KR19990032690A - Method for producing a composite membrane having a hydrophilic coating layer of a thin film on a hydrophobic support membrane - Google Patents

Method for producing a composite membrane having a hydrophilic coating layer of a thin film on a hydrophobic support membrane Download PDF

Info

Publication number
KR19990032690A
KR19990032690A KR1019970053789A KR19970053789A KR19990032690A KR 19990032690 A KR19990032690 A KR 19990032690A KR 1019970053789 A KR1019970053789 A KR 1019970053789A KR 19970053789 A KR19970053789 A KR 19970053789A KR 19990032690 A KR19990032690 A KR 19990032690A
Authority
KR
South Korea
Prior art keywords
membrane
hydrophobic support
support membrane
hydrophilic polymer
coating layer
Prior art date
Application number
KR1019970053789A
Other languages
Korean (ko)
Other versions
KR100217311B1 (en
Inventor
이정민
김철웅
김광주
염충균
김범식
Original Assignee
이서봉
재단법인 한국화학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이서봉, 재단법인 한국화학연구소 filed Critical 이서봉
Priority to KR1019970053789A priority Critical patent/KR100217311B1/en
Priority to PCT/KR1998/000321 priority patent/WO1999020378A1/en
Priority to EP98951774A priority patent/EP1024886A1/en
Priority to JP2000516763A priority patent/JP2001520111A/en
Publication of KR19990032690A publication Critical patent/KR19990032690A/en
Application granted granted Critical
Publication of KR100217311B1 publication Critical patent/KR100217311B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/74Natural macromolecular material or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/643Polyether-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

본 발명은 소수성 지지막 위에 박막의 친수성 도포층을 갖는 복합막의 제조방법에 관한 것으로서, 더욱 상세하게는 친수성 고분자와 반응성이 있는 물질(이하 "반응제"라 함)을 소수성 지지막 표면 및 내부 기공속에 분포시켜 친수성 고분자 수용액에 함침시킬때 소수성 지지막 표면에서 친수성 고분자와 반응제간의 반응에 의해 친수성 고분자를 소수성 지지막 위에 얇게 도포시킬 수 있도록 함으로써 도포막 두께조절이 가능하고 생산성 및 물성이 우수하게 되도록 개선한 복합막의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a composite membrane having a thin hydrophilic coating layer on a hydrophobic support membrane, and more specifically, a material reactive with a hydrophilic polymer (hereinafter referred to as a "reactive agent") is a surface of the hydrophobic support membrane and internal pores. When impregnated with hydrophilic polymer solution by dispersing in the inside, hydrophilic polymer can be applied on hydrophobic support membrane thinly by reaction between hydrophilic polymer and reactant on the surface of hydrophobic support membrane. The present invention relates to a method for producing a composite membrane, which is improved as much as possible.

Description

소수성 지지막 위에 박막의 친수성 도포층을 갖는 복합막의 제조방법Method for producing a composite membrane having a thin hydrophilic coating layer on a hydrophobic support membrane

본 발명은 소수성 지지막 위에 박막의 친수성 도포층을 갖는 복합막의 제조방법에 관한 것으로서, 더욱 상세하게는 친수성 고분자와 반응성이 있는 물질(이하 "반응제"라 함)을 소수성 지지막 표면 및 내부 기공속에 분포시켜 친수성 고분자 수용액에 함침시킬때 소수성 지지막 표면에서 친수성 고분자와 반응제간의 반응에 의해 친수성 고분자를 소수성 지지막 위에 얇게 도포시킬 수 있도록 함으로써 도포막 두께조절이 가능하고 생산성 및 물성이 우수하게 되도록 개선한 복합막의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a composite membrane having a thin hydrophilic coating layer on a hydrophobic support membrane, and more specifically, a material reactive with a hydrophilic polymer (hereinafter referred to as a "reactive agent") is a surface of the hydrophobic support membrane and internal pores. When impregnated with hydrophilic polymer solution by dispersing in the inside, hydrophilic polymer can be applied on hydrophobic support membrane thinly by reaction between hydrophilic polymer and reactant on the surface of hydrophobic support membrane. The present invention relates to a method for producing a composite membrane, which is improved as much as possible.

막분리에서 투과속도 및 생산성 향상을 위해 막의 박막화는 필수적이라 할 수 있다. 일반적으로 투과속도는 막 두께에 반비례하나 투과속도를 높이기 위하여 막의 두께를 너무 얇게하면 막의 기계적 강도가 작아져 쉽게 파괴가 일어나게 되므로 막의 두께를 얇게할 경우에는 막을 지지해 줄 수 있는 지지막이 필요하다.In order to improve permeation rate and productivity in membrane separation, thinning of the membrane may be essential. In general, the permeation rate is inversely proportional to the thickness of the membrane, but if the thickness of the membrane is too thin to increase the permeation rate, the mechanical strength of the membrane decreases and the fracture easily occurs. Therefore, when the membrane is thinned, a support membrane capable of supporting the membrane is required.

여기서 지지막은 단순히 박막의 비다공성 활성층을 지지해주어야 하나, 박막의 활성층을 투과한 투과물 흐름에 영향을 끼치지 말아야 한다. 이러한 형태의 막을 복합막이라 하는데 이러한 복합막은 역삼투압법, 투과증발법 그리고 기체분리시 주로 사용된다.Here, the support membrane should simply support the non-porous active layer of the thin film, but should not affect the permeate flow through the active layer of the thin film. This type of membrane is called a composite membrane, which is mainly used for reverse osmosis, pervaporation and gas separation.

보통 지지막으로는 비대칭 한외여과막을 주로 사용하고 있고, 소수성 폴리설폰막, 폴리이미드막들이 상업적으로 구입이 가능하다. 이러한 소수성 지지막 위에 친수성이 약한 고분자를 표면중합, 도포법에 의해 박막형태로 도포한 복합막(J. Macromol. Sci. Chem., A15 (1981) 727 ∼ 755, J. Membr. Sci., 48 (1990) 203)이 주종을 이루고 있으나, 이온성 유기물을 포함하고 있는 수용성 혼합물 분리를 위해서는 친수성 고분자의 활성층이 필요하다.Usually, an asymmetric ultrafiltration membrane is mainly used as a supporting membrane, and hydrophobic polysulfone membranes and polyimide membranes are commercially available. A composite film coated with a hydrophilic polymer having a weak hydrophilic property in a thin film form by surface polymerization and coating (J. Macromol. Sci. Chem., A15 (1981) 727 to 755, J. Membr. Sci., 48. (1990) 203), but the active layer of the hydrophilic polymer is required to separate the aqueous mixture containing the ionic organic material.

이러한 소수성 지지막들은 기계적 강도, 내약품성 및 내열성이 좋아 지지막으로는 좋은 여건을 갖추었으나 소수성이므로 친수성 고분자를 도포하는데 제약점이 있는데 이는 소수성 고분자들은 친수성 고분자들에 비해 표면장력이 비교적 작아 친수성 도포가 어렵기 때문이다. 즉, 친수성 고분자를 얇게 도포하게 되면 적심성이 좋지 않아 서로 뭉치게 되어 균일한 층을 얻을 수 없게 되고, 친수성 고분자층 두께가 너무 두껍게 도포되면 투과물의 투과속도가 작아져 생산성이 떨어지게 된다.These hydrophobic support membranes have good conditions for their mechanical strength, chemical resistance, and heat resistance, but they are hydrophobic and thus have limitations in applying hydrophilic polymers. Hydrophobic polymers have a relatively low surface tension compared to hydrophilic polymers, resulting in hydrophilic coating. Because it is difficult. In other words, when the hydrophilic polymer is applied thinly, the wettability is not good and it is agglomerated with each other to obtain a uniform layer. If the thickness of the hydrophilic polymer layer is applied too thick, the permeation rate of the permeate is reduced, resulting in a decrease in productivity.

이러한 소수성 지지막 표면을 물리적, 화학적 처리하여 지지막 표면적을 증가시키거나 또는 소수성 지지막 표면을 활성화하여 친수성 고분자를 도포시 어느 정도 접착력을 증가시킬 수 있으나 소수성 지지막과 도포할 친수성 고분자간에 물리화학적 특성이 판이하게 다를 경우 이러한 처리도 박막의 친수성 고분자 도포하기 위한 궁극적인 방법이 되지 못한다. 그래서 친수성의 지지막을 사용하여 친수성 고분자를 도포하는 것이 계면에서의 접착력 증가와 물리화학적 특성의 유사성에 의해서 도포가 비교적 용이해질 수 있다. 그러나, 사용되는 친수성 지지막은 기계적, 열적, 내화학적 물성이 우수하여야 하므로 이 범주에 속하는 고분자 종류는 매우 제한적이라 할 수 있다. 대표적인 친수성 지지막으로는 셀룰로오스아세테이트와 폴리아크릴로니트릴[독일특허 DE 3,220,570 A1 (1983), 유럽특허 0,096,339 (1983)]이 대체적으로 이 범주에 속하는 고분자들이다. 그러나, 셀룰로오스아세테이트는 내화학성 및 생화학성 특성에 문제가 있으며, 폴리아크릴로니트릴은 가격이 비쌀 뿐만 아니라 막 형태로 상업적 판매가 거의 이루어지지 않거나 판매가 되더라도 그 가격이 매우 비싸서 사용에 제약이 있는 문제가 있다. 또한, 친수성 지지막이라 하더라도 지지막으로서의 요건을 갖추기 위해서는 상기에서 언급한 기계적, 내열성 및 내화학성이 좋아야 하기 때문에 이로 인하여 친수성이 그리 크지 않을 수가 있으므로 정도 차이는 있지만은 도포시 소수성 지지막을 사용할 때 야기되는 똑같은 문제를 나타낼 수가 있다.Physical and chemical treatment of the surface of the hydrophobic support membrane can increase the surface area of the support membrane or activate the surface of the hydrophobic support membrane to increase the adhesion to the hydrophilic polymer to some extent, but the physical and chemical properties between the hydrophobic support membrane and the hydrophilic polymer to be applied can be increased. If the properties are very different, this treatment is not the ultimate method for applying the hydrophilic polymer of the thin film. Therefore, the application of the hydrophilic polymer using a hydrophilic support membrane may be relatively easy to apply due to the increase in adhesion at the interface and the similarity of physicochemical properties. However, the hydrophilic support membrane to be used should be excellent in mechanical, thermal and chemical properties, so that the types of polymers in this category are very limited. Representative hydrophilic support membranes include cellulose acetate and polyacrylonitrile (German Patent DE 3,220,570 A1 (1983), European Patent 0,096,339 (1983)). However, cellulose acetate has a problem in chemical and biochemical properties, and polyacrylonitrile has a problem in that its use is limited because its price is very high and its price is very high even though it is sold in the form of a membrane. . In addition, even in the case of a hydrophilic support film, the mechanical, heat resistance, and chemical resistance mentioned above should be good in order to satisfy the requirements as a support film, so that the hydrophilicity may not be very large. Can represent the same problem.

따라서, 상업적으로 구입이 쉽고 가격이 싸며 또한 지지막으로서 갖추어야 할 우수한 물성들을 지닌 폴리설폰이나 폴리이미드 지지막을 사용하는 것이 절실하게 요구되고 있다.Therefore, there is an urgent need to use a polysulfone or polyimide support membrane which is easy to purchase commercially, is inexpensive, and has excellent properties to be provided as a support membrane.

본 발명에서는 상기의 문제점을 개선하고자 소수성 지지막 위에 친수성의 박막을 도포하여 복합막을 제조하는데 친수성 고분자의 반응제 수용액속에 소수성 지지막을 함침시킴으로써 소수성 지지막 위에 친수성 고분자의 적심성 불량을 개선하고 이로 인하여 친수성 고분자의 도포를 용이하게 할 뿐만 아니라 소수성 지지막과 고분자의 친화력을 증가시켜 주고 친수성 고분자와 소수성 지지막에 분포되어 있는 반응제의 화학반응에 의해 계면에서의 친화력과 표면장력의 한계를 극복할 수 있게 되는 소수성 지지막 위에 박막의 친수성 도포층을 갖는 복합막의 제조방법을 제공하는데 그 목적이 있다.In the present invention, to improve the above problems by applying a hydrophilic thin film on the hydrophobic support membrane to prepare a composite membrane by impregnating a hydrophobic support membrane in the aqueous solution of the hydrophilic polymer to improve the wettability of the hydrophilic polymer on the hydrophobic support membrane and thereby In addition to facilitating the application of hydrophilic polymers, the affinity between hydrophobic support membranes and polymers can be increased, and the chemical reactions of the reactants distributed between hydrophilic polymers and hydrophobic support membranes can overcome the limitations of affinity and surface tension at the interface. It is an object of the present invention to provide a method for producing a composite membrane having a hydrophilic coating layer of a thin film on a hydrophobic support membrane.

본 발명은 소수성 지지막위에 친수성 고분자를 도포하여 복합막을 제조하는 방법에 있어서, 친수성 고분자와 반응성이 있는 물질인 반응제의 수용액에 소수성 지지막을 침지시켜서 소수성 지지막 표면 및 내부 기공속에 그 반응제가 분포되게 함과 동시에 소수성 지지막 표면에서 친수성 고분자와 반응제간의 반응에 의해 친수성 고분자가 소수성 지지막 위에 얇게 도포되도록 하는 복합막의 제조방법을 특징으로 한다.The present invention is a method for producing a composite membrane by applying a hydrophilic polymer on the hydrophobic support membrane, the hydrophobic support membrane is immersed in an aqueous solution of a reactive agent that is reactive with the hydrophilic polymer to distribute the reactant on the surface of the hydrophobic support membrane and the internal pores And at the same time, a method of producing a composite membrane in which the hydrophilic polymer is thinly coated on the hydrophobic support membrane by a reaction between the hydrophilic polymer and the reactant on the surface of the hydrophobic support membrane.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

친수성 고분자의 반응제가 용해되어 있는 수용액속에 소수성 지지막을 일정시간 담그면 반응제가 소수성 지지막 표면 및 내부에 존재하는 기공에 침투해 들어가게 되고, 이를 수용액에서 꺼내어 건조시키면 소수성 지지막 전체에 반응제가 균일하게 분포될 수 있다. 즉, 반응제가 소수성 지지막과의 친화력 여부를 막론하고 이러한 과정을 통해 소수성 지지막 표면 및 내부에 반응제를 균일하게 분포시킬 수 있다.When the hydrophobic support membrane is immersed in the aqueous solution in which the hydrophilic polymer reactant is dissolved for a predetermined time, the reactant penetrates into the pores existing on the surface and inside of the hydrophobic support membrane. Can be. That is, regardless of whether the reactant has affinity with the hydrophobic support membrane, the process may uniformly distribute the reactant on the surface and inside the hydrophobic support membrane.

본 발명에서는 소수성 지지막으로 폴리설폰 또는 폴리에테르이미드 한외여과막을 사용하는 것이 가격이나 기계적 물성면에서 바람직하다. 이러한 소수성 지지막의 형태는 평막 또는 중공사막 형태를 갖는 것이 사용될 수 있다.In the present invention, it is preferable to use a polysulfone or polyetherimide ultrafiltration membrane as the hydrophobic support membrane in view of price and mechanical properties. Such hydrophobic support membrane may have a flat or hollow fiber membrane.

본 발명에 따르면 상기의 소수성 지지막에 친수성 고분자를 도포하기 전에 전처리 과정으로 지지막 내부 기공에 채워져 있는 팽윤제를 제거하는 것이 좋다.According to the present invention, before applying the hydrophilic polymer to the hydrophobic support membrane, it is preferable to remove the swelling agent filled in the pores of the support membrane by a pretreatment process.

왜냐하면, 팽윤제는 주로 글리세린으로 되어 있어서, 팽윤제를 제거하지 않고 친수성 고분자를 도포하게 되면 목적하고자 하는 복합막을 제조할 수 없을 뿐만 아니라 기공 내부로 반응제가 침투하지 못하여 효과적으로 고분자를 도포할 수 없기 때문이다.Because the swelling agent is mainly made of glycerin, if the hydrophilic polymer is applied without removing the swelling agent, the desired composite membrane cannot be prepared and the polymer cannot be effectively applied because the reactive agent does not penetrate into the pores. to be.

이러한 팽윤제를 제거하기 위해서는 이소프로필알콜과 물을 1 : 1의 중량비로 혼합한 수용액에 소수성 지지막을 1 ∼ 5시간 담그어 팽윤제를 제거하면 된다.In order to remove such a swelling agent, the hydrophobic support membrane may be immersed in an aqueous solution in which isopropyl alcohol and water are mixed at a weight ratio of 1: 1 for 1 to 5 hours to remove the swelling agent.

상기와 같이 팽윤제가 제거된 소수성 지지막표면 및 내부에 친수성 고분자의 반응제를 분포시키게 된다.As described above, the reactive agent of the hydrophilic polymer is distributed on the hydrophobic support membrane surface and the inside of which the swelling agent is removed.

본 발명에서 사용되는 친수성 고분자는 우수한 제막특성과 기계적 특성을 가져야하므로 바람직하기로는 알긴산나트륨, 키토산 또는 폴리비닐알콜을 사용할 수 있다. 상기에서 예시한 친수성 고분자이외의 여타 친수성 고분자를 사용하여도 동일한 효과를 얻을 수 있다.Since the hydrophilic polymer used in the present invention should have excellent film forming and mechanical properties, sodium alginate, chitosan or polyvinyl alcohol may be preferably used. The same effects can be obtained by using other hydrophilic polymers other than the hydrophilic polymers exemplified above.

또한, 본 발명에서 사용하는 반응제로는 친수성 고분자의 가교제, 응고제 및 반응개질제 등을 사용할 수 있다. 바람직하기로는 친수성 고분자로 알긴산나트륨을 사용하는 경우 염화칼슘, 질산알루미늄, 황산알루미늄, 황산구리 또는 염산을 사용할 수 있고, 키토산을 사용할 경우 황산을 사용할 수 있고, 폴리비닐을 사용할 경우 글루탈알데히드등을 사용할 수 있다.In addition, a crosslinking agent, a coagulant, a reaction modifier, or the like of a hydrophilic polymer may be used as the reactant used in the present invention. Preferably, when sodium alginate is used as the hydrophilic polymer, calcium chloride, aluminum nitrate, aluminum sulfate, copper sulfate or hydrochloric acid may be used, sulfuric acid may be used when chitosan is used, and glutaraldehyde may be used when polyvinyl is used. have.

본 발명에 따르면, 우선 반응제의 농도를 0.5 ∼ 20%로 조절하여 용해시킨 수용액에 상기 팽윤제를 제거한 소수성 지지막을 5분이상 침지시킨다. 상기 반응제 수용액의 농도가 0.5% 미만이면 소수성 지지막 표면 및 내부의 기공에 충분히 분산될 수 없어서 친수성 고분자가 도포되기 어렵고, 20%를 초과하면 많은 양이 침투하여 막표면에 반응제 도포층이 형성된다. 또한, 침지하는 시간이 5분 미만이면 소수성 지지막에 반응제가 충분히 침투할 수 없고 대개 5 ∼ 10분 정도면 목적하는 정도의 침투상태가 이루어진다.According to the present invention, first, the hydrophobic support membrane from which the swelling agent is removed is immersed for 5 minutes or more in an aqueous solution in which the concentration of the reactant is adjusted to 0.5 to 20%. When the concentration of the aqueous solution of the reactant is less than 0.5%, the hydrophobic support membrane may not be sufficiently dispersed in the pores on the surface and the hydrophilic polymer is difficult to be applied. When the concentration exceeds 20%, a large amount penetrates into the surface of the membrane so that the reactive layer is applied. Is formed. In addition, when the time for immersion is less than 5 minutes, the reactant cannot sufficiently penetrate into the hydrophobic support membrane, and usually, about 5 to 10 minutes, the desired degree of penetration is achieved.

이와 같이, 반응제를 분산시킨 다음 수용액에서 지지막을 꺼내어 건조단계 없이 친수성 고분자 수용액에 침지시키거나 완전히 건조후 친수성 고분자 수용액에 침지시켜 소수성 지지막 표면에 존재하는 반응제와 친수성 고분자간의 화학반응에 의해 친수성 고분자가 소수성 지지막 위에 균일하게 도포한다. 친수성 고분자 수용액의 농도는 0.1 ∼ 1%로 조절하는데, 만일 0.1% 미만이면 소수성 지지막 위에 친수성 박막을 도포할 수 없고, 1%를 초과하면 친수성 박막의 도포층 두께가 너무 두꺼워진다. 침지하는 시간은 5분이상 하는데, 만일 침지시간이 5분 미만이면 반응시간이 충분하지 않아 고분자가 충분히 도포되기 어렵다.As such, after dispersing the reactant, the support membrane is taken out of the aqueous solution and immersed in an aqueous hydrophilic polymer solution without a drying step, or completely dried, and then immersed in an aqueous hydrophilic polymer solution to form a chemical reaction between the reactive agent and the hydrophilic polymer on the surface of the hydrophobic support membrane. Hydrophilic polymer is uniformly applied on the hydrophobic support membrane. The concentration of the hydrophilic polymer aqueous solution is adjusted to 0.1 to 1%. If less than 0.1%, the hydrophilic thin film cannot be coated on the hydrophobic support membrane, and if it exceeds 1%, the thickness of the coating layer of the hydrophilic thin film becomes too thick. Immersion time is more than 5 minutes, if the immersion time is less than 5 minutes, the reaction time is not enough, it is difficult to apply the polymer sufficiently.

본 발명에서 소수성 지지막 위에 친수성 박막을 도포할 때 친수성 박막의 도포층 두께를 조절하는 것이 중요한 바, 이러한 도포두께는 반응제 수용액에서 반응제의 농도와 친수성 고분자 수용액에서 친수성 고분자의 농도에 의해 조절되는데, 반응제와 친수성 고분자의 농도가 높을수록 두께는 두꺼워진다. 그 두께가 0.1 ∼ 1.5 ㎛가 되도록 조절하는 것이 바람직한데,만일 0.1 ㎛ 미만이면 결함이 없는 도포층형성이 어렵고, 1.5 ㎛를 초과하면 도포층이 너무 두꺼워 물질의 투과속도가 작아진다.In the present invention, it is important to control the thickness of the coating layer of the hydrophilic thin film when the hydrophilic thin film is coated on the hydrophobic support membrane. The coating thickness is controlled by the concentration of the reactant in the aqueous solution of the reactant and the concentration of the hydrophilic polymer in the hydrophilic polymer solution. The higher the concentration of reactant and hydrophilic polymer, the thicker it is. It is preferable to adjust the thickness so that it becomes 0.1-1.5 micrometer, but if it is less than 0.1 micrometer, it will be difficult to form an application layer without defect, and when it exceeds 1.5 micrometer, the application layer will be too thick and the permeation | transmission rate of a material will become small.

친수성 고분자 수용액에 침지한 다음 지지막을 꺼내어 공기중에서 건조한 후 필요하다면 오븐속에서 고온하에 추가반응을 시킬 수 있다. 이러한 과정을 통해 소수성 지지막과 친수성 고분자의 박막층간의 접착력이 우수한 복합막이 제조될 수 있다.After immersion in an aqueous hydrophilic polymer solution, the support membrane can be taken out, dried in air and further reacted at high temperature in an oven if necessary. Through this process, a composite membrane having excellent adhesion between the hydrophobic support membrane and the thin film layer of the hydrophilic polymer can be prepared.

이렇게 제조된 복합막들에 도포된 상태를 살펴보기 위해서 전자현미경을 사용하여 막의 단면을 관찰하였는데 0.1 ∼ 1.5 ㎛의 두께 결함이 없는 도포층이 형성됨을 관찰하였다. 또한 막의 성능을 실험하기 위해서 본 발명에서는 역삼투압법을 사용하여 음이온계 유화제 수용액을 분리하였으며 사용된 역삼투압 장치에서는 농도분극을 최소화할 수 있도록 설계된 멤브레인 셀을 사용하여 막의 분리도를 측정하였다.The cross section of the film was observed using an electron microscope to examine the state of the coating on the thus prepared composite films. It was observed that a coating layer without thickness defects of 0.1 to 1.5 μm was formed. In addition, in order to test the performance of the membrane in the present invention, the aqueous solution of the anionic emulsifier was separated using reverse osmosis, and the membrane separation was measured using a membrane cell designed to minimize concentration polarization in the reverse osmosis system.

이와 같은 본 발명을 실시예에 의거하여 상세히 설명하겠는 바, 본 발명이 실시예에 한정되는 것은 아니다.Although this invention is demonstrated in detail based on an Example, this invention is not limited to an Example.

실시예 1Example 1

폴리에테르이미드 한외여과막을 이소프로판올과 물이 1 : 1의 중량비로 혼합된 혼합물에 5시간동안 담그어 막 내부 기공에 채워져 있는 글리세린을 제거한 후 증류수로 깨끗이 씻은 다음 0.5% 염화칼슘 수용액에 10분동안 담그었다. 그런다음 바로 알긴산나트륨이 0.2% 용해되어 있는 수용액에 담그었다. 이를 꺼내어 1.5% 염화칼슘 수용액에 5분간 담근 후 공기중에서 건조하여 막을 제조한 후 소량의 음이온계 유화제가 용해되어 있는 수용액을 역삼투압 막 분리 실험을 하였으며 그 결과는 다음 표 1에 나타내었다.The polyetherimide ultrafiltration membrane was immersed in a mixture of isopropanol and water in a weight ratio of 1: 1 for 5 hours to remove glycerin in the pores of the membrane, washed with distilled water, and then immersed in 0.5% aqueous calcium chloride solution for 10 minutes. It was then immediately immersed in an aqueous solution of 0.2% sodium alginate. The membrane was prepared by immersion in 1.5% calcium chloride solution for 5 minutes, dried in air, and then subjected to reverse osmosis membrane separation experiment in which a small amount of anionic emulsifier was dissolved. The results are shown in Table 1 below.

실시예 2 ∼ 4Examples 2-4

상기 실시예 1과 동일한 방법으로 하되, 글리세린을 제거한 폴리설폰 한외여과막을 각각 1.0, 1.5, 2.0%의 염화칼슘 수용액에 담그어 막을 제조한 다음 음이온계 유화제 수용액에 대한 역삼투압 분리결과는 다음 표 1에 나타내었다.In the same manner as in Example 1, the membrane was prepared by immersing the polysulfone ultrafiltration membrane from which glycerin was removed in 1.0, 1.5, and 2.0% calcium chloride aqueous solution, respectively, and the reverse osmosis results of the anionic emulsifier aqueous solution are shown in Table 1 below. It was.

실시예Example 염화칼슘 농도(%)Calcium chloride concentration (%) 도포막 두께(㎛)Coating film thickness (㎛) 투과 실험Permeation experiment 투과속도(㎏/㎡h)Penetration rate (㎏ / ㎡h) 배제율(%)% Rejection 1One 0.50.5 0.10.1 81.981.9 95.495.4 22 1.01.0 0.20.2 78.678.6 97.897.8 33 1.51.5 0.20.2 74.174.1 98.198.1 44 2.02.0 1.01.0 40.440.4 98.998.9

상기 표 1에서 알긴산나트륨의 가교제인 염화칼슘의 농도를 달리하여 사용했을 경우 제조된 복합막에 대한 도포 두께와 투과특성을 나타내었다.In Table 1, when the concentration of calcium chloride, which is a crosslinking agent of sodium alginate, was used in different concentrations, the coating thickness and permeation characteristics of the prepared composite membrane were shown.

다가이온 가교제의 농도가 커질수록 도포막의 두께가 커지나 사용농도 범위에서는 1 ㎛ 미만의 도포막이 얻어지며 비교적 우수한 투과특성을 보이고 있고 또한, 막 분리공정시 제조된 복합막은 도포막이 지지막에서 분리되지 않을 정도의 우수한 접착력을 보이고 있다. 특히, 배제율이 높은 것은 도포층에 결함이 없음을 의미하고 전자현미경을 통해 이러한 사실을 확인할 수 있다.As the concentration of the polyvalent crosslinking agent increases, the thickness of the coating film increases, but a coating film of less than 1 μm is obtained in the use concentration range, and shows a relatively excellent permeability. Also, the composite membrane prepared during the membrane separation process does not separate the coating film from the support membrane. Excellent adhesive strength is shown. In particular, the high rejection rate means that the coating layer is free of defects and can be confirmed by an electron microscope.

실시예 5 ∼ 7Examples 5-7

상기 실시예 3과 동일한 방법으로 하되, 0.1, 0.3, 0.5%의 알긴산나트륨 수용액에 담그어 막을 제조하였고 음이온계 유화제 수용액에 대한 역삼투압 분리 결과는 다음 표 2에 나타내었다.In the same manner as in Example 3, the membrane was prepared by immersing in an aqueous solution of sodium alginate at 0.1, 0.3, 0.5%, and the reverse osmosis results of the anionic emulsifier aqueous solution are shown in Table 2 below.

실시예Example 알긴산나트륨 수용액 농도(%)Sodium alginate aqueous solution concentration (%) 도포막 두께(㎛)Coating film thickness (㎛) 투과 실험Permeation experiment 투과속도(㎏/㎡h)Penetration rate (㎏ / ㎡h) 배제율(%)% Rejection 55 0.10.1 0.10.1 81.981.9 95.495.4 66 0.30.3 0.50.5 47.547.5 98.898.8 77 0.50.5 1.31.3 26.626.6 99.199.1

상기 표 2에서 알긴산나트륨 수용액의 농도가 클수록 제조된 복합막의 도포 두께는 두꺼워짐을 알 수 있으며, 0.3% 미만의 고분자 농도에서는 1 ㎛ 미만의 도포 두께를 얻을 수가 있으며 이 경우 역시 투과속도 및 배제율이 높음을 확인할 수 있다.In Table 2, it can be seen that the greater the concentration of the aqueous sodium alginate solution is, the thicker the coating thickness of the prepared composite membrane can be obtained. At a polymer concentration of less than 0.3%, a coating thickness of less than 1 μm can be obtained. You can see the high.

실시예 8Example 8

상기 실시예 3과 동일한 방법으로 하되, 글리세린을 제거한 폴리설폰막을 응고제인 1%의 염산 수용액에 담그어 막을 제조하였고 음이온계 유화제 수용액에 대한 역삼투압 분리 결과는 다음 표 3에 나타내었다.In the same manner as in Example 3, the membrane was prepared by immersing the polysulfone membrane from which glycerin was removed in a 1% hydrochloric acid aqueous solution as a coagulant. The results of reverse osmosis of the anionic emulsifier aqueous solution are shown in Table 3 below.

실시예 9 ∼ 10Examples 9-10

상기 실시예 3과 동일한 방법으로 하되, 글리세린을 제거한 폴리설폰막을 폴리비닐알콜 가교제인 5%의 글루탈알데히드와 촉매인 0.15%의 염산 수용액에 10분간 담근 후 폴리비닐알콜이 각각 0.5, 1.0% 녹아 있는 수용액에 5분간 담그었다. 그런다음 공기중에 건조한 다음 100℃에서 10분간 추가로 가교반응을 하였고 음이온계 유화제 수용액에 대한 역삼투압 분리 결과는 다음 표 3에 나타내었다.In the same manner as in Example 3, the polysulfone membrane from which glycerin was removed was immersed in 5% glutaraldehyde as a polyvinyl alcohol crosslinking agent and 0.15% hydrochloric acid solution as a catalyst for 10 minutes, and then 0.5% and 1.0% polyvinyl alcohol was dissolved. It was immersed in the aqueous solution for 5 minutes. Then, the resultant was dried in air and further crosslinked at 100 ° C. for 10 minutes, and the reverse osmosis results of the anionic emulsifier aqueous solution are shown in Table 3 below.

실시예 11Example 11

상기 실시예 3과 동일한 방법으로 하되, 글리세린을 제거한 폴리설폰막을 키토산의 가교제인 2%의 황산 수용액속에 10분간 담근다음 0.3%의 키토산 수용액에 5분간 담그었다. 그런 후 0.5%의 황산 수용액에 다시 담그어 추가 가교반응을 시킨 후 공기중에 건조하여 복합막을 제조하였고 음이온계 유화제 수용액에 대한 역삼투압 분리 결과는 다음 표 3에 나타내었다.In the same manner as in Example 3, the polysulfone membrane from which glycerin was removed was immersed in 2% sulfuric acid aqueous solution, which is a crosslinking agent of chitosan, for 10 minutes, and then immersed in 0.3% aqueous chitosan solution for 5 minutes. Subsequently, the mixture was immersed again in 0.5% sulfuric acid solution, followed by further crosslinking reaction, and dried in air to prepare a composite membrane. The results of reverse osmosis for anionic emulsifier aqueous solution are shown in Table 3 below.

실시예Example 도포 고분자Coating polymer 도포막 두께(㎛)Coating film thickness (㎛) 투과 실험Permeation experiment 투과속도(㎏/㎡h)Penetration rate (㎏ / ㎡h) 배제율(%)% Rejection 88 알긴산나트륨Sodium alginate 0.30.3 78.778.7 94.394.3 99 폴리비닐알콜Polyvinyl alcohol 0.10.1 63.563.5 93.993.9 1010 폴리비닐알콜Polyvinyl alcohol 0.20.2 49.149.1 97.597.5 1111 키토산Chitosan 0.30.3 26.326.3 89.489.4

상기 표 3에서 반응제로 응고제를 사용했을 경우 또는 알긴산나트륨 외의 타 친수성 고분자를 도포 고분자로 사용하고 이들의 가교제를 반응성 물질로 사용했을 경우 제조된 복합막의 도포막 두께와 투과특성을 나타낸 것이다.In Table 3, when the coagulant is used as the reactant or when other hydrophilic polymers other than sodium alginate are used as the coating polymer and the crosslinking agent is used as the reactive material, the thickness and permeation characteristics of the coating film of the prepared composite membrane are shown.

이들의 경우에도 박막의 도포층이 형성됨을 보이고 있으나 키토산의 경우 투과속도 및 배제율이 낮은 것은 키토산이 대표적인 양이온 고분자이기 때문에 음이온의 용질이 막 표면에 달라붙어 지지막 표면에 파울링이 일어나며 시간에 따라 그 정도가 심해지기 때문에 투과속도 저하가 심해지며 또한 배제율 악화도 수반하게 된다.In these cases, the coating layer of the thin film was also formed, but in the case of chitosan, the low permeation rate and rejection rate were chitosan, which is a typical cationic polymer, so that the solute of the anion adheres to the membrane surface and fouling occurs on the surface of the support membrane. Therefore, since the degree becomes more severe, the permeation rate is worsened and the exclusion rate is also accompanied.

비교예 1 ∼ 4Comparative Examples 1 to 4

상기 실시예 1과 동일한 방법으로 하되, 폴리설폰 한외여과막을 다음 표 4에 나타낸 농도를 가지는 반응제인 염화칼슘 수용액에 침지시키고 각각의 고분자를 도포하여 막을 제조한 다음 음이온계 유화제 수용액에 대한 역삼투압 분리 결과를 다음 표 4에 나타내었다.In the same manner as in Example 1, the polysulfone ultrafiltration membrane was immersed in an aqueous solution of calcium chloride which is a reactant having the concentration shown in the following Table 4 and each polymer was applied to prepare a membrane and then reverse osmosis pressure separation result for an anionic emulsifier aqueous solution. Is shown in Table 4 below.

비교예Comparative example 반응제의 농도(%)% Of reactant 도포 고분자Coating polymer 도포막 두께(㎛)Coating film thickness (㎛) 투과 실험Permeation experiment 투과속도(㎏/㎡h)Penetration rate (㎏ / ㎡h) 배제율(%)% Rejection 1One 0.20.2 알긴산나트륨Sodium alginate -- 326.5326.5 4.84.8 22 0.30.3 키토산Chitosan -- 301.0301.0 4.14.1 33 2525 알긴산나트륨Sodium alginate 5.25.2 2.32.3 99.799.7 44 3030 키토산Chitosan 5.75.7 2.42.4 99.599.5

상기 표 4에 나타낸 바와 같이 폴리설폰 한외여과막을 0.2% 및 0.3%의 농도를 가지는 반응제 수용액에 침지시키고 도포 고분자로 도포하여 분리막을 제조한 후 투과 실험을 하였을 때, 본 발명의 한외여과막을 반응제 수용액에 침지시킨 후 도포 고분자를 도포하여 제조한 분리막에 비하여 다공성을 가짐으로 투과속도는 높지만 도포 고분자가 도포되지 않음으로 인하여 배제율이 낮게 나타남을 알 수 있고, 반응제 수용액의 농도가 25% 및 30%일 경우에는 본 발명의 분리막에 비하여 도포막 두께가 두꺼워 배제율은 높게 나타나지만, 투과속도는 아주 낮다.As shown in Table 4, when the polysulfone ultrafiltration membrane was immersed in an aqueous solution of a reactant having a concentration of 0.2% and 0.3% and coated with a coating polymer to prepare a separation membrane, a permeation experiment was carried out to react the ultrafiltration membrane of the present invention. Compared to the separator prepared by applying the coated polymer after immersing in the aqueous solution, the permeation rate is high, but the exclusion rate is low because the coated polymer is not applied, and the concentration of the reactive solution is 25%. And 30%, the thickness of the coating film is higher than that of the separator of the present invention, so that the rejection rate is high, but the permeation rate is very low.

상술한 바와 같이, 본 발명은 소수성 지지막에 분포되어 있는반응제와 도포고분자인 친수성고분자 간에 화학반응으로 인하여 소수성 지지막 위에 박막 친수성 고분자의 도포층을 갖는 복합막을 제조할 수 있을 뿐만 아니라 또한 반응제 수용액의 농도 또는 친수성 고분자 수용액의 농도를 조절함으로써 도포층의 두께 조절이 가능하며 분리 생산성이 좋은 박막의 친수성 도포층을 갖는 복합막을 제조하는데 매우 효과적임을 알 수 있다.As described above, the present invention not only can produce a composite membrane having a coating layer of a thin hydrophilic polymer on a hydrophobic support membrane due to a chemical reaction between the reactive agent distributed on the hydrophobic support membrane and the hydrophilic polymer which is a coated polymer. By controlling the concentration of the aqueous solution or the concentration of the hydrophilic polymer aqueous solution it is possible to control the thickness of the coating layer, it can be seen that it is very effective in producing a composite membrane having a hydrophilic coating layer of a thin film with good separation productivity.

Claims (10)

소수성 지지막위에 친수성 고분자를 도포하여 복합막을 제조하는 방법에 있어서, 친수성 고분자와 반응성이 있는 물질인 반응제의 수용액에 소수성 지지막을 침지시켜서 소수성 지지막 표면 및 내부 기공속에 그 반응제를 분포되게 함과 동시에 소수성 지지막 표면에서 친수성 고분자와 반응제간의 반응에 의해 친수성 고분자가 소수성 지지막 위에 얇게 도포되도록 하는 것을 특징으로 하는 소수성 지지막 위에 박막의 친수성 도포층을 갖는 복합막의 제조방법.A method of manufacturing a composite membrane by applying a hydrophilic polymer on a hydrophobic support membrane, wherein the hydrophobic support membrane is immersed in an aqueous solution of a reactive agent that is reactive with the hydrophilic polymer to distribute the reactant on the surface of the hydrophobic support membrane and in the pores. And the hydrophilic polymer is thinly coated on the hydrophobic support membrane by a reaction between the hydrophilic polymer and the reactive agent on the surface of the hydrophobic support membrane. 제 1 항에 있어서, 상기 소수성 지지막은 폴리설폰 또는 폴리에테르이미드로 이루어진 것을 특징으로 하는 소수성 지지막 위에 박막의 친수성 도포층을 갖는 복합막의 제조방법.The method of manufacturing a composite membrane having a thin hydrophilic coating layer on a hydrophobic support membrane according to claim 1, wherein the hydrophobic support membrane is made of polysulfone or polyetherimide. 제 1 항 또는 제 2 항에 있어서, 상기 소수성 지지막은 그 형태가 평막 또는 중공사막인 것을 특징으로 하는 소수성 지지막 위에 박막의 친수성 도포층을 갖는 복합막의 제조방법.The method for producing a composite membrane having a hydrophilic coating layer of a thin film on a hydrophobic support membrane according to claim 1 or 2, wherein the hydrophobic support membrane is a flat membrane or a hollow fiber membrane. 제 1 항에 있어서, 상기 친수성 고분자는 알긴산나트륨, 키토산 또는 폴리비닐알콜인 것을 특징으로 하는 소수성 지지막 위에 박막의 친수성 도포층을 갖는 복합막의 제조방법.The method according to claim 1, wherein the hydrophilic polymer is sodium alginate, chitosan or polyvinyl alcohol. 제 1 항 또는 제 4 항에 있어서, 상기 친수성 고분자는 그 농도가 0.1 ∼ 1%인 것을 특징으로 하는 소수성 지지막 위에 박막의 친수성 도포층을 갖는 복합막의 제조방법.The method for producing a composite film having a hydrophilic coating layer of a thin film on a hydrophobic support film according to claim 1 or 4, wherein the concentration of the hydrophilic polymer is 0.1 to 1%. 제 1 항에 있어서, 상기 친수성 고분자와 반응성이 있는 물질인 반응제는 친수성 고분자로 알긴산나트륨을 사용할 경우 염화칼슘, 질산알루미늄, 황산알루미늄, 황산구리 또는 염산이고, 키토산을 사용할 경우 황산이고, 폴리비닐알콜을 사용할 경우 글루탈알데히드인 것을 특징으로 하는 소수성 지지막 위에 박막의 도포층을 갖는 복합막의 제조방법.The method of claim 1, wherein the reactive agent which is reactive with the hydrophilic polymer is calcium chloride, aluminum nitrate, aluminum sulfate, copper sulfate, or hydrochloric acid when sodium alginate is used as the hydrophilic polymer, and sulfuric acid, polyvinyl alcohol when chitosan is used. A method for producing a composite membrane having a thin film coating layer on a hydrophobic support membrane, characterized in that it is glutaraldehyde when used. 제 1 항 또는 제 6 항에 있어서, 상기 반응제는 그 수용액의 농도가 0.5 ∼ 20%인 것을 특징으로 하는 소수성 지지막 위에 박막의 도포층을 갖는 복합막의 제조방법.The method for producing a composite membrane having a coating layer of a thin film on a hydrophobic support membrane according to claim 1 or 6, wherein the concentration of the reactive agent is 0.5 to 20%. 제 1 항에 있어서, 상기 소수성 지지막은 반응제 수용액 속에 5분이상 침지시키고, 친수성 고분자 수용액 속에 5분이상 침지시켜 소수성 지지막 표면에 반응제와 친수성 고분자의 화학반응에 의해 친수성 고분자가 도포되도록 하는 것을 특징으로 하는 소수성 지지막 위에 박막의 도포층을 갖는 복합막의 제조방법.The method of claim 1, wherein the hydrophobic support membrane is immersed for 5 minutes or more in an aqueous solution of a reactive agent, and soaked for 5 minutes or more in an aqueous solution of a hydrophilic polymer so that the hydrophilic polymer is applied to the surface of the hydrophobic support membrane by a chemical reaction between the reactant and the hydrophilic polymer. A method for producing a composite membrane having a coating layer of a thin film on a hydrophobic support membrane. 제 1 항 또는 제 8 항에 있어서, 상기 소수성 지지막은 반응제에 침지시킨 후 건조단계 없이 바로 친수성 고분자 수용액 속에 침지시키거나 또는 완전 건조시킨 후 상기 고분자 수용액에 침지시키는 것을 특징으로 하는 소수성 지지막 위에 박막의 도포층을 갖는 복합막의 제조방법.The hydrophobic support membrane according to claim 1 or 8, wherein the hydrophobic support membrane is immersed in a hydrophilic polymer solution immediately after being immersed in a reactant or without drying, or completely dried and then immersed in the polymer solution. The manufacturing method of the composite film which has a coating layer of a thin film. 제 1 항에 있어서, 상기 소수성 지지막은 그 위에 친수성 고분자를 도포시 반응제 용액의 농도와 친수성 고분자 수용액의 농도를 조절하여 박막의 도포두께를 0.1 ∼ 1.5 ㎛로 제조하는 것을 특징으로 하는 소수성 지지막 위에 박막의 친수성 도포층을 갖는 복합막의 제조방법.The hydrophobic support membrane according to claim 1, wherein the hydrophobic support membrane is prepared by applying a hydrophilic polymer thereon to adjust the concentration of the reactant solution and the concentration of the hydrophilic polymer aqueous solution to produce a coating thickness of 0.1 to 1.5 µm. The manufacturing method of the composite film which has a thin hydrophilic coating layer on it.
KR1019970053789A 1997-10-20 1997-10-20 Manufacturing method of complex membrane having hydrophilic coating layer on hydrophobic support membrane KR100217311B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019970053789A KR100217311B1 (en) 1997-10-20 1997-10-20 Manufacturing method of complex membrane having hydrophilic coating layer on hydrophobic support membrane
PCT/KR1998/000321 WO1999020378A1 (en) 1997-10-20 1998-10-20 A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane
EP98951774A EP1024886A1 (en) 1997-10-20 1998-10-20 A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane
JP2000516763A JP2001520111A (en) 1997-10-20 1998-10-20 Method for producing composite membrane having thin hydrophilic coating layer on hydrophobic support membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970053789A KR100217311B1 (en) 1997-10-20 1997-10-20 Manufacturing method of complex membrane having hydrophilic coating layer on hydrophobic support membrane

Publications (2)

Publication Number Publication Date
KR19990032690A true KR19990032690A (en) 1999-05-15
KR100217311B1 KR100217311B1 (en) 1999-09-01

Family

ID=19523065

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970053789A KR100217311B1 (en) 1997-10-20 1997-10-20 Manufacturing method of complex membrane having hydrophilic coating layer on hydrophobic support membrane

Country Status (4)

Country Link
EP (1) EP1024886A1 (en)
JP (1) JP2001520111A (en)
KR (1) KR100217311B1 (en)
WO (1) WO1999020378A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135785B1 (en) * 2010-05-04 2012-04-24 한남대학교 산학협력단 Method for enhancing the membrane performance by modifying the surface of hydrophobic porous membrane
KR20220009282A (en) * 2020-07-15 2022-01-24 주식회사 코레드 Regeneration method of alginate-coated membranes to improve membrane contamination cleaning ability

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19938002A1 (en) * 1999-08-11 2001-02-15 Studiengesellschaft Kohle Mbh Coating with cross-linked hydrophilic polymers
KR20020013036A (en) * 2000-08-10 2002-02-20 이재근 Gas separation membraines for dehumidifying module
JP2002233739A (en) * 2001-02-09 2002-08-20 Asahi Kasei Corp Porous hollow yarn composite membrane
JP5189286B2 (en) 2003-02-19 2013-04-24 ナトリックス セパレイションズ インコーポレーテッド COMPOSITE MATERIAL COMPRISING SUPPORTED POROUS GEL
CA2576372A1 (en) * 2004-09-30 2006-04-06 Mcmaster University Composite material comprising layered hydrophilic coatings
AU2009288234B2 (en) 2008-09-02 2014-08-21 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
EP2391442A1 (en) 2009-01-19 2011-12-07 Fujifilm Manufacturing Europe BV Process for preparing membranes
TWI405594B (en) 2009-07-28 2013-08-21 Taiwan Textile Res Inst Apparatus of manufacturing wound dressing
CN102100592B (en) * 2009-12-21 2013-05-22 财团法人纺织产业综合研究所 Alginate wound dress material and manufacturing method thereof
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
CN102716676A (en) * 2012-05-10 2012-10-10 清华大学 Underwater super-oleophobic oil-water separation mesh membrane and preparation method thereof
CN104667768A (en) * 2013-11-29 2015-06-03 贵阳时代沃顿科技有限公司 Preparation method for novel anti-pollution polysulfone flat plate ultrafiltration membrane
EP2952229B1 (en) 2014-06-06 2018-04-25 Biosol Tech Corporation Limited Apparatus and method for continuously manufacturing moisture film
US9555440B2 (en) 2014-06-13 2017-01-31 Biosol Tech Corporation Limited Apparatus and method for continuously manufacturing moisture film
CN104190271B (en) * 2014-08-19 2016-06-01 苏州君康医疗科技有限公司 A kind of polyethersulfone/alginates composite hollow fiber membrane and its preparation method
TWI556767B (en) 2014-10-29 2016-11-11 Yu-Yue Lin Colloidal mask with local carrier and its manufacturing method
CN104801200A (en) * 2015-04-02 2015-07-29 江苏大孚膜科技有限公司 Preparation method for composite nano-filtration membrane
CN106669438B (en) * 2016-12-28 2019-04-16 前沿新材料研究院(深圳)有限公司 The modified complex reverse osmosis membrane and preparation method thereof of chitin whisker
EP3681619A1 (en) * 2017-09-11 2020-07-22 Fresenius Medical Care Holdings, Inc. A microporous membrane and methods to make same
US20200406200A1 (en) * 2018-03-05 2020-12-31 King Abdullah University Of Science And Technology Green membranes for organic solvent nanofiltration and pervaporation
EP3981505A1 (en) 2020-10-12 2022-04-13 Gambro Lundia AB Membrane with immobilized anticoagulant and process for producing same
EP4286035A1 (en) 2021-01-27 2023-12-06 Fundació Institut de Ciències Fotòniques Polypropylene (pp) membrane coated with an organomethoxysilane, method for manufacturing same and uses thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419242A (en) * 1980-02-04 1983-12-06 International Power Technology, Inc. Composite membrane for a membrane distillation system
DE3220570A1 (en) * 1982-06-01 1983-12-01 GFT Ingenieurbüro für Industrieanlagenbau, 6650 Homburg MULTILAYERED MEMBRANE AND THEIR USE FOR SEPARATING LIQUID MIXTURES BY THE PERVAPORATION PROCESS
JP2888607B2 (en) * 1990-05-30 1999-05-10 テルモ株式会社 Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same
DE4117281C2 (en) * 1990-06-29 1996-02-22 Gore Enterprise Holdings Inc Hydrophilized, microporous membrane made of polytetrafluoroethylene and process for its production
JPH07275672A (en) * 1993-12-24 1995-10-24 Agency Of Ind Science & Technol Production of polymeric gel composite membrane, gas separation membrane and gas separation accelerating transport membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135785B1 (en) * 2010-05-04 2012-04-24 한남대학교 산학협력단 Method for enhancing the membrane performance by modifying the surface of hydrophobic porous membrane
KR20220009282A (en) * 2020-07-15 2022-01-24 주식회사 코레드 Regeneration method of alginate-coated membranes to improve membrane contamination cleaning ability

Also Published As

Publication number Publication date
EP1024886A1 (en) 2000-08-09
JP2001520111A (en) 2001-10-30
WO1999020378A1 (en) 1999-04-29
KR100217311B1 (en) 1999-09-01

Similar Documents

Publication Publication Date Title
KR100217311B1 (en) Manufacturing method of complex membrane having hydrophilic coating layer on hydrophobic support membrane
US5342521A (en) Reverse osmosis or nanofiltration membrane and its production process
US5066403A (en) Process for separating azeotropic or close-boiling mixtures by use of a composite membrane, the membrane, and its process of manufacture
US4871461A (en) Polymer composite membrane
US4619767A (en) Composite semipermeable membrane
US5627217A (en) Interfacial polymerization in a porous substrate and substrates functionalized with photochemical groups
EP0566097B1 (en) Process for forming porous polymeric product from a nonporous polymeric composition and product
US20050087491A1 (en) Hybrid membrane, method for producing the same and use of said membrane
US4673418A (en) Method for producing an integral, asymmetric membrane and the resultant membrane
KR100224471B1 (en) Stable polyon complex membrance with a double structure
JPS5824447B2 (en) Manufacturing method of reverse osmosis membrane
US4659590A (en) Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes
US5849195A (en) Composite membrane, process of manufacturing it and process of using it
CN111545083B (en) Nanofiltration membrane, preparation method and application of nanofiltration membrane in fermentation liquor concentration
JPS61268302A (en) Aromatic polysulfone composite semipermeable membrane and preparation thereof
US5324430A (en) High performance pan composite membranes
CN112403290B (en) Hydrophilic modification treatment liquid for porous polyolefin material
US5164088A (en) Multilayer membrane and process of manufacturing same
EP0228248A2 (en) Composite semipermeable membranes
US5320754A (en) Pan composite membranes
KR19980083752A (en) Manufacturing method of nano filter separator in the form of composite membrane
JPH0220290B2 (en)
JPH0512972B2 (en)
JPH0729034B2 (en) Hollow fiber composite membrane for organic matter separation
US20230219869A1 (en) Processes for fractionating a gaseous material with a facilitated transport membrane

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060502

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee