KR100293204B1 - Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same - Google Patents

Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same Download PDF

Info

Publication number
KR100293204B1
KR100293204B1 KR1019960071539A KR19960071539A KR100293204B1 KR 100293204 B1 KR100293204 B1 KR 100293204B1 KR 1019960071539 A KR1019960071539 A KR 1019960071539A KR 19960071539 A KR19960071539 A KR 19960071539A KR 100293204 B1 KR100293204 B1 KR 100293204B1
Authority
KR
South Korea
Prior art keywords
base
adsorbent
firing
gel
sol
Prior art date
Application number
KR1019960071539A
Other languages
Korean (ko)
Other versions
KR19980052532A (en
Inventor
이건홍
송현곤
Original Assignee
이구택
포항종합제철 주식회사
정명식
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사, 정명식, 학교법인 포항공과대학교 filed Critical 이구택
Priority to KR1019960071539A priority Critical patent/KR100293204B1/en
Publication of KR19980052532A publication Critical patent/KR19980052532A/en
Application granted granted Critical
Publication of KR100293204B1 publication Critical patent/KR100293204B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: An improved adsorbent having superior adsorption efficiency even at a high temperature is provided, and a method manufacturing the adsorbent having superior adsorption efficiency even at a high temperature is provided. CONSTITUTION: The adsorbent for separating carbon dioxide at a high temperature is formed by adding a base site onto the surface of a support made of an ordinary adsorbent or a material capable of being used as an adsorbent, wherein the support is selected from the group consisting of activated carbon, zeolite, clay, silica gel, activated carbon fiber and carbon black, the support is silica xerogel, the base site giving material is oxides of alkali metal or alkaline earth metal, hydroxide or carbonate, the base site giving material is oxide of alkaline earth metal such as CaO, and the adsorbent is manufactured by gelling the materials after adding a base in the sol state or a material capable of being formed into a base by firing to the silica xerogel when synthesizing sol-gel of silica xerogel. The method for manufacturing a carbon dioxide adsorbent by impregnation comprises the steps of preparing a solution by dissolving into a solvent a base or a material capable of being formed into a base by firing; adding a base onto the surface of the support by impregnating a support made of an ordinary adsorbent or a material capable of being used as an adsorbent into the prepared solution; removing the solvent by drying the solution; and firing the support so as to convert the base formed material supported onto the support into a base in case of using a material forming bases by arbitrary firing.

Description

이산화탄소 고온 분리용 흡착제 및 그 제조방법Carbon dioxide high temperature separation adsorbent and its manufacturing method

본 발명은 배가스중 이산화탄소 분리에 사용되는 흡착제 및 그 제조방법에 관한 것이며, 보다 상세하게는 고온의 공정배가스중 이산화탄소 분리가 가능한 흡착제 및 그 제조방법에 관한 것이다.The present invention relates to an adsorbent used for the separation of carbon dioxide in the flue gas and a method for producing the same, and more particularly, to an adsorbent capable of separating carbon dioxide in a high temperature process flue gas and a method for producing the same.

이산화탄소가 지구 온난화를 유발하는 주 요인임은 주지된 사실이며 이에 따라 이산화탄소의 배출량을 규제하려는 움직임이 전세계적으로 확산되고 있다. 이산화탄소의 규제문제는 처분, 분리, 전환의 관점에서 여러 가지 방법이 시도되고 있으며, 이중 분리방법으로는 흡수법, 흡착법, 분리막법 등이 있다. 지금까지 공업적으로 혼합가스에서 이산화탄소를 분리ㆍ회수하는 방법으로는 탄산칼륨 용액이나 알칸올아민 용액을 사용하여 흡수하는 기술이 사용되어왔으나 흡수공정은 부식이 심한 용액을 사용하기 때문에 장치투자비가 증대하고 재생을 위한 에너지, 약품비등 운전비가 많이 들어 중소용량의 이산화탄소 분리를 위하여는 흡착법이 개발,이용되고 있다.It is well known that carbon dioxide is a major contributor to global warming, and the movement to regulate carbon dioxide emissions is spreading around the world. Various methods have been tried from the viewpoint of disposal, separation, and conversion of carbon dioxide, and double separation methods include absorption method, adsorption method, and membrane method. Until now, the technology of separating and recovering carbon dioxide from mixed gas has been used to absorb potassium carbonate solution or alkanolamine solution. However, the absorption process uses a highly corrosive solution. Adsorption methods have been developed and used for the separation of small and medium-sized carbon dioxide due to high operating costs such as energy and chemical costs for regeneration.

흡착법은 이산화탄소를 함유한 가스와 흡착제의 접촉시 이산화탄소에 대한 흡착제의 선택적 흡착성을 이용하는 기술로서, 이산화탄소용 흡착제로는 비표면적이 큰 활성탄과 제올라이트 분자체가 널리 사용되며 이들은 주로 상온에서의 이산화탄소 흡착에 사용되어왔다.Adsorption is a technique that uses the selective adsorption of adsorbents on carbon dioxide when the gas containing carbon dioxide is contacted with the adsorbent. Activated carbon and zeolite molecular sieves with a large specific surface area are widely used as adsorbents for carbon dioxide. Has been used.

그러나 상기와 같은 종래의 흡착제는 이산화탄소와 흡착제 표면과의 약한 물리적 흡착력만을 이용하여 이산화탄소를 분리하였기 때문에, 이들 흡착제는 온도 상승에 따라 그 흡착력이 급격히 감소되어 100℃-250℃의 온도를 갖는 공장 배가스중의 이산화탄소를 흡착, 분리하는데는 적합하지 않는 것이다.However, since the conventional adsorbents separate carbon dioxide using only weak physical adsorption force between the carbon dioxide and the adsorbent surface, these adsorbents are rapidly reduced as the temperature rises, and thus the plant exhaust gas having a temperature of 100 ° C-250 ° C. It is not suitable for adsorption and separation of carbon dioxide.

이에 본 발명의 목적은 상기와 같은 종래의 흡착제가 갖는 문제점을 해결하여 고온에서도 흡착능이 우수한 보다 개선된 흡착제를 제공하는데 있다.Accordingly, an object of the present invention is to solve the problems of the conventional adsorbent as described above to provide a more improved adsorbent excellent in adsorption capacity even at high temperatures.

나아가 본 발명의 다른 목적은 고온에서도 흡착능이 우수한 흡착제 제조방법을 제공하는데 있다.Furthermore, another object of the present invention is to provide a method for preparing an adsorbent having excellent adsorption capacity even at a high temperature.

상기와 같은 본 발명의 목적은 후술되는 본 발명에 의해 달성가능한 것이다.The object of the present invention as described above is achievable by the present invention described below.

제1도는 본 발명의 실시예 1에서 제조된 CaO담지 실리카겔과 담지되지 않은 실리카겔의 100℃와 250℃에서의 이산화탄소 흡착량을 대비한 그래프,1 is a graph comparing the adsorption amount of carbon dioxide at 100 ℃ and 250 ℃ of CaO supported silica gel and unsupported silica gel prepared in Example 1 of the present invention,

제2도는 본 발명의 실시예 2에서 제조된 CaO담지 활성탄과 담지되지 않은 활성탄의 100℃와 250℃에서의 이산화탄소 흡착량을 대비한 그래프,2 is a graph comparing the adsorption amount of carbon dioxide at 100 ° C. and 250 ° C. of CaO-supported activated carbon and unsupported activated carbon prepared in Example 2 of the present invention,

제3도는 본 발명의 실시예 3에서 제조된 CaO담지 카본블랙과 담지되지 않은 카본 블랙의 100℃와 250℃에서의 이산화탄소 흡착량을 대비한 그래프,3 is a graph comparing the amount of carbon dioxide adsorption at 100 ° C. and 250 ° C. of the CaO-supported carbon black and the unsupported carbon black prepared in Example 3 of the present invention;

제4도는 본 발명의 실시예 4에서 제조된 CaO담지 실리카 제로겔(silicaxerogel)과 담지되지 않은 실리카 제로겔의 100℃와 250℃에서의 이산화탄소 흡착량을 대비한 그래프,4 is a graph comparing the adsorption amount of carbon dioxide at 100 ° C. and 250 ° C. of a CaO supported silica zero gel prepared in Example 4 of the present invention and an unsupported silica zero gel,

제5도는 본 발명의 실시예 4에서 제조된 함침법에 의한 흡착제와 본 발명의 실시예 5에서 제조된 합성법에 의한 흡착제의 주사전자 현미경 사진과 전자 탐침 미세분석에 의한 Ca분포도로서,FIG. 5 is a scanning electron micrograph of the adsorbent prepared by Example 4 of the present invention and the adsorbent prepared by the synthesis method of Example 5 of the present invention, and Ca distribution diagram by electron probe microanalysis.

제5a도는 실시예 5에서 합성법에 따라 제조된 흡착제의 주사전자현미경 사진,Figure 5a is a scanning electron micrograph of the adsorbent prepared according to the synthesis method in Example 5,

제5b도는 실시예 5에서 합성법에 따라 제조된 흡착제의 Ca분포도,5b is a Ca distribution diagram of an adsorbent prepared according to the synthesis method in Example 5,

제5c도는 실시예 4에서 함침법에 따라 제조된 흡착제의 주사전자현미경 사진,Figure 5c is a scanning electron micrograph of the adsorbent prepared according to the impregnation method in Example 4,

제5d도는 실시예 4에서 합침법에 따라 제조된 흡착제의 Ca 분포도,5d is a Ca distribution diagram of an adsorbent prepared according to the incorporation method in Example 4,

제6도는 본 발명의 실시예 5에서 합성법에 따라 제조한 흡착제와 실시예 4에서 제조된 CaO를 담지하지 않은 실리카 제로겔의 100℃와 250℃에서의 이산화탄소 흡착량을 대비한 그래프이다.FIG. 6 is a graph comparing carbon dioxide adsorption amounts at 100 ° C. and 250 ° C. of an adsorbent prepared according to the synthesis method of Example 5 of the present invention and a silica-free gel prepared in Example 4.

본 발명의 제1견지에 의하면, 통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체 표면에 염기자리를 부가하여된 이산화탄소 흡착제가 제공된다.According to the first aspect of the present invention, there is provided a carbon dioxide adsorbent in which a base is added to a surface of a carrier made of a conventional adsorbent or a substance usable as an adsorbent.

본 발명의 제2견지에 의하면, 염기물 또는 소성에 의해 염기물로 형성되는 물질을 용매에 용해시켜 용액을 형성하는 단계; 상기 형성된 용액에 통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체를 함침시켜 그 담지체 표면에 염기를 부가하는 단계; 건조시켜 용매를 제거하는 단계; 및 임의적으로 소성에 의해 염기물로 형성되는 물질을 사용한 경우 상기 담지체를 소성시켜 담지체에 담지된 염기물 형성물질을 염기물로 전환시키는 단계;를 포함하여 이루어지는 함침법에 의한 이산화탄소 흡착제 제조방법이 제공된다.According to a second aspect of the present invention, a step of dissolving a base or a substance formed of a base by firing in a solvent to form a solution; Impregnating the formed solution with a carrier of a conventional adsorbent or a substance usable as an adsorbent to add a base to the carrier surface; Drying to remove the solvent; And optionally, firing the carrier to convert the base forming material supported on the carrier to a base, when using a substance formed of a base by firing. 2. This is provided.

본 발명의 제3견지에 의하면, 졸-겔(sol-gel) 합성이 가능한 전 물질로 졸을 제조하는 단계; 상기 졸 용액에 염기물 또는 소성에 의해 염기물을 형성하는 물질을 함침ㆍ용해시켜 겔화시키는 단계; 건조시켜 용매를 제거하는 단계; 임의적으로 상기 소성에 의해 염기물을 형성하는 물질을 사용한 경우 상기 겔을 소성시켜 겔에 담지된 염기물 형성물질을 염기물로 전환시키는 단계; 를 포함하여 이루어지는 합성법에 의한 이산화탄소 흡착제 제조방법이 제공된다.According to a third aspect of the present invention, there is provided a method of preparing a sol, the method comprising: preparing a sol with a whole material capable of sol-gel synthesis; Gelling the sol solution by impregnating and dissolving a base or a substance which forms a base by firing; Drying to remove the solvent; Optionally, calcining the gel to convert the base forming material supported on the gel into a base when a substance which forms the base by the calcining is used; Provided is a method for producing a carbon dioxide adsorbent by a synthesis method comprising a.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

일반적으로 흡착제의 흡착능을 결정하는 요소로는 첫째, 흡착시키고자 하는 흡착질이 접근가능한 흡착제의 비표면적, 둘째 흡착질에 대한 흡착제 표면의 친화도등을 들 수 있다. 여기서 상온 혹은 저온 흡착에서는 비표면적의 크기가 흡착량을 주로 좌우하나 온도가 올라감에 따라 흡착질에 대한 흡착제의 표면친화도가 흡착의 중요요소로 작용하게 된다.In general, factors that determine the adsorption capacity of the adsorbent include first, the specific surface area of the adsorbent to which the adsorbent to be adsorbed, and the second, the affinity of the adsorbent surface for the adsorbent. Here, in room temperature or low temperature adsorption, the specific surface area mainly determines the amount of adsorption, but as the temperature increases, the surface affinity of the adsorbent to the adsorbate acts as an important factor of adsorption.

이에 본 발명자는 이산화탄소와 질소의 분리에 있어서, 이산화탄소가 질소에 비해 큰 극성화도와 사극자(quadrapole)를 갖는 산성기체이므로 종래의 흡착제 표면에 염기자리를 부여함으로써 이산화탄소에 대한 친화도를 더 높일 수 있어 고온에서의 흡착능을 개선할 수 있다는 것에 착안하여 연구를 계속한 결과 본 발명을 완성하기에 이르렀다.Therefore, in the separation of carbon dioxide and nitrogen, the present inventors can increase the affinity for carbon dioxide by giving a base to the surface of a conventional adsorbent since carbon dioxide is an acidic gas having a greater polarity and quadrapole than nitrogen. In view of the fact that the adsorption capacity at a high temperature can be improved, studies have been carried out to complete the present invention.

본 발명의 제1측면에 의한 이산화탄소 흡착제는 통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체 표면에 염기자리를 부여함으로써된 것이다.The carbon dioxide adsorbent according to the first aspect of the present invention is obtained by providing a base site on a surface of a carrier made of a conventional adsorbent or a substance usable as an adsorbent.

상기 담지체로 사용되는 통상의 흡착제 또는 흡착제로서 사용가능한 물질로는 활성탄, 제오라이트, 클레이, 실리카겔, 활성탄소섬유, 카본블랙 및 졸-겔 합성에 의해 제조된 실리카 제로겔(silica xerogel)을 들 수 있다.Common adsorbents or materials usable as adsorbents used as the carrier include activated carbon, zeolite, clay, silica gel, activated carbon fiber, carbon black and silica xerogel prepared by sol-gel synthesis. .

본 발명에 의한 이산화탄소 흡착제는 상기와 같은 담지체 표면에 염기자리를 부여함으로써 이루어진 것인 바, 이같은 염기자리를 제공하는 물질로서는 알칼리금속이나 알칼리토금속류의 산화물, 수산화물이나 탄산염등 염기물을 들 수 있으며, 바람직한 물질로는 알칼리 토금속 산화물이 좋으며, 보다 바람직한 것은 CaO이다.The carbon dioxide adsorbent according to the present invention is formed by imparting a base to the surface of the carrier as described above. Examples of the material for providing such a base include bases such as oxides, hydroxides and carbonates of alkali metals or alkaline earth metals. Preferred materials are alkaline earth metal oxides, and CaO is more preferred.

한편, 본 발명의 흡착제에서 담지체로 사용될 수 있는 실리카 제로겔은 졸-겔 합성가능한 전 물질인 알콕사이드류를 용매 및 촉매와 함께 혼합하여 겔화시켜 제조될 것일 수 있다.On the other hand, silica zero gel that can be used as a support in the adsorbent of the present invention may be prepared by mixing alkoxides, which are all sol-gel synthesisable materials with a solvent and a catalyst to gel.

상기와 같은 본 발명의 제1측면에 의한 흡착제는 담지체 표면에 예를 들어 CaO등의 염기자리가 부여되어 있음으로서 이산화탄소에 대한 친화도를 개선시켜 100∼250℃의 고온에서도 이산화탄소에 대한 흡착능이 우수함을 보이는 것이다.As described above, the adsorbent according to the first aspect of the present invention is provided with a base such as CaO on the surface of the carrier to improve affinity for carbon dioxide, so that the adsorption capacity for carbon dioxide is high even at a high temperature of 100 to 250 ° C. It is excellent.

나아가 본 발명의 제2 측면 및 제3 측면에 의하면, 상기와 같은 본 발명의 흡착제를 제조하는 방법이 각각 제공되는 바, 제2측면에 의한 방법은 함침법에 의한 흡착제 제조방법을 그리고 제3 측면에 의한 방법은 합성법에 의한 흡착제 제조방법을 각각 제공한다.Furthermore, according to the second aspect and the third aspect of the present invention, the method for producing the adsorbent of the present invention as described above is provided, respectively, the method according to the second aspect is a method for producing the adsorbent by the impregnation method and the third aspect The method provides a method for producing an adsorbent by the synthesis method, respectively.

본 발명의 제2견지에 따라 함침법에 의한 이산화탄소 흡착제 제조방법은, 염기물 또는 소성에 의해 염기물을 형성하는 물질을 용매에 용해시켜 용액을 형성하는 단계; 상기 형성된 용액에 통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체를 함침시켜 그 담지체 표면에 염기를 부가하는 단계; 건조시켜 용매를 제거하는 단계; 및 임의적으로 소성에 의해 염기물을 형성하는 물질을 사용한 경우 상기 담지체를 소성시켜 담지체에 담지된 염기물 형성물질을 염기물로 전환시키는 단계;를 포함한다.According to a second aspect of the present invention, a method for preparing a carbon dioxide adsorbent by impregnation includes dissolving a base or a substance which forms a base by firing in a solvent to form a solution; Impregnating the formed solution with a carrier of a conventional adsorbent or a substance usable as an adsorbent to add a base to the carrier surface; Drying to remove the solvent; And optionally firing the carrier to convert the base forming material supported on the carrier to a base when a substance is used that forms a base by firing.

상기 방법에 사용될 수 있는 염기물은 앞서 기술한 바와 같이 염기자리를 제공할 수 있는 물질로서 알칼리 금속이나 알칼리 토금속의 산화물, 수산화물이나 탄산염등을 예로 들 수 있다.As the base which can be used in the method, as described above, examples of the material capable of providing a base site include an oxide, a hydroxide or a carbonate of an alkali metal or an alkaline earth metal.

다만 본 발명의 방법의 실시에 있어 이같은 염기물이 용매에 불용성인 경우 용해성 형태로된 이들의 화합물을 사용할 수 있다. 즉, 소성에 의해 염기물을 형성하는 물질로서는 Ca,Mg등 알칼리금속이나 알칼리토금속의 초산염, 질산염, 기타 용매에 용해가능한 이들의 염을 들 수 있으며, 바람직한 것을 알칼리 토금속의 초산염이 좋으며, 보다 바람직한 것은 Ca(CH3COO)2ㆍH2O이다.However, in the practice of the process of the present invention, when such a base is insoluble in a solvent, these compounds in soluble form may be used. That is, as a substance which forms a base by firing, salts thereof which are soluble in alkali metals such as Ca and Mg, acetates, nitrates and other solvents of alkaline earth metals are preferable. Is Ca (CH 3 COO) 2 .H 2 O.

상기와 같은 염기물 또는 소성에 의해 염기물을 형성하는 물질은 물이나 유기용매와 같은 용매에 용해시켜 용액을 형성한 후, 그 용액에 앞서 언급한 바와 같은 담지체를 함침시키게 된다.The base or the substance forming the base by firing is dissolved in a solvent such as water or an organic solvent to form a solution, and then the solution is impregnated with the carrier as mentioned above.

담지체를 상기 염기물 용액에 함침시키고 일정시간동안 교반하게 되면 담지체 표면에 염기물이 부착하게 되어 이산화탄소와의 친화력이 증대되게 된다.When the carrier is impregnated with the base solution and stirred for a certain time, the base is attached to the surface of the carrier to increase affinity with carbon dioxide.

단지 상기 염기물 대신 소성에 의해 염기물을 형성하는 물질을 사용하여 담지체를 함침시킨 경우는 후속 공정에서 함침된 담지체로 소성시켜 담지체에 담지된 염기성 형성물질을 염기물로 전환시켜야 한다.In the case where the carrier is impregnated with a substance that forms a base by firing instead of the base, the basic forming substance supported on the carrier must be converted to a base by calcining the carrier to be impregnated in a subsequent step.

앞서 염기물 용액에 담지체를 함침시킨 후에는 사용된 용매를 건조 등의 방법으로 제거하게 되며, 이같은 제거과정은 통상의 용매 제거방법을 이용할 수 있다.After impregnating the carrier in the base solution, the used solvent is removed by drying or the like, and such a removing process may use a conventional solvent removing method.

또한 본 발명의 제3견지에 따라 합성법에 의한 이산화탄소 흡착제 제조방법은, 졸-겔(sol-gel) 합성이 가능한 전 물질로 졸을 제조하는 단계; 상기 졸 용액에 염기물 또는 소성에 의해 염기물을 형성하는 물질을 함침ㆍ용해시켜 겔화시키는 단계; 건조시켜 용매를 제거하는 단계; 임의적으로 상기 소성에 의해 염기물을 형성하는 물질을 사용한 경우 상기 겔을 소성시켜 겔에 담지된 염기물 형성물질을 염기물로 전환시키는 단계;를 포함한다.In addition, according to the third aspect of the present invention, a method for preparing a carbon dioxide adsorbent by the synthesis method includes preparing a sol from all materials capable of sol-gel synthesis; Gelling the sol solution by impregnating and dissolving a base or a substance which forms a base by firing; Drying to remove the solvent; And optionally, firing the gel to convert the base forming material supported on the gel into a base when the material forming the base by firing is used.

이 방법에서는 먼저 졸-겔 합성이 가능한 전 물질을 용매와 혼합하여 졸을 합성한다. 졸-겔 합성이 가능한 전 물질로는 알콕사이드를 들 수 있으며, 바람직한 알콕사이드로는 Si(OC2H5)4가 좋다. 이같이 제조된 졸 용액에 앞서 언급된 염기물 혹은 소성에 의해 염기물을 형성하는 물질을 함침ㆍ용해시켜 겔화시키게 된다.In this method, the sol is first synthesized by mixing all the materials capable of sol-gel synthesis with a solvent. All materials capable of sol-gel synthesis include alkoxides, and Si (OC 2 H 5 ) 4 is preferable as the alkoxide. The sol solution thus prepared is gelled by impregnating and dissolving the base or the substance forming the base by firing.

이 과정에 따라 표면에 염기물 부위가 부여된 담지체가 형성되는 바, 본 발명에서는 소성에 의해 염기물을 형성하는 물질로서 알칼리 금속이나 알칼리 토금속의 초산염, 질산염, 기타 앞서 언급된 종류의 물질을 사용할 수 있으며, 바람직한 것은 알칼리 토금속의 초산염, 보다 바람직한 것은 Ca(CH3COO)2ㆍH2O이다.According to this process, a carrier having a base portion attached to the surface is formed. In the present invention, as a substance which forms a base by firing, acetates, nitrates of alkali metals or alkaline earth metals, and other substances of the aforementioned kind can be used. Preferred are acetates of alkaline earth metals, more preferably Ca (CH 3 COO) 2 .H 2 O.

상기 함침되는 물질의 양은 졸 용액에 용해될 수 있는 한계인 포화량보다 작은 것이 좋다.The amount of the material to be impregnated is preferably less than the saturation amount which is the limit that can be dissolved in the sol solution.

또한 함침된 물질은 졸 용액의 pH를 변화시켜 겔 형성을 촉진시킬 수 있으나 너무 빠른 겔화는 함침된 물질의 고른 분산을 방해할 수 있으므로 함침되는 물질의 양을 적절히 조절해야 염기부위가 담지체내에 고르게 분산된 흡착제를 얻을 수 있다.Also, impregnated materials can change the pH of the sol solution to promote gel formation, but too fast gelation can interfere with even dispersal of the impregnated material, so the amount of the impregnated material must be properly adjusted so that the base is evenly distributed in the carrier. A dispersed adsorbent can be obtained.

이후 합성된 겔을 건조하여 용매를 제거하게 되나, 본 방법에서 소성에 의해 염기물을 형성하는 물질을 사용시에는 후공정에서 소성하여 겔의 기공에 담지된 물질이 염기물로 전환되도록 하여야 한다.Thereafter, the synthesized gel is dried to remove the solvent. However, in the present method, when using a material that forms a base by firing, the material loaded in the pores of the gel is converted into a base by firing in a later step.

상기 방법에 의해 제조된 본 발명의 염기물 담지된 이산화탄소 흡착제는 물리적 흡착뿐만 아니라 이산화탄소에 대한 친화력이 증대되어 물리적 흡착에만 의존하던 종래의 흡착제에 비하여 이산화탄소 흡착능, 특히 고온에서의 흡착능이 크게 개선되는 것이다.The base-supported carbon dioxide adsorbent of the present invention prepared by the above method has a significant improvement in carbon dioxide adsorption capacity, particularly at high temperature, as compared with the conventional adsorbents which depend only on physical adsorption due to increased affinity for carbon dioxide as well as physical adsorption. .

이하, 본 발명을 실시예에 따라 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

본 발명의 모든 실시예에서 수행된 이산화탄소 흡착시점은 다음 방법으로 수행되었다.The time point of carbon dioxide adsorption performed in all examples of the present invention was carried out by the following method.

정적 방법에 의해 이산화탄소의 압력을 약1기압까지 행하였다. 시료는 흡착제 약 0.1g을 사용하였으며, 우선 이산화탄소를 시료표면과 접촉시켜 비가역적인 강염기자리의 이산화탄소에 대한 친화도를 약화시켰다. 두 번째 이산화탄소의 투입부터는 평형압력을 측정하고 기체 방정식에 의해 흡착량을 결정하였다. 시료의 이산화탄소 흡착 실험을 수회 반복한 결과 모든 실시예에서 가역적인 흡착이 일어나고 있음을 알 수 있었다. 각 실시예에서 제조된 흡착제의 흡착량을 하기표 1에 정리하였다.The pressure of carbon dioxide was performed to about 1 atmosphere by the static method. The sample used about 0.1 g of adsorbent, and first, carbon dioxide was contacted with the sample surface to weaken the affinity for carbon dioxide in the irreversible strong base. From the second input of carbon dioxide, the equilibrium pressure was measured and the adsorption amount was determined by the gas equation. As a result of repeating the carbon dioxide adsorption experiment of the sample several times, it was found that reversible adsorption occurred in all examples. Adsorption amount of the adsorbent prepared in each example is summarized in Table 1 below.

[실시예 1]Example 1

비표면적이 680㎡/g이고 평균기공크기가 12Å인 실리카겔을 Ca(CH3COO)2ㆍH2O의 포화수용액에 5시간 함침시키고 진공에서 수분을 증발시킨 후, 700℃의 온도로 2시간동안 소성시켰다. 결과 염기자리 첨가 흡착제는 비표면적 290㎡/g 및 평균기공크기 13Å이었다. CaO의 담지량은 실리카 100몰당 CaO 2.25몰이었다.Silica gel having a specific surface area of 680 m2 / g and an average pore size of 12 Å was impregnated in a saturated aqueous solution of Ca (CH 3 COO) 2 .H 2 O for 5 hours, evaporated moisture in vacuo, and then at 700 ° C. for 2 hours. Calcined for As a result, the base addition adsorbent had a specific surface area of 290 m 2 / g and an average pore size of 13 kPa. The amount of CaO supported was 2.25 mol of CaO per 100 mol of silica.

도 1은 본 실시예에서 제조된 CaO를 담지한 실리카겔과 담지하지 않은 실리카겔의 100℃와 250℃에서의 이산화탄소 흡착량을 비교한 그래프이다. 도 1에 의하며 담지하지 않은 실리카겔의 상압에서의 흡착량이 100℃와 250℃에서 각각 0.28mmol/g과 0.060mmol/g인데 반해, CaO를 담지한 흡착제의 경우 각각 0.42mmol/g과 0.20mmol/g으로 높은 흡착량을 보임을 알 수 있다.1 is a graph comparing carbon dioxide adsorption amounts at 100 ° C. and 250 ° C. of a silica gel with and without CaO prepared in this Example. According to FIG. 1, the adsorption amount of the unsupported silica gel at normal pressure was 0.28 mmol / g and 0.060 mmol / g at 100 ° C. and 250 ° C., respectively, whereas 0.42 mmol / g and 0.20 mmol / g respectively for CaO supported adsorbents. It can be seen that it shows a high adsorption amount.

[실시예 2]Example 2

비표면적이 3,000㎡/g이고 평균기공크기가 11Å인 활성탄을 실시예 1과 동일한 방법으로 하여 염기자리 첨가 흡착제를 제조하였다. 이와같은 방법으로 제조된 염기자리 첨가 흡착제는 비표면적이 1,500㎡/g이고 평균기공크기는 13Å이었다. CaO의 담지량은 탄소 100몰당 CaO 8.19몰이었다.A base addition adsorbent was prepared in the same manner as in Example 1 using activated carbon having a specific surface area of 3,000 m 2 / g and an average pore size of 11 GPa. The base addition adsorbent prepared in this manner had a specific surface area of 1,500 m 2 / g and an average pore size of 13 kPa. The amount of CaO supported was 8.19 mol of CaO per 100 mol of carbon.

도 2는 본 실시예에서 제조된 CaO를 담지한 활성탄과 담지하지 않은 활성탄의 100℃와 250℃에서의 이산화탄소 흡착량을 비교한 그래프이다. 담지하지 않은 활성탄의 상압에서의 흡착량이 100℃와 250℃에서 각각 0.84mmol/g과 0.15mmol/g인데 반해, CaO를 담지한 흡착제의 경우 각각 0.69mmol/g과 0.21mmol/g이었다.FIG. 2 is a graph comparing the amount of carbon dioxide adsorption at 100 ° C. and 250 ° C. of the activated carbon and the unsupported activated carbon prepared in the present Example. The adsorption amounts of the unsupported activated carbon at atmospheric pressure were 0.84 mmol / g and 0.15 mmol / g at 100 ° C. and 250 ° C., respectively, whereas 0.69 mmol / g and 0.21 mmol / g for CaO-supported adsorbents, respectively.

100℃에서는 담지하지 않은 활성탄의 흡착량이 더 큰데, 이는 비표면적이 CaO를 담지한 흡착제에 비해 월등히 컸기 때문이다. 그러나 250℃의 고온에서는 CaO를 담지한 활성탄의 흡착량이 크게 나타났다.At 100 ° C., the adsorption amount of the unsupported activated carbon was larger because the specific surface area was much larger than that of the CaO supported adsorbent. However, the adsorption amount of activated carbon carrying CaO was large at a high temperature of 250 ° C.

흡착량을 비표면적당으로 계산해보면, 담지하지 않은 흡착제의 상압에서의 비표면적당 흡착량은 100℃와 250℃에서 각각 0.27μmol/㎡과 0.048μmol/㎡였으며, CaO를 담지한 흡착제는 0.46μmol/㎡과 0.14μmol/㎡으로, 후자의 흡착량이 큰 것으로 보아 비표면적이 동일할 때에는 CaO를 함침한 흡착제가 고온에서의 흡착량이 큼을 알 수 있다.When the adsorption amount was calculated per specific surface area, the adsorption amount per specific surface area at normal pressure of the unsupported adsorbent was 0.27 μmol / m 2 and 0.048 μmol / m 2 at 100 ° C and 250 ° C, respectively, and the CaO-supported adsorbent was 0.46 μmol / m 2. And 0.14 μmol / m 2, the latter has a large adsorption amount, and when the specific surface area is the same, it is understood that the adsorbent impregnated with CaO has a large adsorption amount at high temperature.

[실시예 3]Example 3

비표면적이 225㎡/g이고 평균기공크기가 28Å인 카본블랙을 실시예 1과 동일한 방법으로 하여 염기자리 첨가 흡착제를 제조하였다. 이와같은 방법으로 제조된 염기자리 첨가 흡착제는 비표면적이 141㎡/g이고 평균기공크기는 27Å이었다. CaO의 담지량은 탄소 100몰당 CaO 7.77몰이었다.A base addition adsorbent was prepared in the same manner as in Example 1 using carbon black having a specific surface area of 225 m 2 / g and an average pore size of 28 mm 3. The base addition adsorbent prepared in this manner had a specific surface area of 141 m 2 / g and an average pore size of 27 kPa. The amount of CaO supported was 7.77 mol of CaO per 100 mol of carbon.

도 3은 본 실시예에서 제조된 CaO를 담지한 활성탄과 담지하지 않은 활성탄의 100℃와 250℃에서의 이산화탄소 흡착량을 비교한 그래프이다. 담지하지 않은 카본 블랙의 상압에서의 흡착량이 100℃와 250℃에서 각각 0.20mmol/g과 0.046mmol/g인데 반해, CaO를 담지한 흡착제의 경우 각각 0.16mmol/g과 0.092mmol/g이었다. 100℃에서는 그 흡착량이 비슷하나 250℃의 고온에서는 CaO를 담지한 카본블랙의 흡착량이 크게 나타났다.3 is a graph comparing the amount of carbon dioxide adsorption at 100 ° C. and 250 ° C. of the activated carbon and the unsupported activated carbon prepared in the present Example. The adsorption amount of the unsupported carbon black at normal pressure was 0.20 mmol / g and 0.046 mmol / g at 100 ° C. and 250 ° C., respectively, and 0.16 mmol / g and 0.092 mmol / g, respectively, for the CaO-supported adsorbent. At 100 ° C, the adsorption amount was similar, but at 250 ° C, the adsorption amount of carbon black carrying CaO was large.

흡착량을 비표면적당으로 계산해보면, 담지하지 않은 흡착제의 상압에서의 비표면적당 흡착량은 100℃와 250℃에서 각각 0.882μmol/㎡과 0.204μmol/㎡였으며, CaO를 담지한 흡착제는 1.16μmol/㎡과 0.657μmol/㎡으로, 후자의 흡착량이 큰 것으로 보아 비표면적이 동일할 때에는 CaO를 함침한 흡착제가 고온에서의 흡착량이 큼을 알 수 있다.When the adsorption amount was calculated per specific surface area, the adsorption amount per specific surface area at atmospheric pressure of the unsupported adsorbent was 0.882 μmol / m 2 and 0.204 μmol / m 2 respectively at 100 ° C and 250 ° C, and the CaO-supported adsorbent was 1.16μmol / m 2. When the specific surface area is the same, the adsorbent impregnated with CaO has a large adsorption amount at high temperature.

[실시예 4]Example 4

본 실시예는 졸-겔 합성에 의해 실리카 제로겔(silica xerogel)을 제조하고 이를 담지체로 하여 함침법으로 이산화탄소용 흡착제를 제조하는 실시예이다.In this embodiment, a silica xgel is prepared by sol-gel synthesis, and an adsorbent for carbon dioxide is prepared by impregnation using the support as a carrier.

Si(OC2H5)4, n-프로판올, 물, 염산을 1:3:1:0.0007의 몰비로 혼합하여 졸을 합성하고 여기에 Si 1몰에 대해 물과 염기 촉매로 사용되는 NH4OH를 몰비 3:0.001로 첨가하여 겔화시킨 후 건조하여 실리카 제로겔을 합성하였다. 제조된 실리카 제로겔은 비표면적이 530㎡/g이고 평균기공크기가 11Å이었다.Si (OC 2 H 5 ) 4 , n-propanol, water and hydrochloric acid are mixed in a molar ratio of 1: 3: 1: 0.0007 to synthesize a sol, and NH 4 OH used as water and base catalyst for 1 mole of Si Was added at a molar ratio of 3: 0.001, gelled, and dried to synthesize silica zero gel. The prepared silica zero gel had a specific surface area of 530 m 2 / g and an average pore size of 11 GPa.

실리카 제로겔을 담지체로 하여 실시예 1과 동일한 방법으로 하여 염기자리 첨가 흡착제를 제조하였다.A base-added adsorbent was prepared in the same manner as in Example 1 using silica zero gel as a support.

이와같은 방법으로 제조된 염기자리 첨기 흡착제는 비표면적이 500㎡/g이고 평균기공크기는 13Å이었다. CaO의 담지량은 실리카 100몰당 CaO 7.42몰이었다.The base addition adsorbent prepared in this manner had a specific surface area of 500 m 2 / g and an average pore size of 13 kPa. The amount of CaO supported was 7.42 mol of CaO per 100 mol of silica.

도 4는 본 실시예에서 제조된 CaO를 담지한 실리카 제로겔과 담지하지 않은 실리카 제로겔의 100℃와 250℃에서의 이산화탄소 흡착량을 비교한 그래프이다. 담지하지 않은 실리카 제로겔의 상압에서의 흡착량이 100℃와 250℃에서 각각 0.21mmol/g과 0.022mmol/g인데 반해, CaO를 담지한 흡착제의 경우 각각 0.34mmol/g과 0.13mmol/g으로 높은 흡착량을 보였다.FIG. 4 is a graph comparing carbon dioxide adsorption amounts at 100 ° C. and 250 ° C. of the silica zero gel carrying CaO and the unsupported silica zero gel. The adsorption amount of the unsupported silica zero gel at normal pressure was 0.21 mmol / g and 0.022 mmol / g at 100 ° C. and 250 ° C., respectively. Adsorption amount was shown.

[실시예 5]Example 5

본 실시예는 합성법에 의해 이산화탄소 흡착제를 제조하는 방법에 관한 것이다.This embodiment relates to a method for producing a carbon dioxide adsorbent by the synthesis method.

실시예 4에서와 동일한 방법으로 졸을 제조하였다. 여기에 Si 1몰에 대해 물과 Ca(CH3COO)2ㆍH2O를 몰비 7:0.1로 첨가하여 겔화 과정 및 건조과정을 거친후, 700℃에서 2시간동안 소성하여 염기자리 첨가 흡착제를 제조하였다.The sol was prepared in the same manner as in Example 4. Water and Ca (CH 3 COO) 2 ㆍ H 2 O were added to the mole ratio of Si at a molar ratio of 7: 0.1, followed by gelation and drying, followed by calcining at 700 ° C. for 2 hours to obtain a base-added adsorbent. Prepared.

이와같은 방법으로 제조된 염기자리 첨가 흡착제는 비표면적이 670㎡/g이고 평균기공크기가 19Å이었다. 실시예 4에서 제조된 CaO 담지 실리카 제로겔과 그 형태학적 특성을 비교하면 실리카 제로겔은 미세기공이 주로 발달한데 비하여, 본 실시예에서 합성법에 의해 제조된 흡착제는 주로 중기공이 발달하였으며 비표면적 및 기공 부피가 커 기공율이 컸다.The base addition adsorbent prepared in this manner had a specific surface area of 670 m 2 / g and an average pore size of 19 kPa. Comparing the CaO-supported silica zero gel prepared in Example 4 with its morphological characteristics, the silica zero gel mainly developed micropores, whereas the adsorbent prepared by the synthesis method in this example mainly developed mesopores and had a specific surface area and The porosity was large because the pore volume was large.

CaO의 담지량은 실리카 100몰당 CaO 8.25몰로, 합성과정에서 넣어준 CaO의 양과 일치하였다. 이는 실시예 1에서 실시예4까지의 함침방법에서 그 함침량이 함침 시간에 따라 변하며 함침량의 조절이 어렵다는 점을 생각할 때 합성법의 장점으로 파악되었다.The amount of CaO supported was 8.25 moles of CaO per 100 moles of silica, which was consistent with the amount of CaO added during the synthesis. In the impregnation method from Example 1 to Example 4, this was found to be an advantage of the synthesis method when considering that the impregnation amount varies depending on the impregnation time and it is difficult to control the impregnation amount.

도 5는 본 실시예에서 제조된 합성법에 의한 흡착제와 실시예 4에서 제조된 함침법에 의한 흡착제의 주사전자현미경 사진과 전자탐침미세분석에 의한 Ca의 분포도이다.5 is a scanning electron micrograph of the adsorbent prepared by the synthesis method prepared in Example and the adsorbent prepared by the impregnation method prepared in Example 4, and the distribution map of Ca by electron probe microanalysis.

함침법에 의해 제조된 흡착제는 그 표면이 비교적 매끈하며 Ca의 분포가 매우 고른 반면, 합성법에 의한 흡착제는 거친 표면을 가졌으며 비교적 고른 Ca의 분포를 가졌다.The adsorbents produced by impregnation had a relatively smooth surface and a very even distribution of Ca, while the adsorbents by synthesis had a rough surface and a relatively even distribution of Ca.

도 6은 본 실시예에서 제조된 합성법에 의한 흡착제와 실시예 4에서 제조된 CaO를 담지하지 않은 실리카 제로겔의 100℃와 250℃에서의 이산화탄소 흡착량을 비교한 그래프이다. 담지하지 않은 실리카 제로겔의 상압에서의 흡착량이 100℃와 250℃에서 각각 0.21mmol/g과 0.022mmol/g인데 반해, 합성법에 의해 제조한 흡착제의 경우 각각 0.34mmol/g과 0.24mmol/g으로 높은 흡착량을 보였다.FIG. 6 is a graph comparing the amount of carbon dioxide adsorption at 100 ° C. and 250 ° C. of an adsorbent prepared by the synthesis method of the present example and a CaO-supported silica zero gel prepared in Example 4. FIG. The adsorption amount of the unsupported silica zero gel at normal pressure was 0.21 mmol / g and 0.022 mmol / g at 100 ° C. and 250 ° C., respectively, while 0.34 mmol / g and 0.24 mmol / g for the adsorbent prepared by the synthesis method, respectively. It showed a high adsorption amount.

상기한 바와 같이, 본 발명에 의한 이산화탄소 흡착제는 그 표면에 염기자리가 부가됨으로써 이산화탄소에 대한 친화력이 증대됨으로써 고온에서의 이산화탄소에 대한 흡착능이 크게 개선되는 것이다.As described above, the carbon dioxide adsorbent according to the present invention increases the affinity for carbon dioxide by adding a base to the surface thereof, thereby greatly improving the adsorption capacity for carbon dioxide at high temperature.

Claims (22)

통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체 표면에 염기자리를 부가하여된 이산화탄소 고온분리용 흡착제.An adsorbent for carbon dioxide high temperature separation wherein a base is added to a surface of a carrier made of a conventional adsorbent or a substance usable as an adsorbent. 제1항에 있어서, 상기 담지체는 활성탄, 제오라이트, 클레이, 실리카겔, 활성탄소섬유 및 카본 블랙으로 구성되는 그룹에서 선택된 것임을 특징으로 하는 흡착제.The adsorbent of claim 1, wherein the support is selected from the group consisting of activated carbon, zeolite, clay, silica gel, activated carbon fibers and carbon black. 제1항에 있어서, 상기 담지체는 졸-겔합성에 의해 제조된 실리카 제로겔(silica xerogel)임을 특징으로 하는 흡착제.The adsorbent of claim 1, wherein the support is a silica xerogel prepared by sol-gel synthesis. 제1항내지 3항중 어느한 항에 있어서, 상기 염기자리 부여 물질은 알칼리 금속이나 알칼리 토금속의 산화물, 수산화물 또는 탄산염임을 특징으로 하는 흡착제.The adsorbent according to any one of claims 1 to 3, wherein the base-substance providing substance is an oxide, hydroxide or carbonate of an alkali metal or an alkaline earth metal. 제4항에 있어서, 상기 염기자리 부여 물질은 알칼리 토금속의 산화물임을 특징으로 하는 흡착제.5. The adsorbent as claimed in claim 4, wherein the base-giving substance is an oxide of alkaline earth metal. 제5항에 있어서, 상기 알칼리 토금속 산화물은 CaO 임을 특징으로 하는 흡착제.6. The adsorbent of claim 5 wherein the alkaline earth metal oxide is CaO. 제1항에 있어서, 상기 흡착제는 실리카 제로겔의 졸겔 합성시 졸(sol)상태에서 염기물 또는 소성에 의해 염기물 형성이 가능한 물질을 첨가하여 겔화시켜 제조된 것임을 특징으로 하는 흡착제.The adsorbent according to claim 1, wherein the adsorbent is prepared by adding a base or a substance capable of forming a base by firing in a sol state when synthesizing a sol gel of silica zero gel. 염기물 또는 소성에 의해 염기물로 형성되는 물질을 용매에 용해시켜 용액을 형성하는 단계; 상기 형성된 용액에 통상의 흡착제 또는 흡착제로서 사용가능한 물질로된 담지체를 함침시켜 그 담지체 표면에 염기를 부가하는 단계; 건조시켜 용매를 제거하는 단계; 및 임의적으로 소성에 의해 염기물을 형성하는 물질을 사용한 경우 상기 담지체를 소성시켜 담지체에 담지된 염기물 형성물질을 염기물로 전환시키는 단계;를 포함하여 이루어지는 함침법에 의한 이산화탄소 흡착제 제조방법.Dissolving a base or a substance formed by base by firing in a solvent to form a solution; Impregnating the formed solution with a carrier of a conventional adsorbent or a substance usable as an adsorbent to add a base to the carrier surface; Drying to remove the solvent; And optionally, firing the carrier to convert the base forming material supported on the carrier to a base, when using a substance which forms a base by firing. 2. . 제8항에 있어서, 상기 담지체는 활성탄, 제오라이트, 클레이, 실리카겔, 활성탄소 섬유 및 카본 블랙으로 구성되는 그룹에서 선택된 것임을 특징으로 하는 방법.The method of claim 8, wherein the support is selected from the group consisting of activated carbon, zeolite, clay, silica gel, activated carbon fibers and carbon black. 제8항에 있어서, 상기 담지체는 졸겔 합성에 의해 제조된 실리카 제로겔(silica xerogel)임을 특징으로 하는 방법.The method of claim 8, wherein the support is a silica xerogel prepared by sol gel synthesis. 제8항에 있어서, 상기 염기물은 알칼리 금속이나 알칼리 토금속의 산화물, 수산화물 또는 탄산염임을 특징으로 하는 방법.The method of claim 8, wherein the base is an oxide, hydroxide or carbonate of an alkali metal or alkaline earth metal. 제11항에 있어서, 상기 염기물은 CaO임을 특징으로 하는 방법.The method of claim 11, wherein the base is CaO. 제8항에 있어서, 상기 소성에 의해 염기물로 형성되는 물질은 알칼리 금속이나 알칼리 토금속의 산염임을 특징으로 하는 방법.The method according to claim 8, wherein the substance formed as a base by firing is an acid salt of an alkali metal or an alkaline earth metal. 제13항에 있어서, 상기 소성에 의해 염기물로 형성되는 물질은 알칼리 토금속의 초산염임을 특징으로 하는 방법.The method according to claim 13, wherein the material formed by the firing as a base is an acetate of an alkaline earth metal. 제14항에 있어서, 상기 알칼리 토금속의 초산염은 Ca(CH3COO)2ㆍH2O임을 특징으로 하는 방법.The method of claim 14, wherein the alkaline earth metal acetate is Ca (CH 3 COO) 2 H 2 O. 졸-겔(sol-gel) 합성이 가능한 전 물질로 졸을 제조하는 단계; 상기 졸 용액에 염기물 또는 소성에 의해 염기물을 형성하는 물질을 함침ㆍ용해시켜 겔화시키는 단계; 건조시켜 용매를 제거하는 단계; 및 임의적으로 상기 소성에 의해 염기물을 형성하는 물질을 사용한 경우 상기 겔을 소성시켜 겔에 담지된 염기물 형성물질을 염기물로 전환시키는 단계;를 포함하여 이루어지는 합성법에 의한 이산화탄소 흡착제 제조방법.Preparing a sol from all materials capable of sol-gel synthesis; Gelling the sol solution by impregnating and dissolving a base or a substance which forms a base by firing; Drying to remove the solvent; And optionally firing the gel to convert the base forming material supported on the gel to a base when the material is used to form a base by firing. 2. 제16항에 있어서, 상기 졸-겔 합성이 가능한 전물질은 알콕사이드(alkoxides)임을 특징으로 하는 방법.The method of claim 16, wherein all the materials capable of sol-gel synthesis are alkoxides. 제17항에 있어서, 상기 졸-겔 합성이 가능한 전물질은 Si(OC2H5)4임을 특징으로 하는 방법.The method of claim 17, wherein the entire material capable of sol-gel synthesis is Si (OC 2 H 5 ) 4 . 제18항에 있어서, 상기 염기물은 CaO임을 특징으로 하는 방법.19. The method of claim 18, wherein the base is CaO. 제16항에 있어서, 상기 소성에 의해 염기물을 형성하는 물질은 알칼리금속이나 알칼리 토금속의 산염임을 특징으로 하는 방법.The method of claim 16, wherein the material which forms the base by firing is an acid salt of an alkali metal or an alkaline earth metal. 제20항에 있어서, 상기 소성에 의해 염기물을 형성하는 물질은 알칼리 토금속의 초산염임을 특징으로 하는 방법.21. The method of claim 20, wherein the material which forms the base by firing is an acetate of an alkaline earth metal. 제21항에 있어서, 상기 알칼리 토금속의 초산염은 Ca(CH3COO)2ㆍH2O임을 특징으로 하는 방법.22. The method of claim 21, wherein the alkaline earth metal acetate is Ca (CH 3 COO) 2 .H 2 O.
KR1019960071539A 1996-12-24 1996-12-24 Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same KR100293204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960071539A KR100293204B1 (en) 1996-12-24 1996-12-24 Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960071539A KR100293204B1 (en) 1996-12-24 1996-12-24 Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR19980052532A KR19980052532A (en) 1998-09-25
KR100293204B1 true KR100293204B1 (en) 2001-09-17

Family

ID=37527188

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960071539A KR100293204B1 (en) 1996-12-24 1996-12-24 Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR100293204B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020019187A (en) * 2000-09-05 2002-03-12 최홍식 Carbon Dioxide Absorber Which Comprises Sodium Carbonate as an Active Ingredient for Controlling Carbon Dioxide Absorption Speed
WO2010054427A1 (en) * 2008-11-11 2010-05-20 The University Of Queensland A method for producing sorbents for co2 capture under high temperatures
KR101328747B1 (en) 2011-12-19 2013-11-11 한국철도기술연구원 Apparatus and method of carbon dioxide reduction for subway coach
KR20210078916A (en) 2019-12-19 2021-06-29 주식회사 포스코 Preparing method for carbon dioxide adsorbent and carbon dioxide adsorbent prepared by same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940464B1 (en) * 2008-02-12 2010-02-04 경희대학교 산학협력단 A porous composite filter for simultaneous treatment of dust-CO2 from flue gas.
KR101823328B1 (en) * 2010-09-08 2018-03-14 한국전력공사 Carbon dioxide sorbent and preparation method thereof
KR101327394B1 (en) 2011-11-23 2013-11-08 주식회사 우보테크 Apparatus for forward and backward movement of car headrests
KR101628033B1 (en) * 2014-03-21 2016-06-08 고려대학교 산학협력단 Carbon dioxide adsorbents with improved absorption-desorption performance and manufacturing method thereof
KR102643505B1 (en) 2017-12-12 2024-03-04 삼성전자주식회사 Battery case, battery, and method for fabricating a battery
KR102591366B1 (en) 2018-03-09 2023-10-18 삼성전자주식회사 Battery case, battery, and method for fabricating a battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141357A (en) * 1994-11-17 1996-06-04 Agency Of Ind Science & Technol Carbon dioxide separating method at high temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141357A (en) * 1994-11-17 1996-06-04 Agency Of Ind Science & Technol Carbon dioxide separating method at high temperature

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020019187A (en) * 2000-09-05 2002-03-12 최홍식 Carbon Dioxide Absorber Which Comprises Sodium Carbonate as an Active Ingredient for Controlling Carbon Dioxide Absorption Speed
WO2010054427A1 (en) * 2008-11-11 2010-05-20 The University Of Queensland A method for producing sorbents for co2 capture under high temperatures
CN102271803A (en) * 2008-11-11 2011-12-07 昆士兰大学 A method for producing sorbents for co2 capture under high temperatures
US9114359B2 (en) 2008-11-11 2015-08-25 The University Of Queensland Method for producing sorbents for CO2 capture under high temperatures
KR101328747B1 (en) 2011-12-19 2013-11-11 한국철도기술연구원 Apparatus and method of carbon dioxide reduction for subway coach
KR20210078916A (en) 2019-12-19 2021-06-29 주식회사 포스코 Preparing method for carbon dioxide adsorbent and carbon dioxide adsorbent prepared by same

Also Published As

Publication number Publication date
KR19980052532A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
KR100293204B1 (en) Adsorbent for separating carbon dioxide at high temperature and method for manufacturing the same
CZ283122B6 (en) Support mixture suitable for a catalyst and process for preparing thereof
KR101709987B1 (en) Aerogel for capturing carbon dioxide
US9283511B2 (en) Composite materials for reversible CO2 capture
JP2004195465A (en) Method for adsorbing carbon dioxide, carbon dioxide adsorbent, and method for producing the same
KR102002640B1 (en) Manufacturing method of mesoporous silica materials as CO2 adsorbent with inroduction of Amin functional group
RU2000111129A (en) CATALYTIC COMPOSITION FOR TREATING HYDROCARBONS WITH BOILING TEMPERATURES IN THE INTERVAL OF A GASOLINE-LIGROIN Fraction
KR20090033300A (en) Alkali metal-based solid sorbent for carbon dioxide capture with low temperature regeneration
US20220062860A1 (en) Process for producing nanostructured material, product and use
KR101146173B1 (en) Oxygen adsorbent having high sorption capacity for oxygen and thermal stability and preparation method thereof
RU2451542C2 (en) Carbon dioxide absorbent, method of making said absorbent (versions) and method of using said absorbent
KR101502238B1 (en) Carbon dioxide absorbent and carbon dioxide capture process thereof
US9155996B2 (en) Sorbents for carbon dioxide capture
KR100550209B1 (en) Manufacturing Method of carbondioxide adsorbent in using high temperature
JP2642696B2 (en) Control method of specific surface area of alumina
KR101402125B1 (en) Carbon dioxide absorbent and fabricating method thereof
JP2017039633A (en) Zirconium hydroxide mesoporous body having carbon dioxide adsorptivity, manufacturing method therefor and carbon dioxide adsorbent consisting of zirconium hydroxide mesoporous body
KR100803325B1 (en) Titanium dioxide added alkali-carbonate regenerable sorbent for carbon dioxide removal
RU2402379C1 (en) Catalyst for oxidising hydrocarbons in oxygen-containing gas (versions) and preparation method thereof
KR101749020B1 (en) Adsorbent carbon dioxide comprising reforming amine and preparation method thereof
Liu et al. Synthesis of MgO-Modified mesoporous silica and its adsorption performance toward CO2
KR20150125880A (en) Absorbent for carbon dioxide and preparing method thereof
KR102212325B1 (en) Carbon dioxide adsorbents, production methods thereof, and methods for separating carbondioxide using the same
CN108686616B (en) Carbon dioxide adsorbing material and preparation method thereof
KR20220120279A (en) Method for preparing spherical amine-based carbon dioxide adsorbent by one-pot synthesis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130327

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140403

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee