KR19990019013A - Manufacturing method of crosslinked polyamide reverse osmosis membrane - Google Patents
Manufacturing method of crosslinked polyamide reverse osmosis membrane Download PDFInfo
- Publication number
- KR19990019013A KR19990019013A KR1019970042309A KR19970042309A KR19990019013A KR 19990019013 A KR19990019013 A KR 19990019013A KR 1019970042309 A KR1019970042309 A KR 1019970042309A KR 19970042309 A KR19970042309 A KR 19970042309A KR 19990019013 A KR19990019013 A KR 19990019013A
- Authority
- KR
- South Korea
- Prior art keywords
- reverse osmosis
- composite membrane
- carbon atoms
- producing
- solution
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0088—Physical treatment with compounds, e.g. swelling, coating or impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
- B01D71/68—Polysulfones; Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
본 발명은 기존의 분리막에 비해 고유량의 특성을 지닌 가교 폴리아미드계 복합막소재 역삼투 분리막의 제조방법에 관한 것이다.The present invention relates to a method for producing a crosslinked polyamide-based composite membrane material reverse osmosis membrane having a high flow rate characteristics compared to a conventional membrane.
본 발명은 구체적으로 미세다공 폴리술폰이 코팅된 부직포 기질 표면에 다관능성아민용액을 침지한 후 압착방법으로 표면의 물층을 제거하고 지방족 탄화수소를 용매로 하는 다관능성 산할로겐화합물 용액하에서 계면중합시켜 얻어지는 가교폴리아미드계 역삼투 복합막의 제조시, 상기 다관능성아민용액에 특정의 유기산을 첨가하는 동시에 부직포 기질표면에 다관능성아민 용액을 침지하기 전에 부직포 기질표면의 수분을 압착방법으로 제거하는 공정을 추가하는 것을 특징으로 한 역삼투 복합막의 제조법에 관한 것으로서, 이와같은 방법을 사용함에 의해 침지효과의 향상과 고유량화를 이룰 수 있다.Specifically, the present invention is obtained by immersing a polyfunctional amine solution on the surface of a non-porous substrate coated with a microporous polysulfone, and then removing the water layer on the surface by a crimping method and interfacially polymerizing it under a solution of a polyfunctional acid halide compound containing an aliphatic hydrocarbon as a solvent. In the preparation of the crosslinked polyamide reverse osmosis composite membrane, adding a specific organic acid to the polyfunctional amine solution and removing the water on the surface of the nonwoven substrate by a pressing method before immersing the polyfunctional amine solution on the surface of the nonwoven substrate. The present invention relates to a method for producing a reverse osmosis composite membrane, and by using such a method, the immersion effect can be improved and high flow can be achieved.
Description
본 발명은 기존의 분리막에 비해 고유량의 특성을 지닌 가교 폴리아미드계 복합소재 역삼투 분리막의 제조방법에 관한 것이다.The present invention relates to a method for producing a crosslinked polyamide-based composite reverse osmosis membrane having a high flow rate characteristics compared to a conventional separator.
역삼투 분리막은 1960년대 초에 로브(Loeb)와 소리라잔(Sourirajan)이 최초의 역삼투막인 비대칭형 셀룰로우즈디아세테이트막을 개발한 이래 이에 대한 연구가 활발히 행해져 왔다. 셀룰로우즈디아세테이트막은 가격이 저렴하다는 장점이 있으나, 미생물에 대해 취약하고 강염기하에서 쉽게 가수분해되며 사용온도와 pH의 범위가 좁다는 단점이 있어 셀룰로우즈의 개질과 여러 셀룰로우즈의 합금을 통해 사용되고 있지만 이들 단점을 완전히 극복하지는 못하였다. 그 후 셀룰로우즈막의 단점을 보완하기 위해 폴리아미드계, 폴리우레탄계, 방향족 폴리술폰계, 방향족 폴리아미드계 등을 대상으로 연구가 활발히 진행되어지고 있다.Reverse osmosis membranes have been actively studied since Loeb and Sourirajan developed the first reverse osmosis membrane, an asymmetric cellulose diacetate membrane. Cellulose diacetate membranes have the advantages of low cost, but they are vulnerable to microorganisms, easily hydrolyzed under strong bases, and have a narrow range of operating temperature and pH, which leads to the modification of cellulose and alloys of various celluloses. Although it is being used through, it has not completely overcome these disadvantages. Since then, researches have been actively conducted on polyamides, polyurethanes, aromatic polysulfones, aromatic polyamides, and the like to supplement the disadvantages of the cellulose membrane.
이들 중에서 방향족 폴리술폰을 다공성 지지막으로 하고 폴리아미드계를 지지층으로 하는 복합막이 개발되어 실용화되고 있는 실정이다. 이와 같은 복합막은 기계적 강도를 유지하기 위한 지지층과 선택적 투과성을 갖는 활성층으로 이루어져 있다. 복합막의 제조방법은 박층 분산법, 침지 코팅법, 기상증착법, 랭그미르-블로제트(Langmuir-Biodgett)법, 계면 중합법 등이 있으며, 특히 근래 개발된 나노 또는 역삼투 복합막에서는 미국특허 4,277,344에 개시되어 있는 계면 증합법이 복합막의 제조에 주로 이용되고 있다. 계면 중합법에 의한 복합막의 시초는 다공성 폴리술폰 지지체에 폴리에틸렌아민 수용액과 헥산중의 톨루엔 디아소시아네이트를 반응시켜 제조된 상품명 NS-100으로서, NS-100의 개발 이후 이러한 계면 중합법에 여러종류의 지방족 아민, 방향족 아민이 사용되어 다양한 특성의 막이 제조되었다. 그러나, NS-100의 개발자인 캐도트(Cadotte)에 의해 폴리피페라진아미드 활성층을 가진 NS-300이 나오면서 비로소 계면 중합법에 의한 진정한 의미의 복합막이 나오기 시작했다. NS-300막은 나노미터급의 용질에 대한 특이한 선택적 분리능력을 가진 것으로서, NS-300의 개발 당시에 폴리피페라진아미드는 2가 이온과 단당류에 대해 95%이상의 높은 배제율과 염화나트륨에 대해서는 40∼95%의 비교적 넓은 범위의 배제율을 가진 막들이 개발되었는데, 이같은 특성은 주로 폴리술폰계의 미소다공성기질을 피페라진과 알칼리성 촉매가 섞인 다관능성 아민 용액에 함침시키고 그 기질상에 다관능성 산할로겐화합물을 도포하여 계면중합을 발생시켜 얻어진다. 이런 막의 주된 배제율 조절 방법은 산할로겐 화합물을 테레프탈로일클로라이드, 이소프탈로일클로라이드, 트리메조일클로라이드 용액을 적절한 비율로 혼합해가며 사용하는 방법으로 이 혼합비율에 배제율이 비례하는 방식이다. 나노 복합막의 제조방법중 미국특허 4,259,138에는 피페라진과 촉매로는 N,N'-디메틸 피페라진, 수산화나트륨 등을 쓰고 이소프타로일클로라이드와 트리메조일클로라이드를 혼합 사용해 계면중합을 행하며, 이때 산할로겐화합물의 용매로는 n-헥산을 사용한다. 한편, 미국특허 4,619,767에서는 폴리술폰위에 폴리비닐알콜을 먼저 코팅시키고 다시 피페라진 혹은 피페라진 구조를 포함한 디아민과 트리메조일클로라이드/이소프탈로일클로라이드의 혼합물을 사용해 계면중합시키고, 용매로 n-헥산을 사용하고 있다.Among them, a composite membrane having an aromatic polysulfone as a porous support membrane and a polyamide-based support layer has been developed and put into practical use. Such a composite membrane consists of a support layer for maintaining mechanical strength and an active layer with selective permeability. The manufacturing method of the composite membrane includes a thin layer dispersion method, an immersion coating method, a vapor deposition method, a Langmuir-Biodgett method, an interfacial polymerization method, and the like. In particular, recently developed nano or reverse osmosis composite membranes are described in US Pat. No. 4,277,344. The interfacial deposition method disclosed is mainly used for the manufacture of a composite film. The start of the composite membrane by the interfacial polymerization method is a trade name NS-100 manufactured by reacting a polyethyleneamine aqueous solution and a toluene diasocyanate in hexane to a porous polysulfone support. Aliphatic amines, aromatic amines have been used to prepare membranes of various properties. However, NS-300 with polypiperazineamide active layer came out by Cadette, the developer of NS-100, and finally the composite film by the interfacial polymerization method was started. The NS-300 membrane has a specific selective separation ability for nanometer solutes. At the time of NS-300 development, polypiperazinamide has a high rejection rate of over 95% for divalent ions and monosaccharides and 40-95 for sodium chloride. Membranes with a relatively wide range of rejection rates have been developed, which are mainly impregnated with polysulfone microporous substrates in a polyfunctional amine solution mixed with piperazine and an alkaline catalyst, and on the substrate a polyfunctional acid halogenated compound. It is obtained by apply | coating an interpolymerization by apply | coating this. The main method of controlling the rejection rate of the membrane is to use an acid halide compound with a mixture of terephthaloyl chloride, isophthaloyl chloride and trimesoyl chloride in an appropriate ratio, and the exclusion ratio is proportional to this mixing ratio. In US Pat. No. 4,259,138 of the method for preparing nanocomposite membranes, piperazine and N, N'-dimethyl piperazine, sodium hydroxide, etc. are used as catalysts, and interfacial polymerization is performed by mixing isophthaloyl chloride and trimesoyl chloride. N-hexane is used as a solvent of a compound. On the other hand, U.S. Patent 4,619,767 first coated polyvinyl alcohol on polysulfone, and then interpolymerized with a mixture of diamine and trimesoyl chloride / isophthaloyl chloride containing piperazine or piperazine structure, and n-hexane as a solvent. I use it.
또한 이런 나노막에 비해 유량은 떨어지나 이온상태의 무기물들을 거의 98% 이상 분리할 수 있는 능력을 갖는 역삼투 분리막이 개발되었는데, 이러한 역삼투 분리막은 반투과막으로 염들이 녹아있는 수용액의 한쪽 방향에서 가압을 할 경우 용액과 용질의 분리가 일정 방향으로 일어난다는 원리를 이용한 것으로 고압에도 견디고, 내구성, 내화학성이 뛰어난 재질의 고기능 분리막이다. 역삼투 분리막의 중요한 특성으로는 염배제율(SALT REJECTION : 용매로부터 용질의 분리능 정도를 나타내는 수치)과 유량(FLUX : 일정기간 동안 일정압력에서 분리막을 통하여 나오는 용매의 유량)이 있다. 박막 복합 재료의 역삼투 분리막으로는 계면중합에서 얻어지는 폴리아미드가 일반적으로 사용된다. 수용성 아민에서 미세 고분자 지지층(주로 폴리술폰계)을 잠기게 한후 얻어진 층을 다시 유기층의 아실클로라이드가 녹아있는 용액층에 잠기게 함으로써 계면중합이 이루어지는데, 이때 사용되는 유기 용매는 주로 폴리아미드화 반응에 영향을 주지 않으며 적당량의 기질을 녹일 수 있는 용매가 바람직하다.In addition, a reverse osmosis membrane was developed, which has a lower flow rate than that of the nano-membrane but has the ability to separate almost 98% of ionic minerals. The reverse osmosis membrane is a semi-permeable membrane in one direction of an aqueous solution in which salts are dissolved. It uses the principle that separation of solution and solute occurs in a certain direction when pressurized. It is a high-performance separator made of a material that withstands high pressure and has excellent durability and chemical resistance. Important characteristics of reverse osmosis membranes include salt rejection (SALT REJECTION), and flux (FLUX: flow rate of solvent exiting the membrane at constant pressure for a certain period of time). As the reverse osmosis membrane of the thin film composite material, polyamide obtained by interfacial polymerization is generally used. Interfacial polymerization is achieved by submerging the fine polymer support layer (primarily polysulfone) in a water-soluble amine and then submerging the obtained layer in a solution layer in which the acyl chloride of the organic layer is dissolved. In this case, the organic solvent used is mainly a polyamide reaction. Solvents that do not affect the ability to dissolve an appropriate amount of substrate are preferred.
지금까지 가장 널리 사용되어진 용매는 1,1,2-트리클로로트리플로오르에탄(1,1,2-TRICHLOROTRIFLUOROETHANE)으로 일반적으로 CFC-113으로 불리어지는 용매이나, 값이 비싸고 오존층 파괴 등 환경에 악영향을 주는 것으로 알려져 있다.The most widely used solvent so far is 1,1,2-trichlorotrifluoroethane (1,1,2-TRICHLOROTRIFLUOROETHANE), which is generally called CFC-113, but is expensive and adversely affects the environment such as destruction of the ozone layer. It is known to give.
그로인해 환경 친화적인 용매의 사용에 관한 연구가 최근 활발히 진행되었는데, 미국특허 4,005,012 , 미국특허 4,259,813 , 미국특허 4,360,434 , 미국특허 4,606,943 , 미국특허 4,737,325 , 미국특허 4,282,708 , 미국특허 5,258,203 등은 1,1,2-트리클로로트리폴로오르에탄을 사용하지 않고 지방족 탄화수소 용매로 대체하여 분리막을 제조하는 방법을 제시하였다. 그러나, 헥산 같은 지방족 반응용매들의 사용은 유량을 떨어뜨리는 결과로 상업적 사용이 제안되어 왔다. 때문에 좋은 염배제율과 충분한 유량을 얻기위한 연구들이 진행되어 왔는데, 조액 시 첨가하는 물질들을 개발하는 연구(미국 특허 5,234,598 , 미국특허 5,258,203), 폴리아미드반응에 첨가하는 단량체들의 구조를 바꾸는 연구(미국특허 4,761,234 , 미국특허 4,643,829 , 미국특허 5,019,264 , 미국특허 5,160,619 , 미국특허 5,271,843 , 미국특허 5,336,409), 후처리를 통한 유량증가 방법에 관한 연구(미국특허 4,938,872 , 미국특허 4, 927,540)등이 제안되어 있다.As a result, studies on the use of environmentally friendly solvents have been actively conducted in recent years. A method of preparing a separator by using an aliphatic hydrocarbon solvent without using 2-trichlorotripoloroethane is provided. However, the use of aliphatic reaction solvents such as hexane has been suggested for commercial use as a result of lowering the flow rate. Because of this, studies have been conducted to obtain a good salt rejection rate and sufficient flow rate, researches for developing materials to be added to the crude liquid (US Patent 5,234, 598, US Patent 5,258, 203), and a study to change the structure of the monomers added to the polyamide reaction (US Patents 4,761,234, U.S. Patents 4,643,829, U.S. Patents 5,019,264, U.S. Patents 5,160,619, U.S. Patents 5,271,843, U.S. Patents 5,336,409, and studies on methods for increasing flow rates through post-treatment (U.S. Patents 4,938,872, U.S. Patents 4, 927,540) are proposed. .
본 발명은 다관능성 아민용액의 용매로 지방족 탄화수소를 사용하여 침지효과가 우수하며 고유량의 특성을 지닌 폴리아미드계 역삼투 분리막의 제조방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide a method for preparing a polyamide-based reverse osmosis membrane having an excellent immersion effect and having a high flow characteristic by using an aliphatic hydrocarbon as a solvent of a multifunctional amine solution.
본 발명은 미세다공 폴리술폰이 코팅된 부직포 기질표면에 다관능성아민용액을 침지한 후 압착방법으로 표면의 물층을 제거하고 지방족 탄화수소를 용매로 하는 다관능성산할로겐화합물 용액하에서 계면중합시켜 얻어지는 가교 폴리아미드계 역삼투 복합막 제조시 침지효과의 향상과 고유량화를 위해 다관능성아민혼합용액의 조성에 첨가제로 탄소수 6-12의 아릴유기산 또는 탄소수 6-12의 시클로알킬유기산 1-10중량%를 3급아민 0.5-5중량%와 함께 사용하고 부직포 기질표면에 다관능성아민 용액을 침지하기 전에 부직포 기질 표면의 수분을 압착방법으로 제거하는 것을 특징으로 한 가교 폴리아미드계 역삼투 분리막의 제조법에 관한 것이다.The present invention is a cross-linked poly-based polymer obtained by immersing a polyfunctional amine solution on a surface of a non-porous substrate coated with a microporous polysulfone, and then removing the water layer on the surface by a compression method and interfacially polymerizing it under a solution of a polyfunctional acid halide compound containing an aliphatic hydrocarbon as a solvent. In order to improve the immersion effect and high flow rate in the preparation of the amide reverse osmosis composite membrane, 1-10% by weight of arylorganic acid having 6-12 carbon atoms or cycloalkyl organic acid having 6-12 carbon atoms is added as an additive to the composition of the polyfunctional amine mixture solution. A method for producing a crosslinked polyamide reverse osmosis membrane, which is used with 0.5 to 5% by weight of tertiary amine and removes water on the surface of the nonwoven substrate by pressing before immersing the polyfunctional amine solution on the surface of the nonwoven substrate. will be.
이하에서 본 발명은 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.
일반적으로 지지층으로 사용되는 부직포 기질표면에는 대략 40-200g/㎡정도의 수분이 함유되어 있는데, 이와 같이 수분이 존재하는 경우 연속 제막시 다관능성아민 수용액이 점점 묽어져서 반응단량체의 농도가 변하거나 혹은 첨가제의 농도가 변하는 한편 아민 수용액이 지지층의 미세기공으로 확산되어 들어가는 속도가 느리게 되는 문제가 있으므로, 본 발명에서는 부직포 기질표면의 수분을 스폰지나 고무등 물을 흡착 할 수 있는 재료를 사용하여 압착방법에 의해 제거하는 전처리 공정을 거치도록 하여 상기 문제를 해결 하였다.Generally, about 40-200g / m2 of water is contained on the surface of the nonwoven substrate used as a support layer. If water is present, the concentration of the reaction monomer changes due to the thinning of the polyfunctional amine solution during continuous film formation. Since the concentration of the additive is changed while the amine aqueous solution is diffused into the micropores of the support layer, there is a problem of slowing down. Therefore, in the present invention, a material that can adsorb water, such as sponge or rubber, on the surface of the nonwoven substrate is used for the compression method. The problem was solved by going through a pretreatment process to remove by.
본 발명에서 분리막 제조시 폴리에스터 부직포상에 폴리술폰을 캐스팅한 후 압착방법으로 수분을 제거한 지지층을 0.1∼10중량% 아민 수용액(pH 5∼9)에 30초∼10분간 침지한 후 압착기로 수분을 충분히 제거하는데, 이때 사용되는 아민으로는 주로 메타페닐렌디아민, 파라페닐렌디아민이 사용되며 이 아민 용액은 강산과 그 짝염기를 넣어주고 그 산으로 다시 pH를 조절하여 제조된다. 또한, 본 발명에 사용되는 적당한 아실 할라이드로는 트리메조일클로라이드, 이소프탈로일클로라이드 등이 있으며, 그외 1,3,5-시클로헥산트리카보닐클로라이드, 1,2,3,4,-시클로헥산테트라카보닐클로라이드 등이 쉽게 별다른 제약없이 사용되어질 수 있으나, 트리메조일클로라이드가 물성상 가장 바람직하다.In the present invention, after the polysulfone is cast on the polyester nonwoven fabric in the present invention, the supporting layer from which water is removed by a crimping method is immersed in 0.1 to 10% by weight aqueous amine solution (pH 5 to 9) for 30 seconds to 10 minutes and then moistened with a compress. In this case, metaphenylenediamine and paraphenylenediamine are mainly used as amines. The amine solution is prepared by adding a strong acid and its base, and adjusting the pH again with the acid. In addition, suitable acyl halides used in the present invention include trimezoyl chloride, isophthaloyl chloride and the like, and others 1,3,5-cyclohexanetricarbonyl chloride, 1,2,3,4, -cyclohexane Tetracarbonyl chloride and the like can be easily used without any restriction, but trimethoyl chloride is most preferable in terms of physical properties.
지방족 탄화수소 용매로는 아실할라이드를 0.1∼1% 용해할 수 있어야 하고 계면중합 반응에 참가하지 않고 아실할라이드와 화학적 결합이 없어야 하며 다공성 지지층에 손상을 입히지 않는 것이 사용되는데, 이와 같이 아실할라이드가 0.01∼1중량% 녹아있는 비극성 지방족 유기용액에 아민 수용액층이 코팅되어 있는 막을 1∼10분간 침지 시킨 후 꺼내어 상온에서 어느정도 건조하고 다시 60∼120℃의 상태에서 30초∼10분간 완전 건조시키고, 이 막을 다시 상온으로 식힌 후 40∼90℃의 탄산 나트륨 수용액에서 30분∼4시간 동안 세정한 후 순수에 넣어서 보관하는 후처리 공정을 거쳐 고유량의 역삼투 분리막 제조가 완료된다.As the aliphatic hydrocarbon solvent, acyl halide must be dissolved in 0.1 to 1%, it does not participate in the interfacial polymerization reaction, there is no chemical bond with the acyl halide, and the damage to the porous support layer is used. After immersing the membrane coated with the amine aqueous solution in 1% by weight of a non-polar aliphatic organic solution for 1 to 10 minutes, taking it out, drying it to a certain extent at room temperature, and completely drying for 30 seconds to 10 minutes at 60 to 120 ° C. After cooling to room temperature again, it is washed for 30 minutes to 4 hours in an aqueous solution of sodium carbonate at 40 to 90 ° C., followed by a post-treatment step of storing in pure water to complete the preparation of a high flow rate reverse osmosis membrane.
한편, 본 발명에서는 또다른 특징부로 아민혼합용액에 첨가제를 사용하여 고유량화를 도모하는데, 이때 사용되는 첨가제로는, 탄소수 6∼12의 아릴유기산 또는 탄소수 6∼12의 시클로알킬유기산 1∼10중량%를 3급아민 0.5∼5중량%와 함께 사용하며, 특히 유기산으로 CSA(camphorsulhonic acid)와 3급아민 TEA(trietyl amine)를 사용하는 경우가 우수한 효과를 나타낸다.In another aspect of the present invention, an additive is used in the amine mixture solution to achieve high flow rate, and the additive used here includes an aryl organic acid having 6 to 12 carbon atoms or a cycloalkyl organic acid having 6 to 12 carbon atoms. The wt% is used together with 0.5 to 5 wt% of tertiary amines, and particularly, when CSA (camphorsulhonic acid) and tertiary amine TEA (trietyl amine) are used as organic acids.
또한, 본 발명에서 사용되는 지방족 탄화수소는 탄소수 5-12개인 n-알칸과 탄소수 8개인 포화 또는 불포화 탄화 수소의 구조이성질체를 혼합 사용하거나 또는 탄소수 5-7개의 고리탄화수소를 사용하는 것이 좋다.In addition, the aliphatic hydrocarbon used in the present invention may be a mixture of structural isomers of n-alkanes having 5 to 12 carbon atoms and saturated or unsaturated hydrocarbons having 8 carbon atoms, or cyclic hydrocarbons having 5 to 7 carbon atoms.
이하에서 실시예 및 비교예를 들어 본 발명을 좀더 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
(실시예 1∼5)(Examples 1 to 5)
폴리에스터 부직포상에 디메틸포름아미드와 폴리술폰 20중량% 용액을 두께가 약125±10㎛로 캐스트하고, 즉시 이것을 30℃온도의 증류수욕중에 침지하여 고형화 시킨 후 부직포 보강 폴리술폰 미소다공성 기질을 충분히 수세하여 기질중의 용매와 물을 치환한 후 흑색 비닐로 수분이 날아가지 않도록 보관하였다. 이렇게 얻어진 폴리술폰 미세다공성 기질을 스폰지로 압착하여 탈수시켜 미세다공성 지지층에 함유된 물을 충분히 제거한 후 농도가 2.0중량%인 m-페닐렌디아민과 4.0중량%의 CSA 및 2.0중량%의 TEA로 된 다관능성아민 수용액에 표 1에 나타낸 시간 (실시예1-5)동안 침지하였다. 이어서 pH를 8.7로 조정한 수용액에 30분 침지한 후 압착 방법으로 표면의 물층을 제거한 후 기질층을 농도가 1중량%인 트리메조일클로라이드 유기용액(n-옥탄 : 시클로헥산 : 디에틸에테르 = 75 : 20 : 5의 비율로 된 용매)을 표면에 코팅하여 복합막을 제조하였다. 이렇게 제조된 복합막을 상온에서 10분간, 95℃에서 5분간 완전 건조시킨 후 90℃ 약알칼리 수용액으로 충분히 수세하고 상온에서 순수로 다시 세정 하였으며, 염배제율과 유량을 측정하여 그 결과를 표 1에 나타내었다.Cast 20% by weight of a solution of dimethylformamide and polysulfone to a thickness of about 125 ± 10 μm on a polyester nonwoven fabric, immediately immerse it in a distilled water bath at 30 ° C. to solidify it, and then sufficiently prepare the nonwoven reinforced polysulfone microporous substrate. After washing with water, the solvent and water in the substrate were replaced, and then stored in black vinyl to avoid moisture. The polysulfone microporous substrate thus obtained was compressed and dehydrated with a sponge to sufficiently remove water contained in the microporous support layer, followed by m-phenylenediamine having a concentration of 2.0% by weight, 4.0% by weight of CSA, and 2.0% by weight of TEA. It was immersed in the polyfunctional amine aqueous solution for the time shown in Table 1 (Example 1-5). Subsequently, it was immersed in an aqueous solution adjusted to pH 8.7 for 30 minutes, and then the water layer on the surface was removed by a compression method, and then the substrate layer was trimmed with an organic solution of 1% by weight of trimezoyl chloride (n-octane: cyclohexane: diethyl ether = 75: 20: 5 in a solvent) to the surface of the coating to prepare a composite membrane. The composite membrane thus prepared was completely dried at room temperature for 10 minutes, at 95 ° C for 5 minutes, washed with 90 ° C weak alkaline solution and washed with pure water at room temperature, and the salt excretion rate and flow rate were measured. Indicated.
(비교예1-5)(Comparative Example 1-5)
실시예에서 지지층을 아민수용액에 침지하기 전에 스폰지로 수분을 압착제거 하는 공정을 실시하지 않은 것 외에는 실시예 1-5(비교예1-5)와 동일하게 실시하였으며, 염배제율과 그 결과를 측정하여 그 결과를 표 1 에 나타내었다.In Example, the process was performed in the same manner as in Example 1-5 (Comparative Example 1-5) except that the support layer was not squeezed out with a sponge before being immersed in the amine aqueous solution. The results are shown in Table 1 below.
상기 실시예 및 비교예에서도 확인되듯이 본 발명에 따라 제조된 가교 폴리아미드계 복합소재 역삼투 분리막은 계면중합시 유기용매로 지방족 탄화수소를 가지는 계를 사용하면서도 염배제율이 좋고 고유량을 나타내는 한편, 연속제조 공정시 침지시간을 단축시킬 수 있기 때문에 생산성을 향상시킬 수 있는등의 제법상 유용성을 지닌다.As can be seen from the above examples and comparative examples, the crosslinked polyamide-based reverse osmosis membrane prepared according to the present invention has a good salt excretion rate and high flow rate while using a system having an aliphatic hydrocarbon as an organic solvent during interfacial polymerization. In addition, since the immersion time can be shortened during the continuous manufacturing process, it is useful in manufacturing methods such as improving productivity.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970042309A KR100506537B1 (en) | 1997-08-28 | 1997-08-28 | Manufacturing method of crosslinked polyamide reverse osmosis membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970042309A KR100506537B1 (en) | 1997-08-28 | 1997-08-28 | Manufacturing method of crosslinked polyamide reverse osmosis membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990019013A true KR19990019013A (en) | 1999-03-15 |
KR100506537B1 KR100506537B1 (en) | 2005-11-08 |
Family
ID=37305841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970042309A KR100506537B1 (en) | 1997-08-28 | 1997-08-28 | Manufacturing method of crosslinked polyamide reverse osmosis membrane |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100506537B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990070134A (en) * | 1998-02-17 | 1999-09-15 | 한형수 | Manufacturing Method of Polyamide Composite Membrane |
KR101394317B1 (en) * | 2012-05-31 | 2014-05-13 | 주식회사 엘지화학 | High flux reverse osmosis membrane comprising carbodiimide compound and manufacturing method thereof |
KR20170029971A (en) * | 2015-09-08 | 2017-03-16 | 주식회사 엘지화학 | Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane |
CN113877449A (en) * | 2021-11-22 | 2022-01-04 | 启成(江苏)净化科技有限公司 | Preparation process of reverse osmosis membrane |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101913396B1 (en) | 2017-04-06 | 2018-10-30 | 한국화학연구원 | Method for preparation of high flux polyamide composite membrane |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4962073A (en) * | 1986-12-29 | 1990-10-09 | Aluminum Company Of America | Surface treated porous ceramic membranes and method of making same |
US4872984A (en) * | 1988-09-28 | 1989-10-10 | Hydranautics Corporation | Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same |
US4950404A (en) * | 1989-08-30 | 1990-08-21 | Allied-Signal Inc. | High flux semipermeable membranes |
US4983291A (en) * | 1989-12-14 | 1991-01-08 | Allied-Signal Inc. | Dry high flux semipermeable membranes |
US5658460A (en) * | 1996-05-07 | 1997-08-19 | The Dow Chemical Company | Use of inorganic ammonium cation salts to maintain the flux and salt rejection characteristics of reverse osmosis and nanofiltration membranes during drying |
KR19980068295A (en) * | 1997-02-17 | 1998-10-15 | 한형수 | Polyamide Type Membrane Manufacturing Method |
KR100211338B1 (en) * | 1997-02-17 | 1999-08-02 | 한형수 | Producing method of the polyamide type crosslinked reverse osmosis separation membrane |
-
1997
- 1997-08-28 KR KR1019970042309A patent/KR100506537B1/en active IP Right Grant
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990070134A (en) * | 1998-02-17 | 1999-09-15 | 한형수 | Manufacturing Method of Polyamide Composite Membrane |
KR101394317B1 (en) * | 2012-05-31 | 2014-05-13 | 주식회사 엘지화학 | High flux reverse osmosis membrane comprising carbodiimide compound and manufacturing method thereof |
KR20170029971A (en) * | 2015-09-08 | 2017-03-16 | 주식회사 엘지화학 | Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane |
CN113877449A (en) * | 2021-11-22 | 2022-01-04 | 启成(江苏)净化科技有限公司 | Preparation process of reverse osmosis membrane |
CN113877449B (en) * | 2021-11-22 | 2024-06-07 | 启成(江苏)净化科技有限公司 | Preparation technology of reverse osmosis membrane |
Also Published As
Publication number | Publication date |
---|---|
KR100506537B1 (en) | 2005-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0085111B1 (en) | Composite semipermeable membrane, process for its production, and method of its use | |
CA1333462C (en) | Polyamide reverse osmosis membranes | |
JP4472028B2 (en) | Composite reverse osmosis membrane and method for producing the same | |
US4960517A (en) | Treatment of composite polyamide membranes via substitution with amine reactive reagents | |
KR19990019008A (en) | Manufacturing method of high flow rate reverse osmosis membrane | |
WO2011152735A1 (en) | Thin film composites | |
KR101240956B1 (en) | Reverse osmosis composite having high fouling resistance and manufacturing method thereof | |
JPS6410241B2 (en) | ||
KR101114668B1 (en) | Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby | |
KR100692394B1 (en) | Method of producing reverse osmosis membrane with boron removal effect | |
KR100211338B1 (en) | Producing method of the polyamide type crosslinked reverse osmosis separation membrane | |
KR100506537B1 (en) | Manufacturing method of crosslinked polyamide reverse osmosis membrane | |
KR20070013651A (en) | Preparation method of highly permeable composite polyamide nanofiltration membranes | |
KR100583136B1 (en) | Silane-polyamide composite membrane and method thereof | |
KR20180086037A (en) | Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module | |
KR100666483B1 (en) | Producing method of polyamide reverse osmosis membrane having high salt rejection property | |
JPH0790152B2 (en) | Composite reverse osmosis membrane | |
KR100322235B1 (en) | Fabrication of high permeable reverse osmosis membranes | |
JPS62140608A (en) | Composite semipermeable membrane, its production, and treatment of aqueous solution | |
JPH1128466A (en) | Reverse osmosis treatment of water with reverse osmosis composite membrane | |
KR0170072B1 (en) | Method for manufacturing polyamide nano composite membrane | |
JPS6028803A (en) | Selective permeable membrane and its manufacture | |
KR100238700B1 (en) | Method for preparation of reverse osmosis membrane by polyamide system | |
KR102067861B1 (en) | Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module | |
KR101653414B1 (en) | Method for Manufacturing Polyamide-based Reverse Osmosis Membrane having Antifouling Property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120719 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20130703 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140725 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20150728 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160704 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20170706 Year of fee payment: 13 |