%, monomethylamine yield: 5.7%, ammonia yield based on the number of moles of trimethylamine supplied: 30
.. It was 0%.

実施例2 平均粒径60μmのシリカ−アルミナ(Si/Al:ニ
0,4)にY型ゼオライトを約5wt%添加した流動触
媒を流動反応器に充填し、モノメチルアミン、塩化アン
モニウム、アンモニアのモル比5′が1:0.29:0
.78の原料ガスを、反応温度352℃、SV5OOh
r−1の条件で流動接触反応させた。
Example 2 A fluidized catalyst prepared by adding Y-type zeolite to silica-alumina (Si/Al: 20,4) with an average particle size of 60 μm at an amount of about 5 wt% was packed into a fluidized reactor, and the moles of monomethylamine, ammonium chloride, and ammonia were Ratio 5' is 1:0.29:0
.. 78 raw material gas, reaction temperature 352℃, SV5OOh
A fluid contact reaction was carried out under conditions of r-1.

実施例1と同様の方法により反応生成物の回収を行なつ
た結果、塩化アンモニウム転化率53.0%、モノメチ
ルアミン転化率69.2%、1塩化アンモニウム基準の
塩化メチル収率52,5%、供給モノメチルアミンのメ
チル基基準の塩化メチル収率15.1%、同基準のトリ
メチルアミン及びジメチルアミンの収率は、それぞれ2
7.4%及び24.1%であつた。又、供給モノメチル
アミンの1モル数基準のアンモニア収率は61.5%で
あつた。実施例3実施例2と同様の触媒の存在下、ジメ
チルアミン、塩化アンモニウム、アンモニアのモル比が
1:0.62:1の原料ガスを反応温度359℃、SV
75Ohr−1の条件で反応させた以外は、実施例1と
同様の方法により反応及び回収を行なつた。
As a result of recovering the reaction product using the same method as in Example 1, the conversion rate of ammonium chloride was 53.0%, the conversion rate of monomethylamine was 69.2%, and the yield of methyl chloride based on ammonium monochloride was 52.5%. , the yield of methyl chloride based on the methyl group of monomethylamine supplied was 15.1%, and the yield of trimethylamine and dimethylamine based on the same basis was 2%, respectively.
They were 7.4% and 24.1%. Further, the ammonia yield based on 1 mole of monomethylamine supplied was 61.5%. Example 3 In the presence of the same catalyst as in Example 2, raw material gas with a molar ratio of dimethylamine, ammonium chloride, and ammonia of 1:0.62:1 was reacted at a reaction temperature of 359°C and SV
The reaction and recovery were carried out in the same manner as in Example 1 except that the reaction was carried out under the conditions of 75 Ohr-1.

その結果、塩化アンモニウム転化率50.0%、ジメチ
ルアミン転化率71.0%、塩化アンモニウム基準の塩
化メチル収率50.0%、供給ジメチルアミンのメチル
基基準の塩化メチル、トリメチルアミン及びモノメチル
アミンの収率は、それぞれ15.3%、37.5%及び
14,7%であつた。又、供給ジメチルアミンのモル数
基準のアンモニア収率は46.0%であつた。実施例4 第1表に示した触媒の存在下トリメチルアミン、塩化ア
ンモニウム、アンモニアのモル比が1.0:0.88:
2.0の原料ガスを反応温度350℃、SV6OOhr
−1の条件で反応させた以外は、実施例1と同様の方法
により反応及び回収を行なつた結果を第1表に示す。
As a result, the conversion rate of ammonium chloride was 50.0%, the conversion rate of dimethylamine was 71.0%, the yield of methyl chloride was 50.0% based on ammonium chloride, and the yield of methyl chloride, trimethylamine, and monomethylamine was based on the methyl group of the supplied dimethylamine. The yields were 15.3%, 37.5% and 14.7%, respectively. Further, the ammonia yield based on the number of moles of dimethylamine supplied was 46.0%. Example 4 In the presence of the catalyst shown in Table 1, the molar ratio of trimethylamine, ammonium chloride, and ammonia was 1.0:0.88:
2.0 raw material gas at reaction temperature 350℃, SV6OOhr
Table 1 shows the results of reaction and recovery conducted in the same manner as in Example 1, except that the reaction was carried out under the conditions of -1.

実施例5 活性炭(4−.8メッシュ)を固定床触媒として使用し
、ジメチルアミンと塩化アンモニウムのモル比が1:1
638の原料ガスを、反応温度380℃、SVlOOO
hrHの条件で反応させた以外は、実施例1と同様の方
法により反応、回収を行なつた。
Example 5 Activated carbon (4-.8 mesh) was used as a fixed bed catalyst and the molar ratio of dimethylamine to ammonium chloride was 1:1.
638 raw material gas, reaction temperature 380°C, SVlOOOO
The reaction and recovery were carried out in the same manner as in Example 1 except that the reaction was carried out under hrH conditions.

その結果、塩化アンモニウム転化率46.1%、ジメチ
ルアミン転化率91.6%、塩化アンモニウム基準の塩
化メチル収率46.1%、供給ジメチルアミンのメチル
基基準の塩化メチル、モノメチルアミン及びトリメチル
アミンの収率はそれぞれ31.8%、10.1%及び2
9.3%であつた。
As a result, the conversion rate of ammonium chloride was 46.1%, the conversion rate of dimethylamine was 91.6%, the yield of methyl chloride was 46.1% based on ammonium chloride, and the yield of methyl chloride, monomethylamine, and trimethylamine was based on the methyl group of the supplied dimethylamine. The yields were 31.8%, 10.1% and 2, respectively.
It was 9.3%.

又、供給ジメチルアミンのモル数基準のアンモニア収率
は94.1%であつた。実施例6 2〜4關φの球状γ−アルミナを固定床触媒として使用
し、トリメチルアミンニジメチルアミンニモノメチルア
ミンニ塩化アンモニウムニアンモニアのモル比が0.6
8:0,42:0.46:1:2.1の組成を有する原
料ガスを反応温度400℃、SV9OOhr−1の条件
で反応させた以外は実施例1と同様の方法で反応及び回
収を行なつた。
Further, the ammonia yield based on the number of moles of dimethylamine supplied was 94.1%. Example 6 Spherical γ-alumina with a diameter of 2 to 4 was used as a fixed bed catalyst, and the molar ratio of trimethylamine didimethylamine dimonomethylamine dichloride ammonium diammonium was 0.6.
The reaction and recovery were carried out in the same manner as in Example 1, except that the raw material gas having a composition of 8:0, 42:0.46:1:2.1 was reacted at a reaction temperature of 400 ° C. and under the conditions of SV9OOhr-1. I did it.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化アンモニウムとメチルアミン類を、固体触媒の
存在下気相接触反応せしめることを特徴とする塩化メチ
ルの製造法。
1. A method for producing methyl chloride, which comprises subjecting ammonium chloride and methylamines to a gas phase contact reaction in the presence of a solid catalyst.
JP57011304A 1982-01-27 1982-01-27 Manufacturing method of methyl chloride Expired JPS5943932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011304A JPS5943932B2 (en) 1982-01-27 1982-01-27 Manufacturing method of methyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011304A JPS5943932B2 (en) 1982-01-27 1982-01-27 Manufacturing method of methyl chloride

Publications (2)

Publication Number Publication Date
JPS58128329A JPS58128329A (en) 1983-07-30
JPS5943932B2 true JPS5943932B2 (en) 1984-10-25

Family

ID=11774259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011304A Expired JPS5943932B2 (en) 1982-01-27 1982-01-27 Manufacturing method of methyl chloride

Country Status (1)

Country Link
JP (1) JPS5943932B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343519U (en) * 1986-09-09 1988-03-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343519U (en) * 1986-09-09 1988-03-23

Also Published As

Publication number Publication date
JPS58128329A (en) 1983-07-30

Similar Documents

Publication Publication Date Title
US5811603A (en) Gas phase fluorination of 1230za
AU702786B2 (en) Process for the production of difluoromethane
EP0919529B1 (en) Preparation of 1,1,1,3,3-pentafluoropropane
HU200151B (en) Process for producing 1,1,1-grifluoro-2,2-dichloroethane with hydrogen fluoride in presence of catalyst
CN115108882B (en) Continuous preparation method of 1,2, 3-pentachloropropane
CN109809959A (en) A kind of preparation method of 1,1,1,2,3- pentachloropropane
JPS5943932B2 (en) Manufacturing method of methyl chloride
US2716143A (en) Preparation of vinyl fluoride and 1, 1-difluoroethane and catalyst therefor
US3395187A (en) Process for preparing vinyl fluoride and 1, 1-difluoroethane
JPH05255148A (en) Preparation of 1,1,1,2-tetrafloroethane
US4404399A (en) Coproduction of aniline and diphenylamine
EP0408004A1 (en) Process for preparing 1,2-dichloro-1,1,2-trifluoroethane
JPS6325576B2 (en)
JPH02275842A (en) Production of ethylenediamines
JPS6344537A (en) Catalytic halogen transition for polyiodobenzene, particularly diiodobenzene
JPS58146519A (en) Preparation of methyl chloride and ammonia
US4986975A (en) Process for purifying hydrogen chloride from pyrolysis of 1,2-dichloroethane
JPS58194823A (en) Preparation of methyl chloride and ammonia
JPH09255605A (en) Production of bisphenol a
US3699161A (en) Process for the production of thiophosgene
JPS6324491B2 (en)
JP2651950B2 (en) Gas phase contact method for producing vinylidene fluoride
US2540788A (en) Process for the production of benzonitrile
JP3470357B2 (en) Method for producing anilines
JPS5943931B2 (en) Method for producing methyl chloride and ammonia