KR19990037851A - Method for preparing steel cords - Google Patents

Method for preparing steel cords Download PDF

Info

Publication number
KR19990037851A
KR19990037851A KR1019990003523A KR19990003523A KR19990037851A KR 19990037851 A KR19990037851 A KR 19990037851A KR 1019990003523 A KR1019990003523 A KR 1019990003523A KR 19990003523 A KR19990003523 A KR 19990003523A KR 19990037851 A KR19990037851 A KR 19990037851A
Authority
KR
South Korea
Prior art keywords
plating
copper
steel wire
brass
fluidized bed
Prior art date
Application number
KR1019990003523A
Other languages
Korean (ko)
Other versions
KR100389739B1 (en
Inventor
배달향
김민안
박병권
Original Assignee
조정래
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조정래, 주식회사 효성 filed Critical 조정래
Priority to KR1019990003523A priority Critical patent/KR100389739B1/en
Publication of KR19990037851A publication Critical patent/KR19990037851A/en
Application granted granted Critical
Publication of KR100389739B1 publication Critical patent/KR100389739B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

본 발명은 타이어, 고압호스, 콘베이어 벨트 등의 고무제품 보강용 스틸코드의 제조방법, 특히 강선에 순차적으로 구리도금 및 아연도금을 행한 직후 유동층 가열로를 사용하여 도금층을 열확산시킴으로써 균일한 황동도금층을 수득하는 것을 특징으로 하는 스틸코드의 제조방법에 관한 것으로, 본 발명의 방법은 균일한 확산품질을 제공하고 후공정인 신선공정에서 균일한 α상 결정구조의 황동도금 강선을 제공함으로써 신선작업성을 크게 향상시키는 효과를 제공한다.The present invention provides a method for manufacturing a steel cord for reinforcing rubber products such as tires, high pressure hoses, conveyor belts, in particular, copper plating and zinc plating on steel wires sequentially, followed by thermal diffusion of the plating layer using a fluidized bed heating furnace to produce a uniform brass plating layer. The present invention relates to a method for manufacturing a steel cord, the method of the present invention provides a uniform diffusion quality and to provide a new workability by providing a brass plated steel wire of a uniform α-phase crystal structure in the post-drawing process Provide a significant improvement.

Description

스틸코드의 제조방법{Method for preparing steel cords}Manufacturing method of steel cords {Method for preparing steel cords}

본 발명은 고무제품 보강용 스틸코드의 제조방법에 관한 것으로, 더욱 상세하게는 강선에 구리도금 및 아연도금을 순차적으로 행한후,유동층 가열로(Fluidized Bed Furnace)를 사용하여 도금층을 열확산시켜 균일한 황동층을 수득하는 것을 특징으로 하는 스틸코드의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a steel cord for reinforcing rubber products, and more particularly, after copper plating and zinc plating are sequentially performed on a steel wire, the plated layer is thermally diffused by using a fluidized bed furnace. It relates to a method for producing a steel cord, characterized in that to obtain a brass layer.

스틸코드는 강도, 모듈라스, 내열성, 내피로성이 다른 종류의 무기섬유 및 유기섬유에 비해 우수하여 타이어, 고압호스, 콘베이어 벨트 등의 고무제품 보강용으로 사용되고 있다. 이러한 스틸코드는 탄소함량이 0.6 내지 0.95 중량%인 탄소강을 재질로 하는 직경 0.8 내지 1.8mm인 선재를 20 내지 80m/ min의 속도로 진행시키면서 그 표면에 0.5 내지 1.5 μm 두께의 구리도금을 실시한 후, 그 위에 순차적으로 0.3 내지 1.0μm의 아연도금을 행하고 이를 다양한 방법으로 열확산시켜 황동도금층을 수득한다음 직경 0.1 내지 0.6 mm로 신선가공을 행하여 제조된 선재를 용도에 따라 다양한 구조(1×3, 1×4, 2+2, 2+7, 3+6, 3+9+15 등)로 꼬아서 제조된다.Steel cords are used to reinforce rubber products such as tires, high pressure hoses, conveyor belts, etc. because they have superior strength, modulus, heat resistance, and fatigue resistance compared to other types of inorganic and organic fibers. The steel cord is subjected to copper plating having a thickness of 0.5 to 1.5 μm on the surface of the steel wire having a carbon content of 0.6 to 0.95% by weight and proceeding with a wire diameter of 0.8 to 1.8 mm at a speed of 20 to 80 m / min. , Zinc plating of 0.3 to 1.0μm sequentially on it and thermal diffusion to obtain a brass plating layer by various methods, and then wire drawing produced by 0.1 to 0.6 mm in diameter to a variety of structures (1 × 3, 1 × 4, 2 + 2, 2 + 7, 3 + 6, 3 + 9 + 15, etc.).

스틸코드의 제조시에는 강선 표면에 도금되어 있는 구리와 아연의 원자를 상호 열확산시켜 균일한 황동합금 도금층을 수득하는 것이 바람직한데, 기존의 열확산시 가열방법으로는 도금된 강선 표면으로부터 3 내지 15m 거리에 3개의 동전 롤러로 전기회로를 구성하고 강선에 직접 전기를 흘려주어 강선 자체의 전기저항에 의하여 발열되는 전기저항열(Joule Effect)에 의해 가열하는 방식과 고주파 유도발진기를 이용하여 유도전류를 형성하여 강선 자체의 전기저항열에 의하여 발열되는 비접촉식 유도가열(Induction Heating) 방식이 일반적으로 사용되고 있다.In the manufacture of steel cords, it is desirable to obtain a uniform brass alloy plating layer by mutual thermal diffusion of copper and zinc atoms plated on the surface of the steel wire. In the conventional heat diffusion method, a distance of 3 to 15 m from the surface of the plated steel wire is used. The electric circuit is composed of three coin rollers and the electricity is flowed directly to the steel wire, which is heated by the electric resistance heat generated by the electric resistance of the steel wire itself, and the induction current is formed by using a high frequency induction oscillator. Therefore, a non-contact induction heating method that generates heat by the electric resistance heat of the steel wire itself is generally used.

일반적인 전기저항열 가열방식은 20 내지 80m/min의 속도로 진행하는 강선을 총 3개의 롤러(Roller)를 사용하여 직접접촉시키고 이 롤러에 2000 내지 5000와트(W)의 전력을 공급하여 강선을 승온시키는 방법이다. 이러한 전기저항열 (Joule Effect) 가열방식에서 강선의 발열량(H)은 전류(I), 저항(R) 및 전류를 통해준 시간(t)의 함수로서 하기 수학식1과 같이 표시된다.In general electric resistance heat heating method, the steel wire proceeding at a speed of 20 to 80 m / min is directly contacted using three rollers, and the steel wire is heated by supplying electric power of 2000 to 5000 watts (W). It is a way to. In this Joule Effect heating method, the heat generation amount H of the steel wire is expressed as Equation 1 as a function of current I, resistance R, and time t provided through the current.

H=I2Rt [Joule]H = I 2 Rt [Joule]

그러나, 강선의 전기저항(R)은 승온 단계에서 강선의 온도증가에 따라 증가되며, 증가되는 수치는 600 ℃에서 0℃의 4 내지 6배 정도로 매우 급격하게 증가된다. 또한 강선의 전기저항(R)은 강선중의 탄소함량이 증가됨에 따라 증가되며 강선의 직경편차에 의해서도 변화하게 된다.However, the electrical resistance (R) of the steel wire is increased with the temperature increase of the steel wire in the temperature increase step, the increasing value is increased very rapidly, such as 4 to 6 times of 0 ℃ at 600 ℃. In addition, the electrical resistance (R) of the steel wire increases as the carbon content in the steel wire increases, and also changes due to the diameter deviation of the steel wire.

또 강선의 발열량(H)은 외부온도(실제 작업중 분위기 온도)에 따라 열효율이 변화하는 등 강선 표면의 구리 및 아연의 상호원자간 확산정도에 변화를 주는 여러 가지 요인에 의해 변화되므로 전기저항열 가열방식은 동일 전류 및 동일 전압에서 확산의 품질편차가 매우 커지는 문제점이 있다. 또한 전기통전시 장력변화 등으로 강선과 롤러간의 접촉면적이 변화할 경우 롤러와 강선간에 전기스파크(Spark)가 발생한다. 스파크가 발생한 강선부위에서는 금속조직의 변화가 수반되어 마르텐사이트(Martensite) 조직이 생성되는데, 이러한 마르텐사이트 조직은 경하고 취화된 조직으로 후공정인 신선공정(Drawing)에서 강선이 끊어지는 단선현상을 유발하여 신선작업성을 저하시킨다.In addition, the heat generation amount (H) of the steel wire is changed by various factors that change the diffusion degree between copper and zinc on the surface of the wire, such as the thermal efficiency varies depending on the external temperature (ambient temperature during actual operation). The method has a problem that the quality deviation of diffusion is very large at the same current and the same voltage. In addition, when the contact area between the steel wire and the roller changes due to the tension change during the electric current, an electric spark occurs between the roller and the steel wire. In the steel wire part where sparks occurred, martensite structure is produced due to the change of metal structure, and this martensite structure is a hard and brittle structure, which causes breakage of the wire in the drawing process. It lowers fresh workability.

한편, 유도가열방식에 의한 열확산 방법은 원형 튜브 형태의 유도자(유도코일)에 고주파 전류를 흘려줌으로써 유도자 내부로 진행되는 강선에 유도전류를 발생시켜 전기저항열 가열방식과 동일한 주울 효과에 의해 강선의 전기저항열에 의하여 발열시키는 방법이다. 이 방법은 유도자 내부로 진행하는 강선에 비접촉식으로 유도전류를 흘려주는 방법이므로, 강선과 강선을 직접 접촉시켜 전기를 흘려주는 전기저항렬 가열방식과 달리 전기 접점 불량으로 인한 전기 스파크 발생은 없으나, 상기의 강선 자체의 전기저항의 변화에 의하여 강선의 발열량이 변화되어 동일전류 및 동일 전압에서 확산의 품질편차가 매우 커지는 문제점을 갖는다.On the other hand, the thermal diffusion method using the induction heating method generates an induction current in the steel wire proceeding inside the inductor by flowing a high frequency current through the inductor (induction coil) in the form of a circular tube, and the Joule effect of the steel wire by the same Joule effect It is a method of generating heat by electric resistance heat. Since this method is a method of flowing an induction current in a non-contact manner to the steel wire that proceeds into the inductor, unlike the electrical resistance heating method of heating the wire by direct contact with the steel wire, there is no electrical spark generation due to a poor electrical contact, Due to the change in the electrical resistance of the steel wire itself, the heat generation amount of the steel wire has a problem that the quality deviation of diffusion at the same current and the same voltage is very large.

본 발명은 상술한 종래 기술의 문제점을 극복하는 것으로, 고체간의 상호확산은 확산온도에 가장 큰 영향을 받는다는 사실에 차안하여 확산온도를 균일하게 유지함으로써 신선작업성이 향상된 스틸코드의 제조방법을 제공하는 것이다.The present invention overcomes the problems of the prior art described above, and provides a method for producing a steel cord with improved fresh workability by maintaining the diffusion temperature uniformly based on the fact that mutual diffusion between solids is most affected by the diffusion temperature. It is.

즉, 본 발명은 강선에 구리도금후 아연도금을 행한 직후 유동층 가열로를 사용하여 도금층을 열확산시켜 균일한 황동도금층을 수득하는 것을 특징으로 하는 스틸코드의 제조방법을 제공하는 것이다.That is, the present invention is to provide a method for producing a steel cord, characterized in that to obtain a uniform brass plated layer by thermal diffusion of the plated layer using a fluidized bed heating furnace immediately after galvanizing after copper plating on the steel wire.

도 1은 본 발명에 의한 스틸코드의 제조공정 개략도,1 is a schematic view of the manufacturing process of the steel cord according to the present invention,

도 2a는 열확산전 강선 도금층의 모식도,Figure 2a is a schematic diagram of the thermal diffusion steel plated layer,

도 2b는 열확산후강선 도금층의 모식도,Figure 2b is a schematic diagram of the thermal diffusion steel wire plating layer,

도 3은 본 발명의 유동층 가열시간에 따른 강선의 승온그래프이다.Figure 3 is a temperature rising graph of the steel wire according to the fluidized bed heating time of the present invention.

이하에서 본 발명을 첨부한 도면을 참고하여 더욱 상세히 설명한다.Hereinafter, with reference to the accompanying drawings of the present invention will be described in more detail.

본 발명의 스틸코드의 제조방법은 강선 표면에 도금되어 있는 구리와 아연의 원자를 상호 열확산시켜 균일한 황동합금도금층을 수득하기 위하여 일정한 온도로 유지되는 지르콘(Zircon) 모래 또는 알루미나 모래로 충진된 유동층 가열로(Fluidized Bed Furnace)에 강선을 통과시키는 것을 특징으로 한다. 이 때 사용되는 내부충진 물질로 사용되는 지르콘(Zircon) 모래 또는 알루미나 모래는 전기확산 또는 유도확산 보다 가열속도가 빠른 이점이 있어 바람직하다.In the method of manufacturing the steel cord of the present invention, a fluidized bed filled with zircon sand or alumina sand is maintained at a constant temperature to mutually thermally diffuse copper and zinc atoms plated on the steel wire surface to obtain a uniform brass alloy plated layer. The steel wire is passed through a heated bed (Fluidized Bed Furnace). At this time, zircon sand or alumina sand used as the internal filling material is preferable because the heating rate is faster than the electric diffusion or induction diffusion.

도 1은 본 발명에 따른 스틸코드 제조공정 개략도이다. 본 발명의 스틸코드의 제조방법에 따라 스틸코드를 제조하는 경우에는 도 1에 도시된 바와 같이, 해선하여 강선에 구리도금 및 아연도금을 순차적으로 행하여 단면이 도 2a에 도시된 바와 같은 상태의 선재를 수득한다. 아연도금 직후에 이 선재를 유동층 가열로(Fluidized Bed Furnace)를 사용하여 도금층을 열확산시켜 균일한 황동합금도금층을 형성시킨 후 권취기로 권취한다. 이러한 열확산 공정에 의해 수득된 도금층은 도 2b에 도시된 바와 같다.1 is a schematic diagram of a steel cord manufacturing process according to the present invention. In the case of manufacturing the steel cord according to the manufacturing method of the steel cord of the present invention, as shown in Fig. 1, the wire rod in the state as shown in Fig. 2a by performing copper plating and zinc plating sequentially on the steel wire To obtain. Immediately after galvanizing, the wire is thermally diffused using a fluidized bed furnace to form a uniform brass alloy plated layer and wound up with a winder. The plating layer obtained by this thermal diffusion process is as shown in Fig. 2b.

본 발명에서 열확산시 상기 유동층 가열로의 가열온도는 500 내지 650℃인 것이 바람직하다. 상기 가열온도가 500℃ 미만이면 구리와 아연의 확산속도가 매우 느려져 20초 이상의 긴 확산시간이 필요하게 되고, 이렇게 하기 위해서는 유동층 가열로의 길이를 길게 설계해야 하므로 설비비가 비싸지는 문제점이 발생한다. 이와 반대로, 가열온도가 650℃를 초과하면 강선 자체의 퍼얼라이트(Pearlite) 조직중 세멘타이트(Cementite)가 분해되어 구상화 세멘타이트로 조직변화가 일어나 강선의 인장강도가 2 내지 5% 저하되는 문제점이 발생하므로, 본 발명에서 유동층 가열로의 가열온도는 상기 범위내인 것이 필수적이다.In the present invention, the heating temperature of the fluidized bed heating furnace during thermal diffusion is preferably 500 to 650 ° C. If the heating temperature is less than 500 ° C, the diffusion rate of copper and zinc is very slow, so a long diffusion time of 20 seconds or more is required, and in order to do so, the length of the fluidized bed heating furnace must be designed to increase the equipment cost. On the contrary, when the heating temperature exceeds 650 ° C., cementite is decomposed in the pearlite structure of the steel wire itself, so that the structure changes to spheroidal cementite, resulting in a 2-5% reduction in the tensile strength of the steel wire. In this invention, it is essential that the heating temperature of the fluidized bed heating furnace is in the above range.

본 발명에서 유동층 가열로내의 처리시간은 약 4초 내지 약 10초가 바람직하다. 강선의 표면온도가 유동층 가열로 온도까지 승온되기까지는 약 3초의 시간이 필요하므로 처리시간이 4초 미만이 되면 균일한 온도 유지가 이루어지지 않아 본 발명이 의도하는 효과를 수득할 수 없게 되고, 이와 반대로 처리시간이 10초를 초과하면 유동층 가열로의 길이가 길어져 설비비가 비싸지므로 원가상승의 요인이 된다. 예를 들어 가열온도를 580℃로 하고 6초간 확산을 실시하는 경우 유동층 가열시간에 따른 강선의 승온그래프는 도 3에 도시된 바와 같다.In the present invention, the treatment time in the fluidized bed furnace is preferably about 4 seconds to about 10 seconds. Since the surface temperature of the steel wire is about 3 seconds until the temperature of the fluidized bed is raised to the temperature of the fluidized bed, it is not possible to maintain a uniform temperature when the treatment time is less than 4 seconds, and thus the intended effect of the present invention cannot be obtained. On the contrary, if the treatment time exceeds 10 seconds, the length of the fluidized bed heating furnace becomes longer and the cost of equipment becomes expensive, which causes a cost increase. For example, in the case where the heating temperature is 580 ° C. and the diffusion is performed for 6 seconds, the temperature rising graph of the steel wire according to the fluidized bed heating time is shown in FIG. 3.

본 발명에서 순차적인 구리도금 및 아연도금은 피로인산동도금 및 황산아연도금 또는 피로인산동도금, 황산동도금 및 황산아연도금에 의해 행한다. 피로인산동도금 및 황산아연도금 방법에 의해 도금하는 경우에는 5 내지 15 중량%의 3수 피로인산(Cu2P2O7.3H2O) 및 20 내지 60 중량%의 피로인산카리(K4P2O7)를 함유한 수용액을 온도 30 내지 60℃로 유지한 상태에서 5 내지 20 A/dm2의 전류밀도 범위에서 5 내지 20초간 전기도금을 행하여 0.5 내지 1.5 두께의 구리도금을 실시한 후 10 내지 50중량%의 5수황산아연 (ZnS04.5H2O)을 함유한 수용액을 온도 30 내지 60℃로 유지한 상태에서 10 내지 40 A/dm2의 전류밀도 범위에서 1 내지 10초간 전기도금을 행하여 0.3 내지 1.0μm 두께의 아연도금을 순차적으로 행한다음 유동층 가열로에 의하여 온도 500 내지 650 ℃ 범위로 4 내지 10초간 승온시켜 강선 표면에 도금되어 있는 구리와 아연의 원자를 상호 열확산시켜 황동합금 도금층을 수득한다.Sequential copper plating and zinc plating in the present invention is carried out by copper pyrophosphate plating and zinc sulfate plating or pyrophosphate copper plating, copper sulfate plating and zinc sulfate plating. 5 to 15% by weight of trihydric pyrophosphate (Cu 2 P 2 O 7. 3H 2 O) and 20 to 60% by weight of pyrophosphate (K 4 P) when plating by copper pyrophosphate plating and zinc sulfate plating method 2 O 7 ) was electroplated for 5 to 20 seconds in a current density range of 5 to 20 A / dm 2 while maintaining the temperature at 30 to 60 ° C., followed by copper plating with a thickness of 0.5 to 1.5. 5 to 50% by weight of zinc sulfate can (ZnS0 4 .5H 2 O) to an aqueous solution containing 30 to a temperature in a maintained state to the 60 ℃ 10 to 40 a / dm 1 to 10 seconds electroplating at a current density range of 2 After performing zinc plating with a thickness of 0.3 to 1.0 μm in sequence, the temperature is elevated for 4 to 10 seconds in a temperature range of 500 to 650 ° C. by a fluidized bed heating furnace. Obtain a plating layer.

피로인산동 도금과 황산동 도금을 순차적으로 행하는 방법은 구리도금 속도를 증가시키는 방법으로, 이 방법에서는 5 내지 15중량%의 3수피로인산동(Cu2P2O7.3H2O)과 20 내지 60중량%의 피로인산카리(K4P2O7)를 함유한 수용액을 온도 30 내지 60 ℃로 유지한 상태에서 5 내지 20 A/dm2의 전류밀도 범위에서 5 내지 20초간 전기도금을 행하여 0.4 내지 1.0μm 두께의 피로인산동 도금을 실시한 후 10 내지 40 중량%의 5수황산동(CuSO4.5H2O) 및 2 내지 8 중량%의 황산(H2SO4)을 함유한 수용액을온도 30 내지 60℃로 유지한 상태에서 10 내지 40 A/dm2의 전류밀도 범위에서 1 내지 10초간 전기도금을 행하여 0.2 내지 1.0 μm 두께의 황산동도금을 실시한 후 10 내지 50중량%의 5수황산아연 (ZnS04.5H2O)을 함유한 수용액을 온도 30 내지 60℃로 유지한 상태에서 10 내지 40 A/dm2의 전류밀도 범위에서 1 내지 10초간 전기도금을 행하여 0.2 내지 1.0μm 두께의 아연도금을 순차적으로 행한후 유동층 가열로에 의하여 온도 500 내지 650 ℃ 범위로 4 내지 10초간 승온시켜 강선 표면에 도금되어 있는 구리와 아연의 원자를 상호 열확산시켜 황동합금도금층을 수득한다.Copper pyrophosphate plating and copper sulfate plating are sequentially performed to increase the copper plating rate. In this method, 5 to 15% by weight of copper pyrophosphate (Cu 2 P 2 O 7. 3H 2 O) and 20 Electroplating for 5 to 20 seconds in a current density range of 5 to 20 A / dm 2 while maintaining an aqueous solution containing from about 60% by weight to a pyrophosphate carbohydrate (K 4 P 2 O 7 ) at a temperature of 30 to 60 ℃. 0.4 to 1.0 μm thick pyrophosphate copper plating, and then an aqueous solution containing 10 to 40 wt% copper pentasulphate (CuSO 4. 5H 2 O) and 2 to 8 wt% sulfuric acid (H 2 SO 4 ). 10 to 50% by weight of pentasulfuric acid after electroplating for 0.2 to 1.0 μm thickness by electroplating for 1 to 10 seconds in the current density range of 10 to 40 A / dm 2 while maintaining the temperature at 30 to 60 ℃ zinc (ZnS0 4 .5H 2 O) in the maintaining the aqueous solution at a temperature of 30 to 60 ℃ state of 10 to 40 a / dm 2 Electroplating for 1 to 10 seconds in the flow density range, followed by zinc plating with a thickness of 0.2 to 1.0 μm in sequence, and then heated to a temperature of 500 to 650 ° C. for 4 to 10 seconds by a fluidized bed heating furnace, and copper plated on the steel wire surface. Thermal diffusion of atoms of and zinc together yields a brass alloy plated layer.

본 발명 방법에 의하면 스틸코드에 적용되는 도금층에서 구리와 아연의 합금 성분중 구리의 비율(구리량/[구리량+아연량]×100%) 62.0% 내지 68.0% 범위에서 우수한 신선성을 나타내는 α상 결정구조의 황동(면심입방격자)을 95% 이상 수득할 수 있고, 신선성을 저하시키는 β상 결정구조의 황동(체심입방격자)의 생성을 최소화할 수 있다.According to the method of the present invention, α exhibiting excellent freshness in the range of 62.0% to 68.0% of the ratio (copper amount / [copper amount + zinc amount] × 100%) of copper in the alloy component of copper and zinc in the plating layer applied to the steel cord. It is possible to obtain 95% or more of brass (face-centered cubic lattice) having a phase crystal structure, and to minimize the generation of brass (body-centered cubic lattice) having a beta-phase crystal structure that reduces freshness.

이하에서 실시예를 들어 본 발명을 더욱 상세히 설명하나, 이하의 실시예들은 본 발명을 설명하기 위한 것뿐으로 첨부된 특허청구범위에 의해 정해지는 본 발명의 보호범위를 제한하는 것으로 해석되어서는 안된다.Hereinafter, the present invention will be described in more detail with reference to examples, but the following examples are only to explain the present invention and should not be construed as limiting the protection scope of the present invention as defined by the appended claims. .

실시예 1∼5Examples 1-5

직경 1.4㎜의 0.82% 탄소를 함유한 고탄소 강선에 구리와 아연의 합금비율을 하기 표 1에 나타낸 바와 같이 달리하면서 도금한 후 580℃로 유지되는 유동층 가열로에서 6초간 확산을 실시하여 스틸코드를 제조하고 제반 물성을 측정하여 그 결과를 하기 표 1에 나타내었다.Steel cords were subjected to diffusion for 6 seconds in a fluidized bed heating furnace maintained at 580 ° C after plating while varying the alloy ratio of copper and zinc on a high carbon steel wire containing 0.82% carbon having a diameter of 1.4 mm as shown in Table 1 below. To prepare and measure the overall physical properties are shown in Table 1 below.

비교예 1∼5Comparative Examples 1 to 5

전기저항가열방법 및 유도가열방법을 사용하여 직경 1.4㎜의 0.82% 탄소를 함유한 고탄소 강선에 구리와 아연의 합금비율을 하기 표 1에 나타낸 바와 같이 달리하면서 도금한 후 표 1에 표기된 전압, 전류 또는 주파수 상태에서 6초간 확산을 실시하여 스틸코드를 제조하고 제반 물성을 측정하여 그 결과를 하기 표 1에 함께 나타내었다.By using the electric resistance heating method and the induction heating method, the alloys of copper and zinc were plated on the high carbon steel wire containing 0.82% carbon with a diameter of 1.4 mm while varying as shown in Table 1, and then the voltages shown in Table 1, The steel cord was manufactured by diffusing for 6 seconds in a current or frequency state, and various physical properties were measured. The results are shown in Table 1 together.

실시예 6∼10Examples 6-10

직경 1.4㎜의 0.82% 탄소를 함유한 고탄소 강선에 구리와 아연의 합금비율을 64:36으로 일정하게 유지한 채 유동층 가열로에서의 가열온도를 550℃ 내지 600℃ 범위내에서 변경하면서 6초간 확산을 실시하여 스틸코드를 제조하고 제반 물성을 측정하여 그 결과를 하기 표 2에 나타내었다.6 seconds while changing the heating temperature in the fluidized bed furnace within the range of 550 ℃ to 600 ℃ while maintaining a constant copper and zinc alloy ratio of 64:36 in a high carbon steel wire containing 0.82% carbon with a diameter of 1.4mm. Steel cord was prepared by diffusion, and various physical properties were measured. The results are shown in Table 2 below.

비교예 6∼10Comparative Examples 6 to 10

전기저항가열방법 및 유도가열방법을 사용하여 직경 1.4㎜의 0.82% 탄소를 함유한 고탄소 강선에 구리와 아연의 합금비율을 64:36으로 일정하게 유지한 채 유동층 가열로에서의 가열온도를 550℃ 내지 600℃ 범위내에서 변경하면서 6초간 확산을 실시하여 스틸코드를 제조하고 제반 물성을 측정하여 그 결과를 하기 표 2에 함께 나타내었다.By using the electric resistance heating method and the induction heating method, the heating temperature in the fluidized bed heating furnace was maintained at 550 with a constant alloy ratio of 64:36 on a high carbon steel wire containing 0.82% carbon with a diameter of 1.4 mm. The steel cord was prepared by diffusion for 6 seconds while changing within the range of ℃ to 600 ℃ to measure the overall physical properties and the results are shown in Table 2 together.

본 실시예에서는 아래의 방법에 의해 물성을 평가하였다.In this example, physical properties were evaluated by the following method.

1)황동도금층 결정구조 : X-선 회절분석기(XRD, X-Ray Diffractometer)를 사용하여 측정하였다. 1) Brass plated layer crystal structure: X-ray diffractometer (XRD, X-Ray Diffractometer) was measured using.

2)황동도금층중 구리비율 : 유도결합 플라즈마 분광기(ICP: Inductively Coupled Plasma)를 사용하여 측정하였다. 2) Copper ratio in the brass plating layer was measured by using an inductively coupled plasma spectrometer (ICP).

3)황동도금층 두께 : 암모니아 및 과산화수소가 10:1로 혼합된 용액에 상온에서 10분간 침적하여 황동도금층을 용해시키고 그 용해 전후의 무게를 측정하여 환산하였다. 3) Thickness of brass plating layer: It was immersed at room temperature for 10 minutes in a solution mixed with ammonia and hydrogen peroxide at 10: 1 to dissolve the brass plating layer, and the weight was measured before and after dissolution.

구분division 실시예Example 비교예Comparative example 1One 22 33 44 55 1One 22 33 44 55 열확산방식Thermal diffusion method 유동층 가열로Fluidized bed furnace 전기저항열Electric resistance heat 유도가열Induction heating 확산조건Diffusion conditions 온도Temperature 580℃580 ℃ 580℃580 ℃ 580℃580 ℃ 580℃580 ℃ 580℃580 ℃ 전류electric current 60A60A 60A60A 60A60A 70A70 A 70A70 A 전압Voltage 40V40 V 40V40 V 40V40 V 850V850 V 850V850 V 주파수frequency 20KHz20KHz 20KHz20KHz 황동도금층결정구조Brass Plating Layer Crystal Structure α-황동α-brass 99%99% 100%100% 100%100% 100%100% 100%100% 65%65% 76%76% 85%85% 75%75% 88%88% β-황동β-brass 1%One% 0%0% 0%0% 0%0% 0%0% 35%35% 24%24% 15%15% 25%25% 12%12% 황동도금층두께Brass plating layer thickness 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 황동도금층중구리비율* Copper ratio of the brass plated layer * 6262 6363 6464 6565 6666 6262 6363 6464 6565 6666

*황동도금층중 구리비율 = (구리량/[구리량+아연량]×100%)* Copper ratio in brass plating layer = (copper amount / [copper amount + zinc amount] × 100%)

구분division 실시예Example 비교예Comparative example 66 77 88 99 1010 66 77 88 99 1010 열확산방식Thermal diffusion method 유동층 가열로Fluidized bed furnace 전기저항열Electric resistance heat 유도가열Induction heating 확산조건Diffusion conditions 온도Temperature 550℃550 ℃ 560℃560 ℃ 580℃580 ℃ 590℃590 ℃ 600℃600 ℃ 전류electric current 50A50 A 60A60A 70A70 A 60A60A 80A80A 전압Voltage 30V30 V 40V40 V 45V45 V 800V800 V 950V950 V 주파수frequency 20KHz20KHz 20KHz20KHz 황동도금층결정구조Brass Plating Layer Crystal Structure α-황동α-brass 99%99% 100%100% 100%100% 100%100% 100%100% 60%60% 76%76% 83%83% 71%71% 85%85% β-황동β-brass 1%One% 0%0% 0%0% 0%0% 0%0% 40%40% 24%24% 17%17% 29%29% 15%15% 황동도금층두께Brass plating layer thickness 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 1.48㎛1.48 μm 황동도금층중구리비율* Copper ratio of the brass plated layer * 64%64% 64%64% 64%64% 64%64% 64%64% 64%64% 64%64% 64%64% 64%64% 64%64%

*황동도금층중 구리비율 = (구리량/[구리량+아연량]×100%)* Copper ratio in brass plating layer = (copper amount / [copper amount + zinc amount] × 100%)

본 발명의 방법은 타이어, 고압호스, 콘베이어 벨트 등의 고무제품 보강용 스틸코드의 제조시 균일한 확산품질을 제공하고 후공정인 신선공정에서 균일한 α상 결정구조의 황동도금 강선을 제공함으로써 신선작업성을 크게 향상시킨다.The method of the present invention provides a uniform diffusion quality in the manufacture of steel cords for reinforcing rubber products such as tires, high pressure hoses, conveyor belts, and provides a brass plated steel wire having a uniform α-phase crystal structure in the post-drawing process. Significantly improve workability.

Claims (4)

강선에 구리도금 및 아연도금을 순차적으로 행한 후 유동층 가열로를 사용하여 도금층을 열확산시킴으로써 균일한 황동도금층을 수득하는 것을 특징으로 하는 스틸코드의 제조방법.A method of producing a steel cord, characterized in that a copper plating and zinc plating are sequentially performed on a steel wire, and then a uniform brass plating layer is obtained by thermally diffusing the plating layer using a fluidized bed heating furnace. 제 1항에 있어서, 상기 유동층 가열로의 가열온도를 500 내지 650℃로 하는 것을 특징으로 하는 스틸코드의 제조방법.The method of manufacturing a steel cord according to claim 1, wherein a heating temperature of the fluidized bed heating furnace is 500 to 650 ° C. 제 1항에 있어서, 상기 유동층 가열로에서의 처리시간을 4초 내지 10초로 하는 것을 특징으로 하는 스틸코드의 제조방법.The method of manufacturing a steel cord according to claim 1, wherein the processing time in the fluidized bed heating furnace is 4 seconds to 10 seconds. 제 1항에 있어서, 상기 구리도금 및 아연도금이 피로인산동도금 및 황산아연도금 또는 피로인산동도금, 황산동도금 및 황산아연도금인 것을 특징으로 하는 스틸코드의 제조방법.The method of manufacturing a steel cord according to claim 1, wherein the copper plating and zinc plating are pyrophosphate copper plating and zinc sulfate plating or pyrophosphate copper plating, copper sulfate plating and zinc sulfate plating.
KR1019990003523A 1999-02-03 1999-02-03 Method for preparing steel cords KR100389739B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990003523A KR100389739B1 (en) 1999-02-03 1999-02-03 Method for preparing steel cords

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990003523A KR100389739B1 (en) 1999-02-03 1999-02-03 Method for preparing steel cords

Publications (2)

Publication Number Publication Date
KR19990037851A true KR19990037851A (en) 1999-05-25
KR100389739B1 KR100389739B1 (en) 2003-07-02

Family

ID=37421805

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990003523A KR100389739B1 (en) 1999-02-03 1999-02-03 Method for preparing steel cords

Country Status (1)

Country Link
KR (1) KR100389739B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101393788B1 (en) * 2006-09-27 2014-05-13 주식회사 효성 Precess for manufacturing a plated steel filament of steel cord for rubber enforcement
KR101443085B1 (en) * 2012-06-28 2014-09-24 현대제철 주식회사 Method for manufacturing brass plating steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103793A (en) * 1990-08-21 1992-04-06 Kanai Hiroyuki Method for plating steel wire for tire cord with brass
KR950000929A (en) * 1993-06-02 1995-01-03 구창남 4-Wound Alloy Steel Cord

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101393788B1 (en) * 2006-09-27 2014-05-13 주식회사 효성 Precess for manufacturing a plated steel filament of steel cord for rubber enforcement
KR101443085B1 (en) * 2012-06-28 2014-09-24 현대제철 주식회사 Method for manufacturing brass plating steel sheet

Also Published As

Publication number Publication date
KR100389739B1 (en) 2003-07-02

Similar Documents

Publication Publication Date Title
CA2267621C (en) Method of manufacturing porous electrode wire for electric discharge machining and structure of the electrode wire
US5503941A (en) Metal foam
JP4338794B2 (en) Method for producing microalloyed high carbon steel and high tension filament
CN107109676A (en) The restorative excellent FE NI systems alloying metal paper tinsel of heat and its manufacture method
KR100312438B1 (en) Manufacturing method of patterned steel
CA2135031A1 (en) Process for patenting and brass plating steel wire
KR100389739B1 (en) Method for preparing steel cords
US6495788B1 (en) Electrode for machining a piece by electro-erosion and its process for production
KR100389740B1 (en) Method for manufacturing steel cords
JP2664991B2 (en) Bronze electroplated bead wire and method of manufacturing the same
CN113226609A (en) Delta-phase brass electrode wire for electroerosion machining and manufacturing method thereof
JPS61117021A (en) Electrode wire for wire-cut electric discharge machining and manufacturing method thereof
KR100369377B1 (en) Method for preparing steel cords
JP2014050945A (en) Wire electrode
SU1650791A1 (en) Electrode for electroplating inside surfaces
JPS61270028A (en) Electrode wire for wire electric discharge machining
KR20100119703A (en) Plating type electric cable, planar element using it, and manufacturing method thereof
JPH05320982A (en) Nickel-plated titanium wire or nickel-plated titanium alloy wire and production thereof
JPH03202495A (en) Production of reflow-tinned wire
SU582302A1 (en) Method of manufacturing backings for cylindrical magnetic films
JPS6311435B2 (en)
JPS61130475A (en) Manufacture of high tension copper alloy material
JP2021167471A (en) Composite yarn and method for manufacturing the same
KR20090099628A (en) The manufacturing method of steel cord and its product
JPS61106762A (en) Gallium plating device to wire rod

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140512

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150514

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160513

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170516

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180514

Year of fee payment: 16

EXPY Expiration of term