KR19990051469A - Manufacturing method of stainless steel with improved cleanliness by suppressing titanium nitride production - Google Patents

Manufacturing method of stainless steel with improved cleanliness by suppressing titanium nitride production Download PDF

Info

Publication number
KR19990051469A
KR19990051469A KR1019970070808A KR19970070808A KR19990051469A KR 19990051469 A KR19990051469 A KR 19990051469A KR 1019970070808 A KR1019970070808 A KR 1019970070808A KR 19970070808 A KR19970070808 A KR 19970070808A KR 19990051469 A KR19990051469 A KR 19990051469A
Authority
KR
South Korea
Prior art keywords
titanium
nitrogen
stainless steel
concentration
refining
Prior art date
Application number
KR1019970070808A
Other languages
Korean (ko)
Other versions
KR100336858B1 (en
Inventor
김용환
정명채
김동식
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970070808A priority Critical patent/KR100336858B1/en
Publication of KR19990051469A publication Critical patent/KR19990051469A/en
Application granted granted Critical
Publication of KR100336858B1 publication Critical patent/KR100336858B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value

Abstract

본 발명은 스테인레스강의 정련중 티타늄 첨가시 티타늄질화물(TiN)의 생성을 억제하여 청정도가 우수한 스테인레스강을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing stainless steel having excellent cleanliness by suppressing the production of titanium nitride (TiN) when titanium is added during refining of stainless steel.

본 발명의 티타늄질화물의 생성 억제에 의해 청정도를 향상시킨 스테인레스강 제조 방법은, AOD 정련로에서의 정련 말기의 실리콘(Si) 농도를 0.1% 이하, 질소(N) 농도를 0.003∼0.006%{(C + N)≤160ppm}로 조정하여 출강하며;래들 정련시 티타늄(Ti)을 0.15∼0.25%로 제어하며; 연속주조시 응고 직전 최종 질소 농도를 0.0010% 이하로 제어하여 용강중 티타늄질화물 생성을 억제하는 것을 기술요지로 한다.In the stainless steel production method of improving cleanliness by suppressing the production of titanium nitride of the present invention, the silicon (Si) concentration at the end of refining in the AOD refining furnace is 0.1% or less and the nitrogen (N) concentration is 0.003 to 0.006% {( C + N) ≤ 160ppm} to step out; to control the titanium (Ti) 0.15 ~ 0.25% in ladle refining; It is a technical idea to control the production of titanium nitride in molten steel by controlling the final nitrogen concentration of 0.0010% or less immediately before solidification during continuous casting.

Description

티타늄질화물 생성 억제에 의해 청정도를 향상시킨 스테인레스강 제조 방법Manufacturing method of stainless steel with improved cleanliness by suppressing titanium nitride production

본 발명은 스테인레스강의 정련중 티타늄 첨가시 티타늄질화물(TiN)의 생성을 억제하여 청정도가 우수한 스테인레스강을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing stainless steel having excellent cleanliness by suppressing the production of titanium nitride (TiN) when titanium is added during refining of stainless steel.

일반적으로 자동차 배기관용, 세탁기용 소재 등으로 사용되는 스테인레스강 중에는 고온내산화성, 내부식성이 우수한 재질 특성을 얻기 위해 정련로에서 탈탄후 용강중으로 티타늄을 0.1%∼0.5% 범위로 첨가하게 된다.In general, in the stainless steel used for automobile exhaust pipe, washing machine, etc., titanium is added in the range of 0.1% to 0.5% in molten steel after decarburization in a refining furnace to obtain material properties having excellent high temperature oxidation resistance and corrosion resistance.

제강공정에서 타타늄 첨가시 생성되는 티타늄질화물은 불순물로서 용강의 청정도를 떨어뜨리고 연속주조시 노즐 내벽에 부착 성장하여 주조중 노즐내경을 감소시킴으로써 주조중단 등에 의한 연속주조비를 낮추어 생산성을 저하시킨다.Titanium nitride produced by the addition of titanium in the steelmaking process reduces the cleanliness of molten steel as an impurity and grows on the inner wall of the nozzle during continuous casting to reduce the nozzle inner diameter during casting, thereby lowering the continuous casting ratio due to the interruption of casting, thereby decreasing productivity.

또한, 이들은 주조중 주편(Slab;Bloom;Billet) 표면 결함을 야기시키는 중요한 원인이 될 뿐만아니라 열간 및 냉간압연시 코일 표면상에 10 내지 1000㎜까지의 길이를 가진 개재물성 결함(Inclusion Line)의 직접적인 원인이 됨으로써 생산성은 물론 제품의 품질 수준을 저하시킨다.In addition, they are not only an important cause of slab (Billet) surface defects during casting, but also the inclusion of inclusion defects having a length of 10 to 1000 mm on the coil surface during hot and cold rolling. This is a direct cause of deterioration in productivity as well as product quality.

그러므로 이와 같은 문제를 해결하기 위해 AOD(Argon Oxygen Decarburization) 정련로, 또는 진공정련로에서 정련에 의해 티타늄과 평형하는 질소농도 아래까지 낮춤으로써 티타늄질화물의 생성을 억제하는 기술 개발에 초점을 맞추어 왔다.Therefore, in order to solve this problem, the focus has been on the development of a technology to suppress the production of titanium nitride by lowering the nitrogen concentration equilibrium with titanium by refining in an Argon Oxygen Decarburization (AOD) refining furnace or a vacuum refining furnace.

즉, 일본 CAMP-ISIJ(Vol.7, 1994,1115)-166에서 아이찌(애지) 제강에서 보고한 나가야마 보고서를 보면 스테인레스강 정련과정으로 전기로-AOD정련로-래들 개스 진공처리(Ladle Vacuum Degassing)의 공정에 의해 질소를 약 500ppm 수준까지 제어하고 있다.In other words, the Nagayama report reported by Aichi Steel Co. in CAMP-ISIJ (Vol.7, 1994,1115) -166 in Japan shows that the furnace-AOD refining furnace-ladle gas vacuum treatment was performed as a stainless steel refining process. Degassing) controls nitrogen to about 500 ppm.

또한 일본 CAMP-ISIJ-165에 의하면 고 크롬(Cr)의 탈질 효율을 높이기 위해 진공탈탄로(VOD;Vacuum Oxygen Decarburization)내에서 감압을 이용해서 알루미늄을 탈산시키고 내부 탈탄을 촉진하여 낮은 질소 수준을 얻는 방법을 보고하고 있다.In addition, according to Japan's CAMP-ISIJ-165, in order to increase the denitrification efficiency of high chromium (Cr), aluminum is deoxidized using vacuum pressure in a vacuum decarburization furnace (VOD) and the internal decarburization is promoted to obtain low nitrogen levels. I'm reporting how.

이와 같이 진공탈탄로를 이용하여 일어나는 탈질 반응식을 나타내면 식(1,2)과 같다. 여기에서 PN2는 질소 분압이며, aN는 질소의 활동도이고, K 는 평형상수이다.In this way, the denitrification reaction occurring using the vacuum decarburization furnace is shown in Equation (1, 2). Where P N2 is the partial pressure of nitrogen, a N is the activity of nitrogen, and K is the equilibrium constant.

[ 식 1][Equation 1]

N2(g) = 1/2 N(ℓ)N 2 (g) = 1/2 N (ℓ)

[ 식 2][Equation 2]

log K = aN/PN2= - 5.18/T - 1.063log K = a N / P N2 =-5.18 / T-1.063

△G。 = 9916 + 20.17 TΔG。 = 9916 + 20.17 T

식(2)으로부터 알수 있는 바와 같이 일정한 온도에서 질소의 분압을 낮추어 주면 용강중의 질소 수준을 저하시킬 수 있음을 알 수 있다.As can be seen from Equation (2), it can be seen that lowering the partial pressure of nitrogen at a constant temperature can lower the nitrogen level in the molten steel.

그러나 티타늄 함유 페라이트 스테인레스강 정련시 진공정련 공정(VOD 또는LVD등)을 거치지 않고, 대기압하에서 전기로→AOD정련로→연속주조 공정으로 생산하는 경우, 즉 대기압하에서 탈탄 및 탈산을 행하는 공정에서는 저질소강 제조에 한계가 있다.However, when the titanium-containing ferritic stainless steel refining is performed without an vacuum refining process (VOD or LVD), it is produced in an electric furnace → AOD refining furnace → continuous casting process under atmospheric pressure, that is, in a process of decarburizing and deoxidizing under atmospheric pressure. There is a limit to manufacturing.

왜냐하면 AOD 공정에서 질소를 저질소 영역(일반적으로 100ppm)까지 출강하는 동안 질소가 대기로부터 용강중으로 들어와 저질소 스테인레스강 제조가 대단히 어렵다.Because during the AOD process, nitrogen is drawn into the molten steel from the atmosphere while tapping nitrogen into the low nitrogen region (typically 100 ppm), it is very difficult to produce low nitrogen stainless steel.

그러므로 티타늄 첨가시 쉽게 질화물이 생성되어 강의 청정도를 저하시킬 뿐만아니라 제품의 각종 결함의 원인이 된다.Therefore, when titanium is added, nitride is easily generated, which reduces the cleanliness of the steel and causes various defects of the product.

도 1은 티타늄이 첨가된 스테인레스강(SUS409) 강중에 주로 존재하는 티타늄질화물 때문에 발생된 압연시 열연코일 표면결함, 즉 인클루젼라인(Inclusion Line)의 전형적인 예를 나타내고 있다. 결함의 길이는 보통 100∼1000㎜에 분포하여서 이와 같은 코일은 모두 표면 연마를 거쳐야 수요가에게 판매가능한 커다란 문제를 야기시킨다.FIG. 1 shows a typical example of a hot-rolled coil surface defect, that is, an inclusion line, during rolling due to titanium nitride mainly present in titanium-added stainless steel (SUS409) steel. The length of the defect is usually distributed in the range of 100 to 1000 mm so that all these coils must be surface polished to cause a huge problem that can be sold to the consumer.

도 2는 도 1의 표면 결함을 확대하여 관찰한 전자현미경 사진으로서, 사진에서 알 수 있듯이, 결함 부위에는 육각형 형태의 티타늄질화물과 구형으로 된 산화물들로 인하여 결함이 발생되었음을 보여주고 있다. 일반적으로 티타늄질화물은 육각형 형태를 보여준다.FIG. 2 is an enlarged electron microscope photograph of the surface defect of FIG. 1. As can be seen from the photograph, it shows that a defect is generated due to hexagonal titanium nitride and spherical oxides at the defect site. Titanium nitrides generally have a hexagonal shape.

이 강은 전기로→AOD정련로→연속주조공정을 거쳐 제조한 SUS409강으로, 이때의 티타늄 성분은 0.27중량%, 질소는 0.012중량%, 실리콘이 0.5중량%였다. 이 강의 TiN 생성 가능성을 열역학적으로 살펴보면 다음과 같다.The steel was SUS409 steel produced through an electric furnace-AOD refining furnace-continuous casting process. At this time, the titanium component was 0.27% by weight, nitrogen was 0.012% by weight, and silicon was 0.5% by weight. The thermodynamic possibility of TiN formation of this steel is as follows.

일반적으로 TiN 생성은 식(3)과 같이 나타낼 수 있으며, 식(4)을 정리하면 식(6)과 같이 된다. 여기에서 K 는 평형상수, aTiN는 TiN 활동도로 1 이고, aTi는 Ti활동도로 fTi[%Ti]이며, aN는 N 활동도로 fN[%N]이며, fTi는 Ti 활동도계수, fN는 N 활동도계수이다.In general, TiN generation can be expressed as in Equation (3), and when Equation (4) is summarized, it is as in Equation (6). Where K is the equilibrium constant, a TiN is TiN activity 1, a Ti is Ti Ti activity f Ti [% Ti], a N is N activity f N [% N], and f Ti is Ti activity The coefficient, f N, is the N activity coefficient.

[ 식 3][Equation 3]

Ti + N = TiNTi + N = TiN

[ 식 4][Equation 4]

log K (= aTiN/aTiaN) = - 19800/T + 7.78log K (= a TiN / a Ti a N ) =-19800 / T + 7.78

[ 식 5][Equation 5]

logfTi= ∑ei j[%j]logf Ti = ∑e i j [% j]

[ 식 6][Equation 6]

2.06[%N]+log[%N] =0.558[%Ti]-log[%Ti]-19775/T+7.7692.06 [% N] + log [% N] = 0.558 [% Ti] -log [% Ti] -19775 / T + 7.769

그러므로 식(6)을 이용하여, 티타늄 성분은 0.27%, 질소는 0.012%, 실리콘이 0.5% 등을 고려하여 도 1에 발생된 스테인레스강중 성분을 구하면, 0.26%Ti에 평형하는 이론 질소 농도는 약 0.0008%(8ppm)으로서 상기 강의 경우, 질소 농도는 0.012%(120ppm)로, 이론 질소 농도 0.0008% 보다 대단히 높기 때문에 질화물 생성이 용이하고 결국 청정도가 나빠져서 표면 결함이 많이 발생된 것으로 생각된다.Therefore, using equation (6), considering the titanium component 0.27%, nitrogen 0.012%, silicon 0.5% and so on, the components in the stainless steel generated in FIG. 1 are calculated, and the theoretical nitrogen concentration equilibrating to 0.26% Ti is about In the case of the steel as 0.0008% (8ppm), since the nitrogen concentration is 0.012% (120ppm), which is much higher than the theoretical nitrogen concentration of 0.0008%, it is considered that nitride formation is easy and the cleanliness deteriorates, resulting in many surface defects.

따라서 주어진 Ti 성분에 평형하는 질소농도 보다 낮은 수준으로 AOD 정련로서 정련을 해야하나 전기로→AOD정련로→연속주조 공정에서의 질소농도 저감의 한계로 질화물로 인한 각종 결함이 발생하는 것을 방지하는 것이 문제로 되고 있다.Therefore, the AOD refining should be performed at a level lower than the nitrogen concentration equilibrating to a given Ti component, but it is limited to reduce the nitrogen concentration in the electric furnace → AOD refining furnace → continuous casting process to prevent various defects caused by nitride. It becomes a problem.

본 발명은 상기 설명한 바와같은 종래기술의 문제를 해결하기 위하여 이루어진 것으로, 티타늄 함유 스테인레스강 제조시 전기로→AOD 정련로→래들정련→ 연속주조공정에서 AOD정련로에서 실리콘 농도를 제어하여 티타늄질화물 생성을 억제함으로써 청정도를 향상시킨 스테인레스강 제조방법을 제공하는데 그목적이 있다.The present invention has been made to solve the problems of the prior art as described above, the production of titanium nitride by controlling the silicon concentration in the AOD refining furnace → AOD refining furnace → ladle refining → continuous casting process in the production of titanium-containing stainless steel The purpose of the present invention is to provide a method for manufacturing stainless steel with improved cleanliness.

도 1 은 티타늄 함유 스테인레스강의 열연코일상에 발생하는 전형적인 개재물성 결함을 보이는 사진,1 is a photograph showing typical inclusion defects occurring on a hot rolled coil of titanium-containing stainless steel;

도 2 는 도 1 도시 사진을 확대하여 보인 사진,FIG. 2 is an enlarged view of the photograph of FIG. 1;

도 3 은 저질소 영역에서 실리콘양이 강중 질화물 분포에 미치는 영향을 나타낸 도면,3 is a view showing the effect of silicon on the nitride distribution in the steel in the low nitrogen region,

도 4 는 고질소 영역에서 실리콘양이 강중 질화물 분포에 미치는 영향을 나타낸 도면,4 is a view showing the effect of silicon on the nitride distribution in the steel in the high nitrogen region,

도 5 는 저질소 영역에서 실리콘양이 강중 청정도에 미치는 영향을 나타낸 도면이다.5 is a view showing the effect of the silicon amount on the steel cleanliness in the low nitrogen region.

상기 목적을 달성하기 위한 본 발명의 티타늄질화물 생성을 억제함으로써 청정도를 향상시킨 스테인레스강 제조 방법은, AOD 정련로에서의 정련 말기의 실리콘(Si) 농도를 0.1% 이하, 질소(N) 농도를 0.003∼0.006%{(C + N)≤160ppm}로 조정하여 출강하며;래들 정련시 티타늄(Ti)을 0.15∼0.25%로 제어하며; 연속주조시 응고 직전 최종 질소 농도를 0.0010% 이하로 제어하여 용강중 티타늄질화물 생성을 억제하는 것을 특징으로 하는 구성이다.In order to achieve the above object, the method of manufacturing stainless steel which improves the cleanliness by suppressing the production of titanium nitride of the present invention, the silicon (Si) concentration at the end of refining in the AOD refining furnace is 0.1% or less, the nitrogen (N) concentration is 0.003 It is adjusted to -0.006% {(C + N) ≤ 160ppm}; the titanium is controlled to 0.15 to 0.25% during ladle refining; In the continuous casting, the final nitrogen concentration immediately before solidification is controlled to 0.0010% or less to suppress the formation of titanium nitride in molten steel.

이하에서는 양호한 실시예와 관련하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the preferred embodiments.

표 1은 실시예로서 대기압하에서 용해실험하여 실리콘, 티타늄, 질소 농도의 변화에 따른 시편의 질화물 분포 비율[{질화물 개수/총 대형개재물(〈10㎛)갯수}×100]과 청정도 결과를 보여주고 있다. 실리콘 농도가 적을수록 전반적으로 질화물 분포 비율이 적을 뿐만 아니라, 우수한 청정도를 나타내고 있다.Table 1 shows the nitride distribution ratio [{nitride number / total large inclusions (<10㎛) number} × 100] and the cleanliness results of the specimens according to the change of silicon, titanium, and nitrogen concentrations by dissolution test under atmospheric pressure as an example. Giving. The smaller the silicon concentration, the smaller the overall nitride distribution ratio, and the superior the cleanliness.

도 3은 저질소 영역, 즉 질소가 0.0036∼0.0081% 범위에서 실리콘 농도에 따른 질화물 분포를 티타늄 농도와 관련하여 나타낸 것으로서, 티타늄이 0.18% 이하인 경우는 실리콘 농도에 관계없이 질화물이 거의 생성되지 않지만, 0.2% 이상인 경우는 실리콘 농도가 증가함에 따라 질화물 분포 비율이 크게 증가함을 알 수 있다.Figure 3 shows the nitride distribution in relation to the titanium concentration in the low nitrogen region, that is, nitrogen ranges from 0.0036 to 0.0081%, when titanium is 0.18% or less, almost no nitride is produced regardless of the silicon concentration. In the case of 0.2% or more, it can be seen that the nitride distribution ratio increases significantly as the silicon concentration increases.

이같은 현상은 도 4 로부터 알 수 있는 바와 같이, 고질소 영역 즉, 질소가 0.0082∼0.015% 범위일때는 질화물 분포 비율은 티타늄이 0.13∼0.18% 범위 강에서도 실리콘 농도가 커짐에 다라 증가하는 다소의 상관관계를 보여주고 있으며, 특히, 0.5% 이상인 경우는 질화물 분포 비율이 크게 증가하는 경향을 나타내고 있다.As can be seen from FIG. 4, when the nitrogen region is 0.0082 to 0.015% in the high nitrogen region, that is, the nitride distribution ratio is somewhat correlated with the increase in the silicon concentration even in the titanium range of 0.13 to 0.18%. The relationship is shown, especially in the case of 0.5% or more, the distribution ratio of nitride tends to increase significantly.

즉, 티타늄이 0.24% 수준이고, 질소가 다소 높은 조건(0.0082∼0.015% 범위)이라 할지라도 실리콘이 0.1% 이하에서는 용강중 질화물 분포 비율이 낮아서 청정도가 우수한 강을 제조할 수 있음을 의미한다.That is, even if titanium is 0.24% level and nitrogen is somewhat high (range of 0.0082 ~ 0.015%), silicon is less than 0.1%, which means that the nitride distribution ratio in molten steel is low, so that steel having excellent cleanliness can be manufactured.

No.No. 성분(중량%)Ingredient (% by weight) 질화물 분포율 (%)Nitride distribution rate (%) 청정도cleanliness CC SiSi TiTi CrCr N(ppm)N (ppm) 1One 0.010.01 0.010.01 0.150.15 11.611.6 3636 00 0.010.01 22 0.0150.015 0.120.12 0.140.14 11.711.7 5050 00 0.020.02 33 0.0120.012 0.530.53 0.170.17 11.511.5 7777 00 0.020.02 44 0.0130.013 0.010.01 0.210.21 11.911.9 3838 00 0.010.01 55 0.0110.011 0.130.13 0.220.22 11.511.5 6868 00 0.080.08 66 0.0130.013 0.550.55 0.240.24 11.511.5 4747 2020 0.040.04 77 0.010.01 0.010.01 0.360.36 11.311.3 5252 55 0.120.12 88 0.0120.012 0.130.13 0.320.32 11.511.5 8080 1010 0.120.12 99 0.0140.014 0.480.48 0.40.4 11.511.5 7575 3030 0.220.22 1010 0.0130.013 0.010.01 0.130.13 11.011.0 110110 00 0.020.02 1111 0.010.01 0.090.09 0.150.15 11.111.1 8888 00 0.030.03 1212 0.010.01 0.490.49 0.150.15 11.511.5 120120 1010 0.060.06 1313 0.0150.015 0.010.01 0.190.19 11.711.7 130130 1010 0.030.03 1414 0.0140.014 0.120.12 0.20.2 11.211.2 130130 1010 0.060.06 1515 0.0170.017 0.50.5 0.220.22 11.811.8 9898 6060 0.030.03 1616 0.0110.011 0.010.01 0.350.35 10.710.7 9292 4040 0.120.12 1717 0.0130.013 0.120.12 0.340.34 11.511.5 9696 8080 0.240.24 1818 0.0150.015 0.540.54 0.380.38 12.012.0 150150 9090 0.280.28

도 5 는 실리콘 농도가 0.1% 이하일 때 0.5%인 경우에 비해 청정도가 우수함을 보여주고 있다.5 shows that the cleanliness is superior to that of 0.5% when the silicon concentration is 0.1% or less.

왜냐하면, 일반적으로 전기로→AOD 정련로→래들정련→연속주조공정으로 진행되어 Ti 함유 스테인레스강 정련시 AOD 에서 탈탄, 탈질정련후 실리콘 탈산을 한 다음 출강한다.This is because, in general, electric furnace → AOD refining furnace → ladle refining → continuous casting process, and when refining Ti-containing stainless steel, decarburization in AOD, denitrification refining and silicon deoxidation are followed.

이때, 질화물 평형 반응식 및 평형 관계는 앞에서 언급한 바와 같이 식(3,4,6)과 같지만 식(5)의 각각의 상호 작용 조계수 값들을 대입시 티타늄에 대한 실리콘의 상호 조계수값, 즉 ei j(i=Ti,j=Si)=2.1이 다른 값들에 비해 높기 때문에 이항을 고려하여 다시 정리하면 다음과 같다.In this case, the nitride equilibrium equation and the equilibrium relationship are the same as mentioned in the equations (3, 4, 6), but when the respective interaction coefficients in the equation (5) are substituted, Since e i j (i = Ti, j = Si) = 2.1 is higher than other values, we can reconstruct it considering binomial.

[ 식 7][Equation 7]

2.06[%N]+log[%N] =0.558[%Ti]-log[%Ti]-19775/T+7.769-2.1[%Si]2.06 [% N] + log [% N] = 0.558 [% Ti] -log [% Ti] -19775 / T + 7.769-2.1 [% Si]

여기서 알 수 있는 것은, 실리콘이 작으면 티타늄과 평형하는 질소 농도가 높아져서 실제로 강중 질소 농도가 다소 높더라도 질화물 생성이 어렵다는 것이다. 예를들면, 1600℃에서 Si 가 0.1, 0.5일 때 각각의 티타늄과 질소 평형 농도는 표 2 와 같다.It can be seen that the smaller the silicon, the higher the nitrogen concentration in equilibrium with titanium, so that the formation of nitride is difficult even if the nitrogen concentration in steel is rather high. For example, when Si is 0.1 and 0.5 at 1600 ° C, the equilibrium concentrations of titanium and nitrogen are shown in Table 2, respectively.

(중량%)(weight%) SiSi TiTi NN 실조건예Real condition example TiN생성여부Whether to generate TiN 0.10.1 0.180.40.180.4 0.00720.00570.00720.0057 Ti;0.18N;0.007Ti; 0.18N; 0.007 생성 불가Can't create 0.50.5 0.180.40.180.4 0.00100.00080.00100.0008 Ti;0.18N;0.012Ti; 0.18N; 0.012 생성 가능Can be generated

즉, Si가 0.1%, 0.5% 일 때, Ti 0.18% 에 평형하는 N은 각각 0.0072%, 0.0010%로서, 만약 실리콘이 0.1%인 경우 실제 질소가 0.0070%일 때, 평형 질소 농도가 0.0071%로서 평형 농도 보다 높아서 질화물이 생성되기 어렵지만 실리콘이 0.5% 이고, 실제 질소가 0.0070%이면 질화물이 생성가능한 질소 평형 농도 0.0010% 보다 휠씬 높아서 쉽게 질화물이 생성될 수 있음을 의미한다.In other words, when Si is 0.1% and 0.5%, N equilibrating to 0.18% of Ti is 0.0072% and 0.0010%, respectively. If silicon is 0.1%, the equilibrium nitrogen concentration is 0.0071% when the actual nitrogen is 0.0070%. Nitride is difficult to produce due to the higher equilibrium concentration, but silicon is 0.5%, and the actual nitrogen is 0.0070%, which means that the nitride can be easily generated because the nitrogen is much higher than the equilibrium nitrogen concentration of 0.0010%.

일반적으로 티타늄 함유 스테인레스강의 실리콘 농도는 일반적으로 0.4∼0.6% 범위로 보고되고 있다. 그러므로 AOD 공정에서 같은 티타늄 농도에 평형하는 질소 농도가 낮아, 질소가 비교적 낮은 영역, 0.0036∼0.0081% 이하에서도 질화물 생성이 쉬워서 청정도가 나쁜 원인이 되고 있다.In general, the silicon concentration of titanium-containing stainless steel is generally reported to be in the range of 0.4 to 0.6%. Therefore, in the AOD process, the nitrogen concentration equilibrating to the same titanium concentration is low, and nitride is easily generated even in a region where nitrogen is relatively low and 0.0036 to 0.0081% or less, which causes poor cleanliness.

즉, 실리콘이 증가함에 따라 Ti 농도가 많을수록 용강중 티타늄 질화물 분포 비율이 크게 증가함을 알 수 있다.That is, as the silicon increases, the titanium nitride distribution ratio in the molten steel increases as the Ti concentration increases.

그러나 앞의 표 1 로부터 알 수 있는 바와 같이, 티타늄 농도가 0.2% 이상이고 질소가 0.0081∼0.015% 범위로 비교적 높은 범위라도 실리콘 농도가 약 0.1±0.05% 범위에서는 티타늄 질화물 생성이 적어서 청정도 향상에 크게 유리함을 보여주고 있다.However, as can be seen from Table 1, even though titanium concentration is 0.2% or more and nitrogen is 0.0081% to 0.015%, the titanium concentration is less than 0.1 ± 0.05%. It shows great advantage.

이러한 경향은 도 5 로부터 알 수 있는 바와 같이 실리콘 성분을 0.1±0.05% 범위로 제어하는 것이 청정도에 효과적임을 알 수 있다.As can be seen from FIG. 5, it can be seen that controlling the silicon component in the range of 0.1 ± 0.05% is effective for cleanliness.

따라서, 상기 설명한 바와 같은 본 발명에 의하면, 스테인레스강 제조 공정에서 AOD 정련로에서 실리콘(Si) 농도를 제어함으로써 티타늄질화물(TiN)의 생성을 억제하여 강의 청정도를 향상시키고 제품의 개재물에 의한 결함 발생을 방지함으로써 청정도가 우수한 고품질의 스테인레스강을 제조할 수 있는등 유용한 효과가 달성된다.Therefore, according to the present invention as described above, by controlling the concentration of silicon (Si) in the AOD refining furnace in the stainless steel manufacturing process to suppress the production of titanium nitride (TiN) to improve the cleanliness of the steel and the generation of defects due to inclusions in the product By preventing the above, useful effects such as high quality stainless steel with excellent cleanliness can be achieved.

Claims (1)

AOD 정련로에서의 정련 말기의 실리콘(Si) 농도를 0.1% 이하, 질소(N) 농도를 0.003∼0.006%{(C + N)≤160ppm}로 조정하여 출강하며;래들 정련시 티타늄(Ti)을 0.15∼0.25%로 제어하며; 연속주조시 응고 직전 최종 질소 농도를 0.0010% 이하로 제어하여 용강중 티타늄질화물 생성을 억제하는 것을 특징으로 하는 티타늄질화물의 생성 억제에 의해 청정도를 향상시킨 스테인레스강 제조 방법.At the end of refining in the AOD refining furnace, the silicon (Si) concentration is adjusted to 0.1% or less, and the nitrogen (N) concentration is adjusted to 0.003 to 0.006% {(C + N) ≤ 160 ppm}; Is controlled to 0.15 to 0.25%; A method of manufacturing stainless steel with improved cleanliness by suppressing the production of titanium nitride in the molten steel by controlling the final nitrogen concentration immediately before solidification during continuous casting to 0.0010% or less.
KR1019970070808A 1997-12-19 1997-12-19 Method for manufacturing stainless steel with high clarity KR100336858B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970070808A KR100336858B1 (en) 1997-12-19 1997-12-19 Method for manufacturing stainless steel with high clarity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970070808A KR100336858B1 (en) 1997-12-19 1997-12-19 Method for manufacturing stainless steel with high clarity

Publications (2)

Publication Number Publication Date
KR19990051469A true KR19990051469A (en) 1999-07-05
KR100336858B1 KR100336858B1 (en) 2002-10-25

Family

ID=37479948

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970070808A KR100336858B1 (en) 1997-12-19 1997-12-19 Method for manufacturing stainless steel with high clarity

Country Status (1)

Country Link
KR (1) KR100336858B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100558058B1 (en) * 2001-12-21 2006-03-07 주식회사 포스코 Method for refining of high-nickel alloy of AOD
KR100595874B1 (en) * 1999-11-09 2006-07-03 주식회사 포스코 Method for continuously casting of 409 statinless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595874B1 (en) * 1999-11-09 2006-07-03 주식회사 포스코 Method for continuously casting of 409 statinless steel
KR100558058B1 (en) * 2001-12-21 2006-03-07 주식회사 포스코 Method for refining of high-nickel alloy of AOD

Also Published As

Publication number Publication date
KR100336858B1 (en) 2002-10-25

Similar Documents

Publication Publication Date Title
EP0829546A1 (en) Process for producing aluminum-killed steel free of cluster
US4994108A (en) Process for producing high cleanness extra low carbon steel
KR19990030254A (en) Titanium-kilted steel with good surface properties and its manufacturing method
KR100233690B1 (en) Method of making ultra low carbon steel
US4073643A (en) Continuously cast steel slabs for steel sheets having excellent workabilities and method for production thereof
KR19990051469A (en) Manufacturing method of stainless steel with improved cleanliness by suppressing titanium nitride production
KR101249201B1 (en) Method for laddle treatment
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
US4741772A (en) Si contained ferroalloy addition as a weak pre-deoxidation process in steelmaking
KR20010009041A (en) Method of refining ferritic stainless steel for deep drawing
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JP4066674B2 (en) Manufacturing method of manganese-containing ultra-low carbon steel
JP3807297B2 (en) Method for producing ultra-low carbon steel with high nitrogen concentration
KR100429158B1 (en) Method for decarburizing austenite stainless steel
KR0135001B1 (en) Method of manufacturing hot rolled coil
JP3279142B2 (en) Refining method of ultra clean low carbon steel
JP2002294327A (en) High cleanliness steel and production method therefor
JPH08283823A (en) Production of dead soft steel excellent in surface property
JPH04354853A (en) Fe-ni alloy cold rolled sheet excellent in cleanliness and etching pierceability and its production
KR100402005B1 (en) A METHOD FOR REFINING ULTRA LOW CARBON Al-KILLED STEEL OF HIGH CLEANINESS
JPH0941028A (en) Production of high purity ultra-low carbon steel
JPH0293017A (en) Method for smelting extra-low carbon steel
JP3734736B2 (en) Method of melting ultra-low carbon steel
JP2675432B2 (en) Melting method of ultra low carbon steel
JPS59229463A (en) Steel for enamel with superior workability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140501

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150504

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160502

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee