KR19990025232A - Refining method to improve the cleanliness of molten steel for ultra low carbon steel - Google Patents

Refining method to improve the cleanliness of molten steel for ultra low carbon steel Download PDF

Info

Publication number
KR19990025232A
KR19990025232A KR1019970046792A KR19970046792A KR19990025232A KR 19990025232 A KR19990025232 A KR 19990025232A KR 1019970046792 A KR1019970046792 A KR 1019970046792A KR 19970046792 A KR19970046792 A KR 19970046792A KR 19990025232 A KR19990025232 A KR 19990025232A
Authority
KR
South Korea
Prior art keywords
molten steel
slag
steel
ladle
refining
Prior art date
Application number
KR1019970046792A
Other languages
Korean (ko)
Other versions
KR100328031B1 (en
Inventor
박종민
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970046792A priority Critical patent/KR100328031B1/en
Publication of KR19990025232A publication Critical patent/KR19990025232A/en
Application granted granted Critical
Publication of KR100328031B1 publication Critical patent/KR100328031B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0026Introducing additives into the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

본 발명은 극저탄소 강을 제조하기 위한 용강의 정련방법에 관한 것이며; 그 목적은 RH진공탈가스 장치에서 정련조업시 레이들 슬래그의 산소포텐셜을 감소시킴과 동시에 강중개재물의 포집능을 향상시켜 강의 청정도를 향상시킬 수 있는 정련방법을 제공함에 있다.The present invention relates to a method for refining molten steel for producing ultra low carbon steel; The purpose is to provide a refining method that can improve the cleanliness of the steel by reducing the oxygen potential of the ladle slag during the refining operation in the RH vacuum degassing apparatus and at the same time improve the trapping ability of the steel inclusions.

상기 목적을 달성하기 위한 본 발명은, 용강 및 레이들슬래그가 장입되어 있는 레이들에 RH 진공탈가스장치를 침적하여 레이들의 용강을 RH진공탈가스장치내로 흡상하고 탈탄한 다음, 이어 부원료를 투입하여 탈산하는 것을 포함하는 극저탄소강용 용강의 정련방법에 있어서,In order to achieve the above object, the present invention, by depositing the RH vacuum degassing apparatus in the ladle in which molten steel and ladle slag is charged, the molten steel of the ladle is sucked into the RH vacuum degassing apparatus and decarburized, and then subsidiary material is added In the refining method of molten steel for ultra low carbon steel, including deoxidation by

상기 용강과 함께 레이들슬래그의 50중량%미만을 흡상한 다음, 알루미늄을 투입하여 탈산하는 것을 포함하여 이루어지는 극저탄소강용 용강의 청정도 향상을 위한 정련방법에 관한 것을 그 요지로 한다.The present invention relates to a refining method for improving the cleanliness of molten steel for ultra low carbon steel, which includes sucking less than 50% by weight of ladle slag together with molten steel and then deoxidizing by adding aluminum.

Description

극저탄소강용 용강의 청정도 향상을 위한 정련방법Refining method to improve the cleanliness of molten steel for ultra low carbon steel

본 발명은 극저탄소 강을 제조하기 위한 용강의 정련방법에 관한 것으로써, 보다 상세하게는 RH진공탈가스 장치에서의 정련조업시 레이들 슬래그의 산소포텐셜을 감소시킴과 동시에 강중 개재물의 포집능을 향상시켜 강의 청정도를 향상시킬 수 있는 RH정련방법에 관한 것이다.The present invention relates to a method for refining molten steel for producing ultra low carbon steel, and more particularly, to reduce the oxygen potential of the ladle slag during the refining operation in the RH vacuum degassing apparatus and at the same time improve the trapping ability of steel inclusions. The present invention relates to an RH refining method that can improve the cleanliness of steel.

일반적으로 극저탄소강을 제조하기 위한 제강공정의 노외정련 공정을 도 1과 같은 RH진공탈가스장치(이하, 단지 'RH'라고 칭함)를 이용하여 용강을 정련하는 방법이 행해지고 있다.In general, a method of refining molten steel using an RH vacuum degassing apparatus (hereinafter, simply referred to as 'RH') as shown in FIG. 1 is performed in an outside furnace refining process of a steelmaking process for producing ultra low carbon steel.

이 방법은 전로(미도시)에서 미탈산상태로 출강된 용강이 레이들(1)에 도달하면, 먼저 RH(2)의 침적관(3)을 레이들에 수강된 용강(4)에 침적하고, 이와 동시에 환류가스 공급장치(5)로 부터 아르곤가스(Ar gas)를 취입하면서 진공펌프(5)를 가동시켜 RH(2)의 내부를 수내지 수십(torr)로 감압시키면 레이들(1)내의 대기와 RH(2) 내부의 압력차이에 의해서 용강(4)이 RH(2)내부로 흡상되며, 흡상된 용강(8) 탕면에는 하기식(1)의 탈탄반응이 진행된다.In this method, when the molten steel tapping out of the converter (not shown) reaches the ladle 1, the deposition pipe 3 of the RH 2 is first deposited on the molten steel 4 received on the ladle. At the same time, when the argon gas (Ar gas) is blown from the reflux gas supply device (5), the vacuum pump (5) is operated to depressurize the inside of the RH (2) to several tons (torr), and then the ladle (1). The molten steel 4 is sucked up inside the RH 2 by the pressure difference between the atmosphere inside and the RH 2, and the decarburization reaction of the following equation (1) proceeds to the molten steel 8 heated surface.

[C] + [0] = CO(g)[C] + [0] = CO (g)

상기 식 1과 같은 반응에 의해 용강중 탄소의 농도가 적정범위로 탈탄되면, RH(2)내로 부원료를 투입하여 남은 산소를 탈산하는 순서로 진행된다.When the concentration of carbon in the molten steel is decarburized in an appropriate range by the reaction as in Equation 1 above, the secondary material is introduced into the RH 2 to proceed in the order of deoxidation of the remaining oxygen.

이때, 레이들슬래그(9)는 RH에 거의 유입되지 않으며, 레이들(1)내에서도 용강(4)과 레이들슬래그(9)와의 교반이 미미하기 때문에 레이들슬래그(9)와 용강(4)간의 반응이 충분히 일어나지 않는다. 따라서, 알루미늄으로 용강을 탈산시킬 때 슬래그중의 철 및 망간산화물의 환원이 충분히 일어나지 않게 되어 용강보다 슬래그의 산소포텐셜이 높은 상태로 조업이 종료된다. 결국, 레이들슬래그(9)중 철 및 망간산화물은 RH 정련처리후의 후속 공정에서 지속적으로 탈산된 용강을 재산화시켜, 즉 용강중의 알루미늄과 반응하여 알루미나를 생성시키고, 이 알루미나는 강의 청정도를 악화시키는 주요인이 되고 있다. 이러한 용강의 재산화에 의한 알루미나의 생성을 억제하여 청정도를 향상시키기 위해서는 슬래그의 산소포텐셜 즉 철 및 망간산화물의 함량을 낮게 유지하여야 한다.At this time, the ladle slag 9 hardly flows into the RH, and since the stirring between the molten steel 4 and the ladle slag 9 is insignificant even in the ladle 1, the ladle slag 9 and the molten steel 4. The reaction of the liver does not occur sufficiently. Therefore, when deoxidizing molten steel with aluminum, the reduction of iron and manganese oxide in slag does not occur sufficiently, and operation | movement is complete | finished with the oxygen potential of slag higher than molten steel. As a result, iron and manganese oxides in the ladle slag 9 continuously reoxidize molten steel deoxidized in a subsequent process after RH refining, ie, react with aluminum in the molten steel to produce alumina, which aggravates the cleanliness of the steel. It becomes the main cause to let. In order to suppress the generation of alumina by reoxidation of molten steel and improve cleanliness, the oxygen potential of slag, that is, the content of iron and manganese oxide, should be kept low.

종래, 슬래그의 산소포텐셜을 낮추는 방법으로는 슬래그중에 부원료로 알루미늄 등과 같은 탈산제를 첨가하는 방법이 있으나, RH정련조업시 레이들슬래그는 거의 유동이 없는 상태로서 탈산제와 슬래그가 원활하게 혼합되지 못해 탈산제가 슬래그와 반응하지 못하고, 오히려 대기중의 산소에 의해 산화됨으로써 고가의 탈산제를 첨가한 효과를 기대하기 어려운 문제점이 있다.Conventionally, as a method of lowering the oxygen potential of slag, there is a method of adding a deoxidizer such as aluminum to the slag as a secondary material, but in the RH refining operation, the ladle slag has almost no flow, so the deoxidizer and slag are not mixed smoothly. Does not react with slag, but rather oxidizes with oxygen in the air, making it difficult to expect the effect of adding an expensive deoxidizer.

본 발명은 상술한 종래문제를 해결하기 위해 안출된 것으로써 극저탄소강 제조시 슬래그의 산소포텐셜을 낮춤으로써 용강의 청정성을 향상시킬 수 있는 정련방법을 제공하는데, 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and provides a refining method that can improve the cleanliness of molten steel by lowering the oxygen potential of slag during ultra low carbon steel production.

도 1은 종래의 RH진공탈가스장치에서 조업상황을 나타내는 개략도1 is a schematic view showing the operating situation in the conventional RH vacuum degassing apparatus

도 2는 본 발명에 따라 RH 진공탈가스 장치에서 정련조업하는 것을 나타내는 개략도Figure 2 is a schematic diagram showing the refining operation in the RH vacuum degassing apparatus according to the present invention

도 3은 레이들 슬래그의 흡상율에 따른 탈탄시간과 철 및 망간산화물의3 shows the decarburization time and iron and manganese oxide according to the rate of absorption of ladle slag

환원율을 나타내는 그래프이다.It is a graph showing the reduction rate.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 레이들 2 : RH진공탈가스 장치1: Ladle 2: RH vacuum degassing device

3 : 침적관 4 : 용강3: immersion pipe 4: molten steel

5 : 환류가스 공급장치 6 : 아르곤가스5: reflux gas supply device 6: argon gas

7 : 진공펌프 8 : 흡상된 용강7: vacuum pump 8: quenched molten steel

9 : 레이들 슬래그 10 : 흡상된 레이들 슬래그9: ladle slag 10: sucked ladle slag

상기 목적을 달성하기 위한 본 발명은, 용강 및 레이들슬래그가 장입되어 있는 레이들에 RH진공탈가스장치를 침적하여 레이들의 용강을 RH진공탈가스 장치내로 흡상하고 탈탄한 다음, 이어 부원료를 투입하여 탈산하는 것을 포함하는 극저탄소강용 용강의 정련방법에 있어서,In order to achieve the above object, the present invention, by depositing the RH vacuum degassing apparatus in the ladle in which the molten steel and ladle slag is charged, the molten steel of the ladle is sucked into the RH vacuum degassing apparatus and decarburized, and then the raw materials are added. In the refining method of molten steel for ultra low carbon steel, including deoxidation by

상기 용강과 함께 레이들슬래그의 50중량% 미만을 흡상한 다음, 알루미늄을 투입하여 탈산하는 것을 포함하여 구성된다.It is composed of sucking up less than 50% by weight of the ladle slag together with the molten steel, followed by adding and deoxidizing aluminum.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 RH내로 레이들슬래그를 적정량 흡상시키므로써 용강과 레이들 슬래그의 교반을 활성화시켜 레이들 슬래그의 산소포텐셜을 낮추어 용강의 재산화를 억제하는데 그 특징이 있다.The present invention is characterized by suppressing the reoxidation of molten steel by lowering the oxygen potential of the ladle slag by activating agitation of the molten steel and the ladle slag by drawing up an appropriate amount of the ladle slag into the RH.

일반적으로 레이들내의 용강이 RH로 흡상할 때, 도 1에 도시된 RH 의 침적관(3)중 상승관(3a) 에서 아르곤가스를 취입하면 하강관(3b)쪽의 흡상된 용강(8)의 겉보기 밀도가 낮아지게 되기 때문에 흡상된 용강(8)은 하강관(3b)측으로 하강하는 순환운동을 반복하게 된다.In general, when the molten steel in the ladle sucks up to RH, when argon gas is blown from the rising pipe 3a of the deposition pipe 3 of RH shown in FIG. 1, the sucked molten steel 8 toward the down pipe 3b Since the apparent density of the lowered molten steel (8) is to repeat the circular motion to descend to the down pipe (3b) side.

이때, 취입된 아르곤가스는 흡상되는 용강과 함께 상승하여 RH(2)내를 매우 심한 교반상태로 만든다. 본 발명은 이러한 RH내의 교반특성을 이용하여 용강과 슬래그를 반응하도록 하는 것이다.At this time, the blown argon gas rises together with the molten steel which is sucked up, making the inside of the RH 2 very vigorous stirring. The present invention is to make the molten steel and the slag react by using the stirring characteristics in the RH.

즉, 종래 레이들내 용강만을 흡상하여 탈탄, 탈산 정련하던거와는 달리, 도 2에 나타낸 바와같이 용강과 함께 레이들 슬래그(4)를 흡상하여 흡상된 슬래그(10)와 용강(8)을 RH에서 반응하도록 하여 흡상된 슬래그(10)의 산소포텐셜을 용강과 거의 비슷하도록 하는 것이다. 이때 무엇보다 중요한 것은 레이들 슬래그중 흡상되는 레이들 슬래그의 양을 50중량% 미만을 흡상하도록 하는 것이다.That is, unlike decarburization and deoxidation refining by sucking only the molten steel in the ladle, as shown in FIG. 2, the slag 10 and the molten steel that are sucked up by sucking the ladle slag 4 together with the molten steel as shown in FIG. By reacting at RH, the oxygen potential of the sucked slag 10 is almost similar to that of molten steel. At this time, the most important thing is to make the amount of ladle slag sucked up in the ladle slag less than 50% by weight.

그 이유는 RH 내로 레이들슬래그의 50중량% 이상의 슬래그를 흡상시키게 되면 RH내의 용강과 감압분위기와의 반응계면적이 작아지게 되어 탈탄능이 나빠지기 때문이다.The reason is that if the slag of 50% by weight or more of the ladle slag is sucked into the RH, the reaction surface area between the molten steel and the reduced pressure atmosphere in the RH decreases, and the decarburizing ability deteriorates.

상기와 같이 흡상하여 탈탄한 다음, 통상의 방법대로 알루미나를 탈산제 투입구(11)로 투입하여 탈산하는데, 이때 본 발명에 따라 알루미나 투입직후 RH 내로 경소돌로마이트를 첨가하면 용강의 청정성이 개선된다. 경소돌로마이트중에는 마그네시아(MgO)와 생석회(CaO)가 함유되어 있는데, 마그네시아는 흡상슬래그와 잔류슬래그가 혼합된 후 슬래그중의 철 및 망간산화물의 활동도계수를 낮추는, 즉 철 및 망간산화물을 환원이 되지 않도록 고정시켜줌으로써 용강의 재산화를 방지하는 효과가 있는 것이다. 그리고, 생석회는 흡상슬래그중의 CaO의 함량을 증가시킴으로써 알루미늄탈산시 용강내에 생성되는 알루미나개재물을 슬래그가 2CaO + 7Al2O3= 12CaO·7Al2O3반응에 의해 포집할 수 있도록 생석회의 활동도를 향상시킴으로써 용강의 청정성을 향상시키는 효과가 있다.After sucking and decarburizing as described above, alumina is added to the deoxidizer inlet 11 in the usual manner to deoxidize. At this time, when alumina is added to RH immediately after alumina is added, cleanliness of molten steel is improved. Magnesium (MgO) and quicklime (CaO) are contained in light dolomite, and magnesia reduces the activity coefficients of iron and manganese oxides in slag after mixing wicking slag and residual slag, that is, reducing iron and manganese oxides. It is effective to prevent the reoxidation of molten steel by fixing so as not to. In addition, the quicklime increases the CaO content in the wicking slag, so that the slag can collect the alumina inclusions generated in the molten steel during aluminum deoxidation by 2CaO + 7Al 2 O 3 = 12CaO 7Al 2 O 3 reaction. There is an effect of improving the cleanliness of the molten steel by improving the.

이때의 경소돌로마이트는 RH정련로내로 흡상된 슬래그 1톤당 250kg 이하로 첨가하는 것이 바람직한데, 그 이유는 250kg을 초과하면 슬래그중의 MgO와 CaO의 농도가 너무 높아져서 슬래그의 점도가 상승하게 되고 이에따라 슬래그의 유동성이 저하되어 알루미나의 흡수능력이 감소되어 청정성이 오히려 나빠질 뿐만아니라 정련로벽에 슬래그가 부착되어 작업성을 악화시키는 문제점이 있기 때문이다.In this case, it is preferable to add light dolomite at 250kg or less per ton of slag sucked into the RH refining furnace. If it exceeds 250kg, the concentration of MgO and CaO in the slag becomes too high and the viscosity of the slag rises accordingly. This is because the fluidity of the alumina decreases the absorption ability of the alumina, so that the cleanliness is worsened, and the slag adheres to the refining furnace wall, thereby deteriorating the workability.

상기와 같이 하여 탈산한 후 정련로를 복압시키면 상기 흡상슬래그(10)는 레이들에 잔류하는 산소포텐셜이 높은 슬래그와 혼합되게 되어 평균적으로 전체 슬래그가 갖는 산소포텐셜이 낮아지게 되는 것이다. 또한, 흡상슬래그가 레이들쪽으로 섞일 때 레이들 잔류슬래그 밑으로 유입되어 용강과 잔류슬래그 사이에 위치하게 되어 산소포텐셜이 높은 잔류슬래그와 용강과의 접촉을 차단시켜 용강의 재산화를 방지하게 된다.After deoxidation as described above, the scouring furnace repressurizes the wicking slag 10 to mix with the slag of high oxygen potential remaining in the ladle, thereby lowering the oxygen potential of the entire slag on average. In addition, when the wicking slag is mixed into the ladle, it is introduced under the ladle residual slag and is positioned between the molten steel and the residual slag to prevent contact between the residual slag and the molten steel having a high oxygen potential to prevent reoxidation of the molten steel.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

조성이 중량%로, 탄소 : 0.03-0.04%이하, 망간 :0.05-0.15%, 인:0.08-0.012%, 황:0.003-0.005%인 용강 270톤과 조성이 CaO:45-55%, Al2O3:30-40%, 철과 망간산화물의 합: 5-15%, SiO2: 5%이하인 레이들슬래그의 2.5-3.5톤을 갖는 레이들을 250톤 RH 정련로에서, 정련로내의 압력을 0.1-1torr로 감압시키면서 레이들 슬래그를 하기표 1과 같은 양을 흡상시켜 환류시키면서 용강을 채취하여 성분 분석하였다. 이후 알루미늄으로 용강을 탈산처리한 후 다시 환류시키면서 용강을 채취하였고, RH정련조업이 종료된 후 레이들슬래그를 채취하여 성분분석하였다. 이때 환류가스유량은 1시간당 200N㎥ 이었다. 상기 방법으로 얻어진 슬래그흡상율에 따른 슬래그중 철 및 망간산화물의 환원율과 탈탄시간 등을 하기표 1 및 도 3에 나타내었다.Composition: 270 tons of molten steel with carbon: 0.03-0.04% or less, manganese: 0.05-0.15%, phosphorus: 0.08-0.012%, sulfur: 0.003-0.005%, CaO: 45-55%, Al 2 A ladle with 2.5-3.5 tons of ladle slag with O 3 : 30-40%, the sum of iron and manganese oxide: 5-15%, and SiO 2 : 5% or less in a 250-ton RH refinery, The ladle slag was sucked up to the amount shown in Table 1 under reduced pressure at 0.1-1 torr, and molten steel was collected for component analysis. After deoxidation of the molten steel with aluminum, molten steel was collected while refluxing again, and after the completion of the RH refining operation, the ladle slag was collected and analyzed. At this time, the reflux gas flow rate was 200 Nm3 per hour. The reduction rate and decarburization time of iron and manganese oxide in the slag according to the slag absorption rate obtained by the above method are shown in Table 1 and FIG. 3.

여기에서, 슬래그흡상율은 레이들슬래그중 RH정련로내로 흡상된 양의 비율을 나타낸다. 또한, 철 및 망간산화물의 환원율은 다음식과 같이 계산되며, 그 절대값이 클수록 슬래그의 산소포텐셜을 낮추는 능력이 큼을 의미, 즉 용강의 청정성이 향상되는 것을 의미한다.Here, the slag absorption rate represents the ratio of the amount of delaminated slag into the RH refinery. In addition, the reduction rate of iron and manganese oxide is calculated as the following formula, the larger the absolute value means that the ability to lower the oxygen potential of the slag, that is, the cleanliness of the molten steel is improved.

탈탄시간은 용강중의 탄소농도가 30ppm이 될 때까지 탈탄시키는 데 필요한 시간을 의미하며, 그 절대값이 클수록 탈탄능력이 큰 것을 의미한다.Decarburization time means the time required to decarburize until the carbon concentration in molten steel reaches 30 ppm, and the larger the absolute value, the greater the decarburization capacity.

슬래그흡상율Slag absorption rate 철 및망간산화물의환원율Reduction Rate of Iron and Manganese Oxides 탈탄시간Decarburization time 종래예1Conventional Example 1 0%0% 0%0% 19분19 minutes 발명예1Inventive Example 1 10%10% 5%5% 19분19 minutes 발명예2Inventive Example 2 20%20% 11%11% 18분18 minutes 발명예3Inventive Example 3 30%30% 15%15% 20분20 minutes 발명예4Inventive Example 4 40%40% 19%19% 20분20 minutes 비교예1Comparative Example 1 50%50% 22%22% 24분24 minutes 비교예2Comparative Example 2 60%60% 24%24% 29분29 minutes

상기표1과 도 3에 나타난 바와 같이, 슬래그를 전혀 흡상하지 않은 종래예보다 슬래그를 흡상한 발명예(1-4) 및 비교예(1)의 경우가 높은 철 및 망간산화물의 환원율을 나타내며, 슬래그흡상율이 높을수록 환원율이 증가하고 있었다. 탈탄시간은 종래예와 슬래그흡상율이 50%미만인 발명예(1-4)가 거의 유사한 수준을 나타내나, 슬래그 흡상율이 50%이상인 비교예(1-2)의 경우에는 흡상율의 증가에 따라 탈탄시간이 급격하게 증가하였다.As shown in Table 1 and Figure 3, the case of Inventive Example (1-4) and Comparative Example (1) in which the slag was sucked up than the conventional example that does not suck up the slag at all shows a high reduction rate of iron and manganese oxide, As the slag absorption rate was higher, the reduction rate was increased. The decarburization time is almost similar to that of Conventional Example (1-4) in which the slag absorption rate is less than 50%, but in Comparative Example (1-2) where the slag absorption rate is 50% or more, As a result, decarburization time increased drastically.

[실시예 2]Example 2

RH정련로내로 레이들슬래그를 흡상하여 처리할 때 RH정련로내로 경소돌로마이트를 첨가하는 경우 용강의 청정성이 개선되는 효과를 구하기 위하여, 실시예 1과 동일한 방법으로 하고, 발명예(2) 슬래그흡상율을 기준으로 하여 경소돌로마이트를 알루미늄탈산 직후에 하기표 2에 표기한 양씩 첨가하였으며, 용강을 연속주조한 주편으로부터 시편을 채취하여 강의 청정성을 나타내는 지표인 강중 Total 산소농도를 분석하였다. 이상의 방법으로 얻은 결과를 하기표 2에 함께 나타내었다.In order to obtain the effect of improving the cleanliness of molten steel in the case of adding light dolomite into the RH refining furnace when the ladle slag is sucked into the RH refining furnace, the same method as in Example 1 was used. On the basis of the rate, light dolomite was added in the amounts shown in Table 2 immediately after aluminum deoxidation, and the total oxygen concentration in the steel, which is an indicator of cleanliness of the steel, was analyzed by taking specimens from molten steel continuously cast. The results obtained by the above method are shown in Table 2 together.

경소돌로마이트첨가량(흡상슬래그 톤당kg)Addition of light dolomite (kg per ton slag) 강중 Total 산소(ppm)Total oxygen in steel (ppm) 종래예2* Conventional Example 2 * 1212 발명예5Inventive Example 5 00 1010 발명예6Inventive Example 6 5050 1010 발명예7Inventive Example 7 100100 99 발명예8Inventive Example 8 150150 88 발명예9Inventive Example 9 200200 1010 비교예3Comparative Example 3 250250 1313 비교예4Comparative Example 4 300300 1313 *종래예2는 RH정련시 슬래그를 흡상하지 않은 것임* Conventional Example 2 does not suck slag during RH refining

상기 표 2에 나타난 바와같이, 경소돌로마이트를 첨가함에 따라 강중 Total 산소가 감소하는, 즉 강의 청정성이 향상되는 것을 알 수 있었다(발명예(5-9)). 그러나, 흡상슬래그 1톤당 250kg이상의 경소돌로마이트를 첨가하면 비교예(3-4)의 경우 오히려 종래방법보다 청정성이 나빠지는 것을 알 수 있었다. 이는 경소돌로마이트의 사용량이 많아지면 슬래그의 점도가 상승하여 알루미나를 포집하는 속도가 늦어지기 때문이다.As shown in Table 2 above, it was found that the total oxygen in the steel decreases, that is, the cleanliness of the steel is improved by adding light dolomite (Invention Example (5-9)). However, it can be seen that the addition of more than 250kg of light bovine dolomite per ton of wicking slag is worse than the conventional method in the case of Comparative Example (3-4). This is because, as the amount of light dolomite used increases, the viscosity of the slag rises, which slows down the rate of trapping alumina.

상술한 바와같이, 본 발명은 극탄소강 제조시 슬래그의 산소포텐셜을 낮추고 알루미나개재물의 포집능을 향상시킴으로써 안정적으로 극저탄소강을 제조할 수 있을 뿐만아니라 강의 청정성을 향상시킬 수 있는 우수한 효과가 있는 것이다.As described above, the present invention is not only able to stably manufacture ultra low carbon steel by lowering the oxygen potential of slag and improving the trapping ability of alumina inclusions during the production of ultra carbon steel, but also has an excellent effect of improving the cleanliness of steel. .

Claims (2)

용강 및 레이들슬래그가 장입되어 있는 레이들에 RH정련로를 침적하여 레이들의 용강을 RH정련로내로 흡상하고 탈탄한 다음, 이어 부원료를 투입하여 탈산하는 것을 포함하는 극저탄소강용 용강의 정련방법에 있어서,In the method of refining ultra-low carbon steel molten steel, which involves depositing a RH refining furnace on a ladle loaded with molten steel and ladle slag, drawing up the molten steel into the RH refining furnace, decarburizing it, and then deoxidizing by adding a subsidiary material. In 상기 용강과 함께 레이들슬래그의 50중량% 미만을 흡상한 다음, 알루미늄을 투입하여 탈산하는 것을 포함하여 이루어짐을 특징으로 하는 극저탄소강용 용강의 청정도 향상을 위한 정련방법.Refining less than 50% by weight of the ladle slag together with the molten steel, and refining method for improving the cleanliness of the molten steel for ultra-low carbon steel, characterized in that it comprises a deoxidation by adding aluminum. 제 1항에 있어서, 상기 알루미늄 투입직후 흡상된 레이들슬래그 1톤당 250kg이하의 경소돌로마이트를 첨가함을 특징으로 하는 극저탄소강용 용강의 청정도 향상을 위한 정련방법.The method for refining the cleanliness of molten steel for ultra low carbon steels according to claim 1, wherein light dolomite of 250 kg or less is added per ton of ladle slag sucked immediately after the aluminum injection.
KR1019970046792A 1997-09-11 1997-09-11 A Refining Method for Cleanliness Lmproving of Molten Steel in Ultra-low Carbon Steel Making Process KR100328031B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970046792A KR100328031B1 (en) 1997-09-11 1997-09-11 A Refining Method for Cleanliness Lmproving of Molten Steel in Ultra-low Carbon Steel Making Process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970046792A KR100328031B1 (en) 1997-09-11 1997-09-11 A Refining Method for Cleanliness Lmproving of Molten Steel in Ultra-low Carbon Steel Making Process

Publications (2)

Publication Number Publication Date
KR19990025232A true KR19990025232A (en) 1999-04-06
KR100328031B1 KR100328031B1 (en) 2002-06-27

Family

ID=37478467

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970046792A KR100328031B1 (en) 1997-09-11 1997-09-11 A Refining Method for Cleanliness Lmproving of Molten Steel in Ultra-low Carbon Steel Making Process

Country Status (1)

Country Link
KR (1) KR100328031B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009828B1 (en) * 2008-08-28 2011-01-19 현대제철 주식회사 Method for refining ultra low carbon steel
KR20210109597A (en) * 2019-03-13 2021-09-06 제이에프이 스틸 가부시키가이샤 Manufacturing method of Ti-containing ultra-low carbon steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100878663B1 (en) * 2002-10-07 2009-01-15 주식회사 포스코 Method of refining the molten steel in an efficient manner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009828B1 (en) * 2008-08-28 2011-01-19 현대제철 주식회사 Method for refining ultra low carbon steel
KR20210109597A (en) * 2019-03-13 2021-09-06 제이에프이 스틸 가부시키가이샤 Manufacturing method of Ti-containing ultra-low carbon steel

Also Published As

Publication number Publication date
KR100328031B1 (en) 2002-06-27

Similar Documents

Publication Publication Date Title
CA2086193C (en) Method of refining of high purity steel
CN105603156B (en) The production method of super-low sulfur IF steel
JP3885387B2 (en) Method for producing ultra-low sulfur steel with excellent cleanability
CN113293253B (en) Method for producing high-cleanliness heat-system variety steel at low cost
KR100328031B1 (en) A Refining Method for Cleanliness Lmproving of Molten Steel in Ultra-low Carbon Steel Making Process
KR100387931B1 (en) Refining method of ultra-low carbon steel with carbon content less than 0.01%
JPH0488111A (en) Method for producing dead soft steel
JP2003027128A (en) Method for producing molten steel in vacuum degassing facility
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
KR100406394B1 (en) Refining process of extra low carbon steel by throwing carburizing material in vaccum degassing
JPH05287358A (en) Method for melting extremely low carbon steel having high cleanliness
KR100879740B1 (en) Method for refining hot metal
JP3297998B2 (en) Melting method of high clean ultra low carbon steel
JP3899555B2 (en) Manufacturing method of high purity steel
JP4020125B2 (en) Method of melting high cleanliness steel
JP3994641B2 (en) Manufacturing method of high clean ultra low carbon steel
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JP3390478B2 (en) Melting method of high cleanliness steel
KR20020031862A (en) A METHOD FOR MANUFACTURING Mn ADDED ULTRA LOW CARBON STEEL
JP2976849B2 (en) Method for producing HIC-resistant steel
JPH1192818A (en) Melting of high clean extra-low carbon steel
JPH0941028A (en) Production of high purity ultra-low carbon steel
JP3127733B2 (en) Manufacturing method of ultra clean ultra low carbon steel
JPH10330829A (en) Method for melting high cleanliness extra-low carbon steel
JP2000178636A (en) Production of clean steel in rh vacuum-degassing apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130225

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140226

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150223

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160229

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee