KR19980052532A - Carbon dioxide high temperature adsorbent and its manufacturing method - Google Patents

Carbon dioxide high temperature adsorbent and its manufacturing method Download PDF

Info

Publication number
KR19980052532A
KR19980052532A KR1019960071539A KR19960071539A KR19980052532A KR 19980052532 A KR19980052532 A KR 19980052532A KR 1019960071539 A KR1019960071539 A KR 1019960071539A KR 19960071539 A KR19960071539 A KR 19960071539A KR 19980052532 A KR19980052532 A KR 19980052532A
Authority
KR
South Korea
Prior art keywords
base
adsorbent
carbon dioxide
firing
sol
Prior art date
Application number
KR1019960071539A
Other languages
Korean (ko)
Other versions
KR100293204B1 (en
Inventor
이건홍
송현곤
Original Assignee
김종진
포항종합제철 주식회사
정명식
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종진, 포항종합제철 주식회사, 정명식, 학교법인 포항공과대학교 filed Critical 김종진
Priority to KR1019960071539A priority Critical patent/KR100293204B1/en
Publication of KR19980052532A publication Critical patent/KR19980052532A/en
Application granted granted Critical
Publication of KR100293204B1 publication Critical patent/KR100293204B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

염기자리를 첨가하여 고온에서의 이산화탄소에 대한 흡착능을 높인 흡착제 및 그 제조방법이 제공된다. 종래의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체에 알칼리 금속 또는 알칼리 토금속의 산화물 혹은 수산화물 혹은 탄산염 등을 담지시킴으로써 이산화탄소에 대한 흡착제 표면의 친화도를 높여, 냉각단계 없이 100℃에서 250℃의 고온의 이산화탄소 함유 배가스로부터 이산화탄소를 효율적으로 분리·흡착시킬 수 있도록 하였다.Provided is an adsorbent having a high base adsorption capacity and enhanced adsorption capacity for carbon dioxide at a high temperature, and a method of preparing the same. The affinity of the adsorbent surface to carbon dioxide is enhanced by supporting alkali metal or alkaline earth metal oxides, hydroxides or carbonates on a support made of a conventional adsorbent or a substance usable as an adsorbent, thereby increasing the affinity of the adsorbent surface to carbon dioxide at a high temperature of 100 ° C. to 250 ° C. without a cooling step. Carbon dioxide can be efficiently separated and adsorbed from carbon dioxide-containing flue gas.

상기 흡착제 제조방법을 함침법 및 합성법을 포함한다.The adsorbent manufacturing method includes an impregnation method and a synthesis method.

Description

이산화탄소 고온 분리용 흡착제 및 그 제조방법Carbon dioxide high temperature separation adsorbent and its manufacturing method

본 발명은 배가스중 이산화탄소분리에 사용되는 흡착제 및 그 제조방법에 관한 것이며, 보다 상세히는 고온의공정배가스 중 이산화탄소분리가 가능한 흡착제 및 그 제조방법에 관한 것이다.The present invention relates to an adsorbent used for the separation of carbon dioxide in the flue gas and a method for producing the same, and more particularly, to an adsorbent capable of separating carbon dioxide in a high temperature process flue gas and a method for producing the same.

이산화탄소가 지구 온난화를 유발하는 주 요인임은 주지된 사실이며 이에따라 이산화탄소의 배출량을 규제하려는 움직임이 전세계적으로 확산되고 있다. 이산화탄소의 규제문제는 처분, 분리, 전환의 관점에서 여러 가지 방법이 시도되어지고 있으며, 이중 분리 방법으로는 흡수법, 흡착법, 분리막법 등이 있다. 지금까지 공업적으로 혼합가스에서 이산화탄소를 분리·회수하는 방법으로는 탄산칼륨용액이나 알카놀 아민 용액을 사용하여 흡수하는 기술이 사용되어져 왔으나 흡수공정은 부식이 심한 용액을 사용하기 대문에 장치 투자비가 증대하고 재생을 위한 에너지, 약품비 등 운전비가 많이 들어 중소 용량의 이산화탄소 분리를 위하여는 흡착법이 개발, 이용되고 있다.It is well known that carbon dioxide is a major contributor to global warming, and movements to regulate carbon dioxide emissions are spreading around the world. Various methods have been tried from the viewpoint of disposal, separation, and conversion of carbon dioxide, and double separation methods include absorption method, adsorption method, and membrane method. Until now, the technology of separating and recovering carbon dioxide from mixed gas has been used to absorb potassium carbonate solution or alkanol amine solution. However, the absorption process uses a highly corrosive solution. Adsorption methods have been developed and used for the separation of small and medium-sized carbon dioxide due to high operating costs such as energy consumption and chemical costs for regeneration.

흡착법은 이산화탄소를 함유한 가스와 흡착제의 접촉시 이산화탄소에 대한 흡착제의 선택적 흡착성을 이용하는 기술로 이산화탄소용 흡착제로는 비표면적이 큰 활성탄과 제올라이트 분자체가 널리 사용되며 이들은 주로 상온에서 이산화탄소 흡착에 사용되어왔다.Adsorption method uses selective adsorption of adsorbents on carbon dioxide upon contact with gas containing carbon dioxide and adsorbents. Activated carbon and zeolite molecular sieves with large specific surface area are widely used as adsorbents for carbon dioxide. come.

그러나 상기와 같은 종래의 흡착제는 이산화탄소와 흡착제 표면과의 약한 물리적 흡착력만을 이용하여 이산화탄소를 분리하였기 때문에, 이들 흡착제는 온도 상승에 따라 그 흡착력이 급격히 감소되어 100℃-250℃의 온도를 갖는 공장 배가스중의 이산화탄소를 흡착, 분리하는데는 적합하지 않는 것이다.However, since the conventional adsorbents separate carbon dioxide using only weak physical adsorption force between the carbon dioxide and the adsorbent surface, these adsorbents are rapidly reduced as the temperature rises, and thus the plant exhaust gas having a temperature of 100 ° C-250 ° C. It is not suitable for adsorption and separation of carbon dioxide.

이에 본 발명의 목적은 상기와 같은 종래의 흡착제가 갖는 문제점을 해결하여 고온에서도 흡착능이 우수한 보다 개선된 흡착제를 제공하는데 있다.Accordingly, an object of the present invention is to solve the problems of the conventional adsorbent as described above to provide a more improved adsorbent excellent in adsorption capacity even at high temperatures.

나아가 본 발명의 다른 목적은 고온에서도 흡착능이 우수한 흡착제 제조 방법을 제공하는데 있다.Furthermore, another object of the present invention is to provide a method for producing an adsorbent having excellent adsorption capacity even at a high temperature.

상기와 같은 본 발명의 목적은 후술되는 본 발명에 의해 달성 가능한 것이다.The object of the present invention as described above can be achieved by the present invention described below.

도 1은 본 발명의 실시예 1에서 제조된 CaO담지 실리카겔과 담지되지 않는 실리카겔의 100℃와 250℃에서의 이산화탄소 흡착량을 대비한 그래프1 is a graph comparing the adsorption amount of carbon dioxide at 100 ℃ and 250 ℃ of CaO supported silica gel and unsupported silica gel prepared in Example 1 of the present invention

도 2는 본 발명의 실시예 2에서 제조된 CaO담지 활성탄과 담지되지 않은 활성탄의 100℃와 250℃에서의 이산화탄소 흡착량을 대비한 그래프2 is a graph comparing the amount of carbon dioxide adsorption at 100 ° C. and 250 ° C. of CaO-supported activated carbon and unsupported activated carbon prepared in Example 2 of the present invention.

도 3은 본 발명의 실시예 3에서 제조된 CaO담지 카본블랙과 담지되지 않은 카본 블랙의 100℃와 250℃에서의 이산화탄소 흡착량을 대비한 그래프3 is a graph comparing the amount of carbon dioxide adsorption at 100 ° C. and 250 ° C. of the CaO-supported carbon black and the unsupported carbon black prepared in Example 3 of the present invention.

도 4는 본 발명의 실시예 4에서 제조된 CaO담지 실리카 제로겔(silica xerogel)과 담지되지 않은 실리카 제로겔의 100℃와 250℃에서의 이산화탄소 흡착량을 대비한 그래프4 is a graph comparing the adsorption amount of carbon dioxide at 100 ° C. and 250 ° C. of a CaO supported silica zero gel and an unsupported silica zero gel prepared in Example 4 of the present invention.

도 5는 본 발명의 실시예 4에서 제조된 함침법에 의한 흡착제와 본 발명의 실시예 5에서 제조된 합성법에 의한 흡착제의 주사전자 현미경 사진과 전자탐침 미세분석에 의한 Ca 분포도로서5 is a scanning electron micrograph and a Ca distribution diagram by electron probe microanalysis of the adsorbent prepared by the impregnation method prepared in Example 4 of the present invention and the adsorbent prepared by the synthesis method prepared according to Example 5 of the present invention.

도 5(가)는 실시예 5에서 합성법에 따라 제조된 흡착제의 주사전자 현미경 사진Figure 5 (a) is a scanning electron micrograph of the adsorbent prepared according to the synthesis method in Example 5

도 5(나)는 실시예 5에서 합성법에 따라 제조된 흡착제의 Ca분포도Figure 5 (b) is Ca distribution diagram of the adsorbent prepared according to the synthesis method in Example 5

도 5(다)는 실시예 4에서 함침법에 따라 제조된 흡착제의 주사전자현미경 사진Figure 5 (c) is a scanning electron micrograph of the adsorbent prepared according to the impregnation method in Example 4

도 5(라)는 실시예 4에서 함침법에 따라 제조된 흡착제의 Ca 분포도Figure 5 (d) is a Ca distribution diagram of the adsorbent prepared according to the impregnation method in Example 4

도 6은 본 발명의 실시예 5에서 합성법에 따라 제조한 흡착제와 실시예 4에서 제조된 CaO를 담지하지 않은 실리카 제로겔의 100℃와 250℃에서의 이산화탄소 흡착량을 대비한 그래프FIG. 6 is a graph comparing carbon dioxide adsorption amounts at 100 ° C. and 250 ° C. of an adsorbent prepared according to the synthesis method of Example 5 and the CaO-supported silica zero gel prepared in Example 4. FIG.

본 발명의 제1견지에 의하면,According to the first aspect of the present invention,

통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체 표면에 염기자리를 부가하여된 이산화탄소 흡착제가 제공된다.There is provided a carbon dioxide adsorbent in which a base is added to a surface of a support made of a conventional adsorbent or a substance usable as an adsorbent.

본 발명의 제2견지에 의하면, 염기물 또는 소성에 의해 염기물로 형성되는 물질을 용매에 용해시켜 용액을 형성하는 단계; 상기 형성된 용액에 통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체를 함침시켜 그 담지체 표면에 염기를 부가하는 단계; 건조시켜 용매를 제거하는 단계; 및 임의적으로 소성에 의해 염기물을 형성되는 물질을 사용한 경우 상기 담지체를 소성시켜 담지체에 담지된 염기물 형성물질을 염기물로 전환시키는 단계; 를 포함하는 함침법에 의한 이산화탄소 흡착제 제조방법이 제공된다.According to a second aspect of the present invention, a step of dissolving a base or a substance formed of a base by firing in a solvent to form a solution; Impregnating the formed solution with a carrier of a conventional adsorbent or a substance usable as an adsorbent to add a base to the carrier surface; Drying to remove the solvent; And optionally, firing the carrier to convert the base forming material supported on the carrier to a base when a substance that forms a base by firing is used. Provided is a method for producing a carbon dioxide adsorbent by an impregnation method comprising a.

본 발명의 제3견지에 의하면, 졸-겔(sol-gel) 합성이 가능한 전 물질로 졸을 제조하는 단계; 상기 졸 용액에 염기물 또는 소성에 의해 염기물을 형성하는 물질을 함침·용해시켜 겔화시키는 단계; 건조시켜 용매를 제거하는 단계; 및 임의적으로 상기 소성에 의해 염기물을 형성하는 물질을 사용한 경우 상기 겔을 소성시켜 겔이 담지된 염기물 형성물질을 염기물로 전환시키는 단계;를 포함하는 합성법에 의한 이산화탄소 흡착제 제조방법이 제공된다.According to a third aspect of the present invention, there is provided a method of preparing a sol, the method comprising: preparing a sol with a whole material capable of sol-gel synthesis; Gelling the sol solution by impregnating and dissolving a base or a substance which forms a base by firing; Drying to remove the solvent; And optionally converting the gel-supported base forming material to a base by firing the gel when using a material that forms a base by the firing; and a method of preparing a carbon dioxide adsorbent by a synthesis method. .

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

일반적으로 흡착제의 흡착능을 결정하는 요소로는 첫째, 흡착시키고자하는 흡착질이 접근 가능한 흡착제의 비표면적, 둘째 흡착질에 대한 흡착제의 표면의 친화도 등을 들 수 있다. 여기서 상온 혹은 저온 흡착에서는 비표면적의 크기가 흡착량을 주로 좌우하나 온도가 올라감에 따라 흡착질에 대한 흡착제의 표면 친화도가 흡착의 중요 요소로 작용하게 된다.In general, factors that determine the adsorption capacity of the adsorbent include first, the specific surface area of the adsorbent to which the adsorbent to be adsorbed, and the second, the affinity of the adsorbent's surface to the adsorbent. Here, in room temperature or low temperature adsorption, the specific surface area mainly determines the amount of adsorption, but as the temperature rises, the surface affinity of the adsorbent to the adsorbate acts as an important factor of adsorption.

이에 본 발명자는 이산화탄소와 질소의 분리에 있어서, 이산화탄소가 질소에 비해 큰 극성화도와 사극자(quadrupole)를 갖는 산성기체이므로 종래의 흡착제 표면에 염기자리를 부여함으로써 이산화탄소에 대한 친화도를 더 높일 수 있어 고온에서의 흡착능을 개선할 수 있다는 것에 착안하여 연구를 계속한 결과 본 발명을 완성하기에 이르렀다.Therefore, in the separation of carbon dioxide and nitrogen, the present inventors can increase the affinity for carbon dioxide by providing a base on the surface of a conventional adsorbent because carbon dioxide is an acidic gas having a greater polarity and quadrupole than nitrogen. In view of the fact that the adsorption capacity at a high temperature can be improved, studies have been carried out to complete the present invention.

본 발명의 제1측면에 의한 이산화탄소 흡착제는 통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체 표면에 염기자리를 부여함으로서 된 것이다.The carbon dioxide adsorbent according to the first aspect of the present invention is obtained by providing a base site on a surface of a carrier made of a conventional adsorbent or a substance usable as an adsorbent.

상기 담지체로 사용되는 통상의 흡착제 또는 흡착제로서 사용가능한 물질로는 활성탄, 제오라이트, 클레이, 실리카겔, 활성탄소 섬유, 카본블랙 및 졸-겔합성에 의해 제조된 실리카 제로겔(silica xerogel)을 들 수 있다.Common adsorbents or materials usable as adsorbents used as the carrier include activated carbon, zeolites, clays, silica gels, activated carbon fibers, carbon blacks and silica xerogels prepared by sol-gel synthesis. .

본 발명에 의한 이산화탄소 흡착제는 상기와 같은 담지체 표면에 염기자리를 부여함으로써 이루어진 것인바, 이같은 염기자리를 제공하는 물질로서는 알카리금속이나 알칼리 토금속류의 산화물, 수산화물이나 탄산염 등 염기물을 들 수 잇으며, 바람직한 물질로는 알카리 토금속 산화물이 좋으며, 보다 바람직한 것은 CaO이다.The carbon dioxide adsorbent according to the present invention is formed by imparting a base to the surface of the carrier as described above. Examples of the material for providing such a base include bases such as oxides, hydroxides and carbonates of alkali metals or alkaline earth metals. The preferred material is an alkaline earth metal oxide, and more preferably CaO.

한편 본 발명의 흡착제에서 담지체로 사용될 수 있는 실리카 제로겔은 졸-겔 합성 가능한 전물질인 알콕사이드류를 용매 및 촉매와 함께 혼합하여 겔화시켜 제조된 것일 수 있다.Meanwhile, the silica zero gel which can be used as a carrier in the adsorbent of the present invention may be prepared by mixing alkoxides, which are all sol-gel synthesizable substances, with a solvent and a catalyst and gelling them.

상기와 같은 본 발명의 제1측면에 의한 흡착제는 담지체 표면에 예를들어 CaO 등의 염기자리가 부여되어 있음으로서 이산화탄소에 대한 친화도를 개선시켜 100~250℃의 고온에서도 이산화탄소에 대한 흡착능이 우수함을 보이는 것이다.The adsorbent according to the first aspect of the present invention as described above is provided with a base such as, for example, CaO on the surface of the carrier to improve the affinity for carbon dioxide, so that the adsorption capacity for carbon dioxide at a high temperature of 100 ~ 250 ℃ It is excellent.

나아가 본 발명의 제2측면 및 제3측면에 의하면 상기와 같은 본 발명의 흡착제를 제조하는 방법이 각각 제공되는바, 제2측면에 의한 방법은 함침법에 의한 흡착제 제조방법을 그리고 제3측면에 의한 방법은 합성법에 의한 흡착제 제조방법을 각각 제공한다.Furthermore, according to the second and third aspects of the present invention, a method for producing the adsorbent of the present invention as described above is provided, respectively, and the method according to the second aspect provides a method for preparing the adsorbent by the impregnation method and the third aspect. The method provides a method for producing an adsorbent by the synthesis method, respectively.

본 발명의 제2견지에 따라 함침법에 의한 이산화탄소 흡착제 제조방법은, 염기물 또는 소성에 의해 염기물을 형성하는 물질을 용매에 용해시켜 용액을 형성하는 단계; 상기 형성된 용액에 통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체를 함침시켜 그 담지체 표면에 염기를 부가하는 단계; 건조시켜 용매를 제거하는 단계; 및 임의적으로 소성에 의해 염기물을 형성하는 물질을 사용한 경우 상기 담지체를 소성시켜 담지체에 담지된 염기물 형성물질을 염기물로 전환시키는 단계;를 포함한다.According to a second aspect of the present invention, a method for preparing a carbon dioxide adsorbent by impregnation includes dissolving a base or a substance which forms a base by firing in a solvent to form a solution; Impregnating the formed solution with a carrier of a conventional adsorbent or a substance usable as an adsorbent to add a base to the carrier surface; Drying to remove the solvent; And optionally firing the carrier to convert the base forming material supported on the carrier to a base when a substance is used that forms a base by firing.

상기 방법에 사용될 수 있는 염기물은 앞서 기술한 바와 같이 염기자리를 제공할 수 있는 물질로서 알카리 금속이나 알칼리 토금속의 산화물, 수산화물이나 탄산염 등을 예로 들 수 있다.The base that can be used in the method is a material that can provide a base as described above, for example, an oxide of an alkali metal or alkaline earth metal, a hydroxide or a carbonate.

다만 본 발명의 방법의 실시에 있어 이같은 염기물이 용매에 불용성인 경우 용해성인 형태로된 이들의 화합물을 사용할 수 있다. 즉, 소성에 의해 연기물을 형성하는 물질로서는 Ca, Mg 등 알칼리금속이나 알칼리토금속의 초산염, 질산염, 기타 용매에 용해가능한 이들의 염을 들 수 있으며, 바람직한 것은 알칼리 토금속의 초산염이 좋으며 보다 바람직한 것은 Ca(CH3COO)2·H2O이다.However, in the practice of the process of the present invention, when such a base is insoluble in a solvent, these compounds in soluble form may be used. That is, as the substance which forms the smoke by firing, salts thereof which are soluble in alkali metals such as Ca and Mg, acetates, nitrates, and other solvents of alkaline earth metals are preferred. Ca (CH 3 COO) 2 .H 2 O.

상기와 같은 염기물 또는 소성에 의해 염기물을 형성하는 물질은 물이나 유기용매와 같은 용매에 용해시켜 용액을 형성한 후, 그 용액에 앞서 언급한 바와 같은 담지체를 함침시키게 된다.The base or the substance forming the base by firing is dissolved in a solvent such as water or an organic solvent to form a solution, and then the solution is impregnated with the carrier as mentioned above.

담지체를 상기 염기물 용액에 함침시키고 일정시간 동안 교반하게 되면 담지체 표면에 염기물이 부착하게 되어 이산화탄소와의 친화력이 증대되게 된다.When the carrier is impregnated with the base solution and stirred for a predetermined time, the base is attached to the surface of the carrier to increase affinity with carbon dioxide.

단지 상기 염기물 대신 소성에 의해 염기물을 형성하는 물질을 사용하여 담지체를 함침시킨 경우는 후속되는 공정에서 함침된 담지체로 소성시켜 담지체에 담지된 염기성 형성물질을 염기물로 전환시켜야 한다.In the case where the carrier is impregnated with the substance which forms the base by firing instead of the base, the basic forming substance supported on the carrier must be converted to the base by calcining the carrier in the subsequent process.

앞서 염기물 용액에 담지체를 함침시킨 후에는 사용된 용매를 건조 등의 방법으로 제거하게 되며, 이같은 제거과정은 통상의 용매 제거방법을 이용할 수 있다.After impregnating the carrier in the base solution, the used solvent is removed by drying or the like, and such a removing process may use a conventional solvent removing method.

또한 본 발명의 제3견지에 따라 합성법에 의한 이산화탄소 흡착제 제조방법은, 졸-겔(sol-gel) 합성이 가능한 전 물질로 졸을 제조하는 단계; 상기졸 용액에 염기물 또는 소성에 의해 염기물을 형성하는 물질을 함침·용해시켜 겔화시키는 단계; 건조시켜 용매를 제거하는 단계; 및 임의적으로 상기 소성에 의해 염기물을 형성하는 물질을 사용한 경우 상기 겔을 소성시켜 겔에 담지된 염기물 형성물질을 염기물로 전환시키는 단계;를 포함한다.In addition, according to the third aspect of the present invention, a method for preparing a carbon dioxide adsorbent by the synthesis method includes preparing a sol from all materials capable of sol-gel synthesis; Gelling the sol solution by impregnating and dissolving a base or a substance which forms a base by firing; Drying to remove the solvent; And optionally firing the gel to convert the base forming material supported on the gel into a base when using the material forming the base by the firing.

이 방법에서는 먼저 졸-겔 합성이 가능한 전물질을 용매와 혼합하여 졸을 합성한다. 졸-겔 합성이 가능한 전 물질로는 알콕사이드를 들 수 있으며, 바람직한 알콕사이드로는 Si(OC2H5)4가 좋다. 이같이 제조된 졸 용액에 앞서 언급된 염기물 혹은 소성에 의해 염기물을 형성하는 물질을 함침·용해시켜 겔화시키게 된다.In this method, the sol is first synthesized by mixing the entire substance capable of sol-gel synthesis with a solvent. All materials capable of sol-gel synthesis include alkoxides, and Si (OC 2 H 5 ) 4 is preferable as the alkoxide. The sol solution thus prepared is subjected to gelation by impregnating and dissolving the above-described base or a substance which forms a base by firing.

이 과정에 따라 표면에 염기물 부위가 부여된 담지체가 형성되는바, 본 발명에서는 소성에 의해 염기물을 형성하는 물질로서 알칼리 금속이나 알칼리 토금속의 초산염, 질산염, 기타 앞서 언급된 종류의 물질을 사용할 수 있으며, 바람직한 것은 알칼리 토금속의 초산염, 보다 바람직한 것은 Ca(CH3COO)2·H2O가 좋다.According to this process, a carrier having a base portion is provided on the surface thereof. In the present invention, as a substance which forms a base by firing, acetates, nitrates of alkali metals or alkaline earth metals, and other substances of the aforementioned kind can be used. The preferred is acetate of alkaline earth metal, more preferably Ca (CH 3 COO) 2 H 2 O.

상기 함침되는 물질의 양은 졸 용액에 용해될 수 있는 한계인 포화량보다 작은 것이 좋다.The amount of the material to be impregnated is preferably less than the saturation amount which is the limit that can be dissolved in the sol solution.

또한 함침된 물질은 졸 용액의 pH를 변화시켜 겔 형성을 촉진시킬 수 있으나 너무 빠른 겔화는 함침된 물질의 고른 분산을 방해할 수 있으므로 함침되는 물질의 양을 적절히 조절해야 염기부위가 담지체 내에 고르게 분산된 흡착제를 얻을 수 있다. 이후 합성된 겔을 건조하여 용매를 제거하게 되나, 본 발명에서 소성에 의해 염기물을 형성하는 물질을 사용시에는 후공정에서 소성하여 겔의 기공에 담지된 물질이 염기물로 전환되도록 하여야 한다.Also, impregnated materials can change the pH of the sol solution to promote gel formation, but too fast gelation can interfere with even dispersal of the impregnated material, so the amount of material impregnated must be properly controlled to ensure that the base is evenly distributed within the carrier. A dispersed adsorbent can be obtained. Thereafter, the synthesized gel is dried to remove the solvent. However, in the present invention, when using a material that forms a base by firing, the material supported in the pores of the gel is converted into a base by firing in a post process.

상기 방법에 의해 제조된 본 발명의 염기물 담지된 이산화탄소 흡착제는 물리적 흡착뿐만 아니라 이산화탄소에 대한 친화력이 증대되어 물리적 흡착에만 의존하던 종래의 흡착제에 비하여 이산화탄소 흡착능 특히 고온에서의 흡착능이 크게 개선되는 것이다.The base-supported carbon dioxide adsorbent of the present invention prepared by the above method has a significant improvement in carbon dioxide adsorption capacity, particularly at high temperature, as compared with conventional adsorbents which depend only on physical adsorption due to increased affinity for carbon dioxide as well as physical adsorption.

이하 본 발명을 실시예에 따라 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

본 발명의 모든 실시예에서 수행된 이산화탄소 흡착시점은 다음 방법으로 수행되었다.The time point of carbon dioxide adsorption performed in all examples of the present invention was carried out by the following method.

정적 방법에 의해 이산화탄소의 압력을 약 1기압까지 행하였다. 시료는 흡착제 약 0.1그램을 사용하였으며 우선 이산화탄소를 시료표면과 접촉시켜 비가역적인 강염기자리의 이산화타소에 대한 친화도를 약화시켰다. 두번째 이산화탄소의 투입부터는 평형압력을 측정하고 기체 방정식에 의해 흡착량을 결정하였다. 시료의 이산화탄소 흡착 실험을 다수번 되풀이한 결과 모든 실시예에서 가역적인 흡착이 일어나고 있음을 알 수 있었다. 각 실시예에서 제조된 흡착제의 흡착량은 하기 표 1에서 정리하였다.The pressure of carbon dioxide was carried out to about 1 atmosphere by the static method. The sample used about 0.1 gram of adsorbent. First, carbon dioxide was contacted with the surface of the sample to weaken the affinity for irreversible strong bases for small dioxide. From the second input of carbon dioxide, the equilibrium pressure was measured and the adsorption amount was determined by the gas equation. As a result of repeating the carbon dioxide adsorption experiment of the sample many times, it was found that reversible adsorption occurred in all examples. Adsorption amount of the adsorbent prepared in each example is summarized in Table 1 below.

실시예 1Example 1

비표면적이 680㎡/g이고 평균기공크기가 12Å인 실리카겔을 Ca(CH3COO)2·H2O의 포화수용액에 5시간 함침시키고 진공에서 수분을 증발시킨 후, 700℃의 온도로 2시간동안 소성시켰다. 결과적인 염기자리 처가 흡착제는 비표면적 290㎡/g과 평균기공크기 13Å을 가졌다. CaO의 담지량은 실리카 100몰당 CaO 2.25몰이었다.Silica gel having a specific surface area of 680 m2 / g and an average pore size of 12 Å was impregnated in a saturated aqueous solution of Ca (CH 3 COO) 2 · H 2 O for 5 hours, evaporated moisture in vacuo, and then at 700 ° C. for 2 hours. Calcined for The resulting base adsorbent had a specific surface area of 290 m 2 / g and an average pore size of 13 mm 3. The amount of CaO supported was 2.25 mol of CaO per 100 mol of silica.

도 1은 본 실시예에서 제조된 CaO를 참지한 실리카겔과 담지하지 않은 실리카겔의 100℃와 250℃에서의 이산화탄소 흡착량을 비교한 그래프이다. 도 1에 의하면 담지하지 않은 실리카겔의 상압에서의 흡착량이 100℃와 250℃에서 각각 0.28mmol/g과 0.060mmol/g인데 반해 CaO를 담지한 흡착제의 경우 각각 0.42mmol/g과 0.20mmol/g으로 높은 흡착량을 보임을 알 수 이다.1 is a graph comparing the amount of carbon dioxide adsorption at 100 ° C. and 250 ° C. of a silica gel containing CaO containing in the present Example and an unsupported silica gel. According to FIG. 1, the adsorption amount of the unsupported silica gel at normal pressure is 0.28 mmol / g and 0.060 mmol / g at 100 ° C. and 250 ° C., respectively, but 0.42 mmol / g and 0.20 mmol / g, respectively, for the CaO supported adsorbent. It can be seen that it shows a high adsorption amount.

실시예 2Example 2

비표면적이 3,000㎡/g이고 평균기공크기가 11Å인 활성탄을 실시예 1과 같은 방법으로 하여 염기자리 첨가 흡착제를 제조하였다. 이와같은 방법으로 제조된 염기자리 첨가흡착제는 비표면적이 1,500㎡/g과 평균기공크기 13Å을 가졌다. CaO의 담지량은 100몰당 CaO 8.19몰이었다.A base addition adsorbent was prepared in the same manner as in Example 1 using activated carbon having a specific surface area of 3,000 m 2 / g and an average pore size of 11 GPa. Base adsorbent prepared in this manner had a specific surface area of 1,500 m 2 / g and an average pore size of 13 kPa. The amount of CaO supported was 8.19 mol of CaO per 100 mol.

도 2는 본 실시예에서 제조된 CaO를 담지한 활성탄과 담지하지 않은 활성탄의 100℃와 250℃에서의 이산화탄소 흡착량을 비교한 그래프이다. 담지하지 않은 활성탄의 상압에서의 흡착량이 100℃와 250℃에서 각각 0.84mmol/g과 0.15mmol/g이며 CaO를 담지한 흡착제의 경우 각각 0.69mmol/g과 0.21mmol/g였다.FIG. 2 is a graph comparing the amount of carbon dioxide adsorption at 100 ° C. and 250 ° C. of the activated carbon and the unsupported activated carbon prepared in the present Example. The adsorption amount of the unsupported activated carbon at atmospheric pressure was 0.84 mmol / g and 0.15 mmol / g at 100 ° C. and 250 ° C., respectively, and 0.69 mmol / g and 0.21 mmol / g for CaO-supported adsorbent, respectively.

100℃에서는 담지하지 않은 활성탄의 흡착량이 더 큰데 이는 비표면적이 CaO를 담지한 흡착제에 비해 월등히 컸기 때문이다. 하지만 250℃의 고온에서는 CaO를 담지한 활성탄의 흡착량이 크게 나타났다.At 100 ° C, the adsorption amount of the unsupported activated carbon is larger because the specific surface area is much larger than that of the CaO-supported adsorbent. However, the adsorption amount of activated carbon carrying CaO was large at a high temperature of 250 ° C.

흡착량을 비표면적당으로 계산해보면 담지하지 않은 흡착제의 상압에서의 비표면적당 흡착량은 100℃와 250℃에서 각각 0.27μmol/㎡과 0.048μmol/㎡였으며 CaO를 담지한 흡착제는 0.46μmol/㎡과 0.14μmol/㎡로, 후자의 흡착량이 큰 것으로 보다 비표면적이 동일할 때에는 CaO를 함침한 흡착제가 고온에서의 흡착량이 큼을 알 수 있다.When the adsorption amount was calculated per specific surface area, the adsorption amount per specific surface area at the atmospheric pressure of the unsupported adsorbent was 0.27 μmol / m 2 and 0.048 μmol / m 2 at 100 ° C and 250 ° C, respectively, and the CaO-supported adsorbent was 0.46μmol / m 2 and 0.14 It is understood that the adsorbent impregnated with CaO has a large adsorption amount at high temperature when the latter has a larger adsorption amount and the specific surface area is the same.

실시예 3Example 3

비표면적이 225㎡/g이고 평균기공크기가 28Å인 카본 블랙을 실시예 1과 같은 방법으로 하여 염기자리 첨가 흡착제를 제조하였다. 이와같은 방법으로 제조된 염기자리첨가흡착제는 비표면적이 141㎡/g과 평균기공크기 27Å을 가졌다. CaO의 담지량은 탄소 100몰당 CaO 7.77몰이었다.A base addition adsorbent was prepared in the same manner as in Example 1 using carbon black having a specific surface area of 225 m 2 / g and an average pore size of 28 mm 3. The base addition adsorbent prepared in this manner had a specific surface area of 141 m 2 / g and an average pore size of 27 kPa. The amount of CaO supported was 7.77 mol of CaO per 100 mol of carbon.

도 3은 본 실시예에서 제조된 CaO를 담지한 카본 블랙과 담지하지 않은 카본블랙의 100℃와 250℃에서의 이산화탄소 흡착량을 비교한 그래프이다. 담지하지 않은 카본블랙의 상압에서의 흡착량이 100℃와 250℃에서 각각 0.20mmol/g과 0.046mmol/g였으며 CaO를 담지한 흡착제의 경우 각각 0.16mmol/g과 0.092mmol/g였다. 100에서는 그 흡착량이 비슷하나 250의 고온에서는 CaO를 담지한 카본블랙의 흡착량이 크게 나타났다.3 is a graph comparing the amount of carbon dioxide adsorption at 100 ° C. and 250 ° C. of the carbon black carrying CaO and the unsupported carbon black prepared in the present example. The adsorption amount of carbon black unsupported at atmospheric pressure was 0.20 mmol / g and 0.046 mmol / g at 100 ° C. and 250 ° C., respectively, and 0.16 mmol / g and 0.092 mmol / g for CaO-supported adsorbent, respectively. At 100, the adsorption amount was similar, but at 250, the adsorption amount of carbon black carrying CaO was large.

흡착량을 비표면적당으로 계산을 해보면 담지하지 않은 흡착제의 상압에서의 비표면적당 흡착량은 100℃와 250℃에서 각각 0.882μmol/㎡과 0.204μmol/㎡이며 CaO를 담지한 흡착제는 1.16μmol/㎡과 0.657μmol/㎡로, 후자의 흡착량이 큰 것으로 보아 비표면적이 동일할 때에는 CaO를 함침한 흡착제가 고온에서의 흡착량이 큼을 알 수 있다.When the adsorption amount is calculated per specific surface area, the adsorption amount per specific surface area at normal pressure of unsupported adsorbent is 0.882μmol / m2 and 0.204μmol / m2 respectively at 100 ℃ and 250 ℃, and CaO-supported adsorbent is 1.16μmol / ㎡ and As the latter has a large adsorption amount of 0.657 µmol / m 2, it can be seen that when the specific surface area is the same, the adsorbent impregnated with CaO has a large adsorption amount at high temperature.

실시예 4Example 4

본 실시에는 졸-겔 합성에 의해 실리카 제로겔(silica xerogel)을 제조하고 이를 담지체로 하여 함침법으로 이산화탄소용 흡착제를 제조하는 실시예이다.In this embodiment, a silica xgel is prepared by sol-gel synthesis, and an adsorbent for carbon dioxide is prepared by impregnation using the support as a carrier.

Si(OC2H5)4, n-프로판올, 물, 염산을 1:3:1:0.0007의 몰비로 혼합하여 졸을 합성하고 여기에 Si 1몰에 대해 물과 염기촉매로 사용되는 NH4OH를 몰비 3:0.001로 첨가하여 겔화시킨 후 건조하여 실기카 제로겔(xerogel)을 합성하였다. 제조된 실리카 제조겔은 비표면적이 530㎡/g이고 평균기공크기가 11Å이였다. Si (OC 2 H 5) 4 , n- propanol, water, hydrochloric acid 1: 3: 1: NH were mixed in a molar ratio of 0.0007, and synthesizing the sol that is used with water and a base catalyst for the Si 1 mole here 4 OH Was added at a molar ratio of 3: 0.001 and gelled, followed by drying to synthesize a silica gel (xerogel). The prepared silica gel had a specific surface area of 530 m 2 / g and an average pore size of 11 mm 3.

실리카 제로겔을 담지체로 하여 실시예 1과 같은 방법으로 하여 염기자리 첨가 흡착제를 제조하였다.A base-added adsorbent was prepared in the same manner as in Example 1 using silica zero gel as a support.

이와같은 방법으로 제조된 염기자리 첨가 흡착제는 비표면적이 500㎡/g과 평균기공크기 13Å을 가졌다. CaO의 담지량은 실리카 100몰당 CaO 7.42몰이었다.The base addition adsorbent prepared in this manner had a specific surface area of 500 m 2 / g and an average pore size of 13 kPa. The amount of CaO supported was 7.42 mol of CaO per 100 mol of silica.

도 4는 본 실시예에서 제조된 CaO를 담지한 실리카 제로겔과 담지하지 않은 실리카 제로겔의 100℃와 250℃에서의 이산화탄소 흡착량을 비교한 그래프이다. 담지하지 않은 실리카 제로겔의 상압에서의 흡착량이 100℃와 250℃에서 각각 0.21mmol/g과 0.022mmol/g인데 반해 CaO를 담지한 흡착제의 경우 각각 0.34mmol/g과 0.13mmol/g으로 높은 흡착량을 보였다.FIG. 4 is a graph comparing carbon dioxide adsorption amounts at 100 ° C. and 250 ° C. of the silica zero gel carrying CaO and the unsupported silica zero gel. The adsorption amount of the unsupported silica zero gel at normal pressure was 0.21 mmol / g and 0.022 mmol / g at 100 ° C. and 250 ° C., respectively, while the adsorption of CaO was 0.34 mmol / g and 0.13 mmol / g, respectively. Showed the amount.

실시예 5Example 5

본 실시에는 합성법에 의해 이산화탄소 흡착제를 제조하는 방법에 관한 것이다.This embodiment relates to a method for producing a carbon dioxide adsorbent by a synthesis method.

실시예 4에서와 동일한 방법으로 졸을 제조하였다. 여기에 Si 1몰에 대해 물과 Ca(CH3COO)2·H2O를 몰비 7:0.1로 첨가하여 겔화 과정 및 건조과정을 거친후, 700℃에서 2시간동안 소성하여 염기자리 처가 흡착제를 제조하였다.The sol was prepared in the same manner as in Example 4. Water and Ca (CH 3 COO) 2 H 2 O were added to the mole ratio of Si at a molar ratio of 7: 0.1, and after gelling and drying, the mixture was calcined at 700 ° C. for 2 hours to prepare an adsorbent. Prepared.

이와같은 방법으로 제조된 염기자리 첨가 흡착제는 비표면적이 670㎡/g과 평균기공크기 19Å을 가졌다. 실시예 4에서 제조된 CaO 담지 실리카 제로겔과 그 형태학적 특성을 비교하면 실리카 제로겔은 미세기공이 주로 발달한데 비하여 본 실시예에서 합성법에 의해 제조된 흡착제는 주로 중기공이 발달하여으며 비표면적 및 기공 부피가 커 기공율이 컸다.The base addition adsorbent prepared in this manner had a specific surface area of 670 m 2 / g and an average pore size of 19 kPa. Comparing CaO-supported silica zero gel prepared in Example 4 with its morphological characteristics, the silica zero gel mainly developed micropores, whereas the adsorbent prepared by the synthesis method in this example mainly developed mesopores and had a specific surface area and The porosity was large because the pore volume was large.

CaO의 담지량은 실리카 100몰당 CaO 8.25몰로, 합성과정에서 넣어준 CaO의 양과 일치하였다. 이는 실시예 1에서 실시예 4까지의 함침방법에서 그 하침량이 함침 시간에 따라 변하며 함침량의 조절이 어렵다는 점을 생각할 때 합성법의 장점으로 파악되었다.The amount of CaO supported was 8.25 moles of CaO per 100 moles of silica, which was consistent with the amount of CaO added during the synthesis. In the impregnation method from Example 1 to Example 4, this was found to be an advantage of the synthesis method considering that the amount of the lower impregnation varies with the impregnation time and the adjustment of the impregnation amount is difficult.

도 5는 본 실시예에서 제조된 합성법에 의한 흡착제와 실시예 4에서 제조된 합침법에 의한 흡착제의 주사전자현미경 사진과 전자탐침미세분석에 의한 Ca의 분포도이다.FIG. 5 is a scanning electron micrograph of the adsorbent prepared by the synthesis method prepared in the present embodiment and the adsorbent prepared by the incorporation method prepared in Example 4, and the distribution map of Ca by the electron probe microanalysis.

함침법에 의해 제조된 흡착제는 그 표면이 비교적 매끈하며 Ca의 분포가 매우 고른 반면 합성법에 의한 흡착제는 거친 표면을 가졌으며 비교적 고른 Ca의 분포를 가졌다.The adsorbents produced by impregnation had a relatively smooth surface and a very even distribution of Ca, while the adsorbents by the synthesis had a rough surface and a relatively even distribution of Ca.

도 6은 본 실시예에서 제조된 합성법에 의한 흡착제와 실시예 4에서 제조된 CaO를 담지하지 않은 실리카 제로겔의 100℃와 250℃에서의 이산화탄소 흡착량을 비교한 그래프이다. 담지하지 않은 실리카 제로겔의 상압에서의 흡착량이 100℃와 250℃에서 각각 0.21mmol/g과 0.022인데 반해 합성법에 의해 제조된 CaO를 담지한 흡착제의 경우 각 0.34mmol/g과 0.24mmol/g으로 높은 흡착량을 보였다.FIG. 6 is a graph comparing the amount of carbon dioxide adsorption at 100 ° C. and 250 ° C. of an adsorbent prepared by the synthesis method of the present example and a CaO-supported silica zero gel prepared in Example 4. FIG. The adsorption amount of the unsupported silica zero gel at normal pressure was 0.21 mmol / g and 0.022 at 100 ° C and 250 ° C, respectively, whereas the CaO-supported adsorbent prepared by the synthesis method was 0.34 mmol / g and 0.24 mmol / g, respectively. It showed a high adsorption amount.

[표 1]TABLE 1

상기한 바와 같이 본 발명에 의한 이산화탄소 흡착제는 그 표면에 염기자리가 부가됨으로써 이산화탄소에 대한 친화력이 증대됨으로써 고온에서의 이산화탄소에 대한 흡착능이 크게 개선되는 것이다.As described above, the carbon dioxide adsorbent according to the present invention increases the affinity for carbon dioxide by adding a base to the surface thereof, thereby greatly improving the adsorption capacity for carbon dioxide at high temperature.

Claims (22)

통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체표면에 염기 자리를 부가하여된 이산화탄소 흡착제Carbon dioxide adsorbent by adding base sites to the surface of the support of ordinary adsorbents or materials usable as adsorbents 제1항에 있어서, 상기 담지체는 활성탄, 제오라이트, 클레이, 실라카겔, 활성탄소섬유 및 카본 블랙으로 구성되는 그룹에서 선택되는 것임을 특징으로 하는 흡착제The adsorbent of claim 1, wherein the support is selected from the group consisting of activated carbon, zeolite, clay, silica gel, activated carbon fiber and carbon black. 제1항에 있어서, 상기 담지체는 졸-겔합성에 의해 제조된 실리카 제로겔(silica xerogel)임을 특징으로 하는 흡착제The adsorbent of claim 1, wherein the support is a silica xerogel prepared by sol-gel synthesis. 제1항 내지 3항중 어느 한 항에 있어서, 상기 염기자리 부여 물질은 알칼리 금속이나 알카리 토금속의 산화물, 수산화물 또는 탄산염임을 특징으로 하는 흡착제The adsorbent according to any one of claims 1 to 3, wherein the base-substance giving substance is an oxide, hydroxide or carbonate of an alkali metal or an alkaline earth metal. 제4항에 있어서, 상기 염기자리 부여 물질은 알칼리 토금속의 산화물임을 특징으로 하는 흡착제5. The adsorbent as claimed in claim 4, wherein the base giving substance is an oxide of alkaline earth metal. 제5항에 있어서, 상기 알칼리 토금속 산화물은 CaO 임을 특징으로 하는 흡착제The adsorbent of claim 5, wherein the alkaline earth metal oxide is CaO. 제1항에 있어서, 상기 흡착제는 실리카 제로겔의 졸겔합성시 졸(sol) 상태에서 염기물 또는 소성에 의해 염기물 형성이 가능한 물질을 첨가하여 겔화시켜 제조된 것임을 특징으로 하는 흡착제The adsorbent of claim 1, wherein the adsorbent is prepared by adding a base material or a substance capable of forming a base by firing in a sol state during sol gel synthesis of silica zero gel, and gelling the adsorbent. 염기물 또는 소성에 의해 염기물로 형성되는 물질을 용매에 용해시켜 용액을 형성하는 단계;Dissolving a base or a substance formed by base by firing in a solvent to form a solution; 상기 형성된 용액에 통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체를 함침시켜 그 담지체 표면에 염기를 부가하는 단계;Impregnating the formed solution with a carrier of a conventional adsorbent or a substance usable as an adsorbent to add a base to the carrier surface; 건조시켜 용매를 제거하는 단계; 및Drying to remove the solvent; And 임의적으로 소성에 의해 염기물을 형성하는 물질을 사용한 경우 상기 담지체를 소성시켜 담지체에 담지된 염기물 형성물질을 염기물로 전환시키는 단계; 를 포함하는 함침법에 의한 이산화탄소 흡착제 제조방법Optionally firing the carrier to convert the base forming material supported on the carrier to a base if a substance is used that forms a base by firing; Method for producing carbon dioxide adsorbent by impregnation method comprising a 제8항에 있어서, 상기 담지체는 활성탄, 제오라이트, 클레이, 실리카겔, 활성탄소 섬유 및 카본 블랙으로 구성되는 그룹에서 선택된 것임을 특징으로 하는 방법The method of claim 8, wherein the support is selected from the group consisting of activated carbon, zeolite, clay, silica gel, activated carbon fibers and carbon black. 제8항에 있어서, 상기 담지체는 졸겔 합성에 의해 제조된 실리카 제로겔(silica xerogel)임을 특징으로 하는 방법The method of claim 8, wherein the support is a silica xerogel prepared by sol-gel synthesis. 제8항에 있어서, 상기 염기물은 알칼리 금속이나 알칼리 토금속의 산화물, 수산화물 또는 탄산염임을 특징으로 하는 방법The method of claim 8, wherein the base is an oxide, hydroxide or carbonate of an alkali metal or an alkaline earth metal. 제11항에 있어서, 상기 염기물은 CaO임을 특징으로 하는 방법The method of claim 11, wherein the base is CaO. 제8항에 있어서, 상기 소성에 의해 염기물로 형성되는 물질은 알칼리금속이나 알칼리 토금속의 산염임을 특징으로 하는 방법The method of claim 8, wherein the material formed by the firing is a salt of an alkali metal or an alkaline earth metal. 제13항에 있어서, 상기 소성에 의해 염기물로 형성되는 물질은 알칼리 토금속의 초산염임을 특징으로 하는 방법The method of claim 13, wherein the material formed as a base by firing is an acetate of an alkaline earth metal. 제14항에 있어서, 상기 알칼리 토금속의 초산염은 Ca(CH3COO)2·H2O임을 특징으로 하는 방법.15. The method of claim 14, wherein the alkaline earth metal acetate is Ca (CH 3 COO) 2 H 2 O. 졸-겔(sol-gel) 합성이 가능한 전 물질로 졸을 제조하는 단계;Preparing a sol from all materials capable of sol-gel synthesis; 상기 졸 용액에 염기물 또는 소성에 의해 염기물을 형성하는 물질을 함침·용해시켜 겔화시키는 단계;Gelling the sol solution by impregnating and dissolving a base or a substance which forms a base by firing; 건조시켜 용매를 제거하는 단계; 및Drying to remove the solvent; And 임의적으로 상기 소성에 의해 염기물을 형성하는 물질을 사용한 경우 상기 겔을 소성시켜 겔에 담지된 염기물 형성물질을 염기물로 전환시키는 단계; 를 포함하는 함침법에 의한 이산화탄소 흡착제 제조방법Optionally, calcining the gel to convert the base forming material supported on the gel into a base when a substance which forms the base by the calcining is used; Method for producing carbon dioxide adsorbent by impregnation method comprising a 제16항에 있어서, 상기 졸-겔 합성이 가능한 전물질은 알콕사이드(alkoxides)임을 특징으로 하는 방법The method of claim 16, wherein all the materials capable of sol-gel synthesis are alkoxides. 제17항에 있어서, 상기 졸-겔 합성이 가능한 전물질은 Si(OC2H5)4임을 특징으로 하는 방법.The method of claim 17, wherein the entire material capable of sol-gel synthesis is Si (OC 2 H 5 ) 4 . 제18항에 있어서, 상기 염기물은 CaO임을 특징으로 하는 방법The method of claim 18, wherein the base is CaO. 제16항에 있어서, 상기 소성에 의해 염기물을 형성하는 물질은 알칼리금속이나 알카리 토금속의 산염임을 특징으로 하는 방법The method of claim 16, wherein the material which forms the base by firing is an acid salt of an alkali metal or an alkaline earth metal. 제20항에 있어서, 상기 소성에 의해 염기물을 형성하는 물질은 알칼리 토금속의 초산염임을 특징으로 하는 방법21. The method of claim 20, wherein the material which forms the base by firing is an acetate of an alkaline earth metal. 제21항에 있어서, 상기 알칼리 토금속의 초산염은 Ca(CH3COO)2·H2O임을 특징으로 하는 방법The method of claim 21, wherein the alkaline earth metal acetate is Ca (CH 3 COO) 2 H 2 O
KR1019960071539A 1996-12-24 1996-12-24 Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same KR100293204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960071539A KR100293204B1 (en) 1996-12-24 1996-12-24 Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960071539A KR100293204B1 (en) 1996-12-24 1996-12-24 Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR19980052532A true KR19980052532A (en) 1998-09-25
KR100293204B1 KR100293204B1 (en) 2001-09-17

Family

ID=37527188

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960071539A KR100293204B1 (en) 1996-12-24 1996-12-24 Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR100293204B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940464B1 (en) * 2008-02-12 2010-02-04 경희대학교 산학협력단 A porous composite filter for simultaneous treatment of dust-CO2 from flue gas.
WO2012033250A1 (en) * 2010-09-08 2012-03-15 한국전력공사 Carbon dioxide absorbent and preparation method thereof
US8857910B2 (en) 2011-11-23 2014-10-14 Woobo Tech Co., Ltd. Apparatus for moving headrest
KR20150109818A (en) * 2014-03-21 2015-10-02 고려대학교 산학협력단 Carbon dioxide adsorbents with improved absorption-desorption performance and manufacturing method thereof
US11088357B2 (en) 2017-12-12 2021-08-10 Samsung Electronics Co., Ltd. Battery case, battery, and method for fabricating a battery
US11094982B2 (en) 2018-03-09 2021-08-17 Samsung Electronics Co., Ltd. Battery case, battery, and method for fabricating a battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020019187A (en) * 2000-09-05 2002-03-12 최홍식 Carbon Dioxide Absorber Which Comprises Sodium Carbonate as an Active Ingredient for Controlling Carbon Dioxide Absorption Speed
CN102271803B (en) * 2008-11-11 2014-02-05 昆士兰大学 Method for producing sorbents for CO2 capture under high temperatures
KR101328747B1 (en) 2011-12-19 2013-11-11 한국철도기술연구원 Apparatus and method of carbon dioxide reduction for subway coach
KR102326686B1 (en) 2019-12-19 2021-11-17 주식회사 포스코 Preparing method for carbon dioxide adsorbent and carbon dioxide adsorbent prepared by same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2741743B2 (en) * 1994-11-17 1998-04-22 工業技術院長 High temperature separation of carbon dioxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940464B1 (en) * 2008-02-12 2010-02-04 경희대학교 산학협력단 A porous composite filter for simultaneous treatment of dust-CO2 from flue gas.
WO2012033250A1 (en) * 2010-09-08 2012-03-15 한국전력공사 Carbon dioxide absorbent and preparation method thereof
US8857910B2 (en) 2011-11-23 2014-10-14 Woobo Tech Co., Ltd. Apparatus for moving headrest
KR20150109818A (en) * 2014-03-21 2015-10-02 고려대학교 산학협력단 Carbon dioxide adsorbents with improved absorption-desorption performance and manufacturing method thereof
US11088357B2 (en) 2017-12-12 2021-08-10 Samsung Electronics Co., Ltd. Battery case, battery, and method for fabricating a battery
US11094982B2 (en) 2018-03-09 2021-08-17 Samsung Electronics Co., Ltd. Battery case, battery, and method for fabricating a battery

Also Published As

Publication number Publication date
KR100293204B1 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
Wang et al. Recent advances in capture of carbon dioxide using alkali-metal-based oxides
Kuwahara et al. Enhanced CO2 adsorption over polymeric amines supported on heteroatom‐incorporated SBA‐15 silica: impact of heteroatom type and loading on sorbent structure and adsorption performance
Han et al. Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature
AU2011380572B2 (en) Solid carbon dioxide absorbent including amine or a compound thereof for use in the capturing process of dry carbon dioxide, and method for manufacturing same
Zhao et al. Enhancement of CO 2 adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine
US9283511B2 (en) Composite materials for reversible CO2 capture
KR101709987B1 (en) Aerogel for capturing carbon dioxide
KR100293204B1 (en) Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same
AU2012395691A1 (en) Method for preparing solid amine gas adsorption material
Chen et al. Synthesis of mesoporous silica from bottom ash and its application for CO 2 sorption
CN102614833B (en) Modified titanium nanotube absorbent for absorbing carbon dioxide and preparation method and application thereof
RU2000111129A (en) CATALYTIC COMPOSITION FOR TREATING HYDROCARBONS WITH BOILING TEMPERATURES IN THE INTERVAL OF A GASOLINE-LIGROIN Fraction
KR101191270B1 (en) Amine-impregnated silica monolith with a hierarchical pore structure, preparation method thereof and dry sorbent for carbon dioxide using the same
CN108262006B (en) MCM-41 molecular sieve with metal doped in framework and preparation method thereof
KR20090033300A (en) Alkali metal-based solid sorbent for carbon dioxide capture with low temperature regeneration
CN110420617A (en) A kind of amino modified hydrotalcite adsorbent and preparation method thereof
KR101146173B1 (en) Oxygen adsorbent having high sorption capacity for oxygen and thermal stability and preparation method thereof
KR101502238B1 (en) Carbon dioxide absorbent and carbon dioxide capture process thereof
KR102300317B1 (en) Manufacturing method of mesoporous silica materials having high specific surface area value
KR100550209B1 (en) Manufacturing Method of carbondioxide adsorbent in using high temperature
WO2020124187A1 (en) Process for producing nanostructured material, product and use
Kaya Polyethylene glycol/silica and carbon black/silica xerogel composites as an adsorbent for CO2capture
JP2642696B2 (en) Control method of specific surface area of alumina
KR100803325B1 (en) Titanium dioxide added alkali-carbonate regenerable sorbent for carbon dioxide removal
Liu et al. Synthesis of MgO-Modified mesoporous silica and its adsorption performance toward CO2

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130327

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140403

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee