KR19980051218A - How to remove sulfur oxides in flue gas - Google Patents

How to remove sulfur oxides in flue gas Download PDF

Info

Publication number
KR19980051218A
KR19980051218A KR1019960070092A KR19960070092A KR19980051218A KR 19980051218 A KR19980051218 A KR 19980051218A KR 1019960070092 A KR1019960070092 A KR 1019960070092A KR 19960070092 A KR19960070092 A KR 19960070092A KR 19980051218 A KR19980051218 A KR 19980051218A
Authority
KR
South Korea
Prior art keywords
sulfur dioxide
flue gas
exhaust gas
activated carbon
carbon fiber
Prior art date
Application number
KR1019960070092A
Other languages
Korean (ko)
Other versions
KR100270099B1 (en
Inventor
김제영
홍익표
이종규
Original Assignee
김종진
포항종합제철 주식회사
신창식
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종진, 포항종합제철 주식회사, 신창식, 재단법인 포항산업과학연구원 filed Critical 김종진
Priority to KR1019960070092A priority Critical patent/KR100270099B1/en
Publication of KR19980051218A publication Critical patent/KR19980051218A/en
Application granted granted Critical
Publication of KR100270099B1 publication Critical patent/KR100270099B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 배기가스중에 함유되어 있는 이산화황을 폐수 및 고형폐기물을 발생시키지 않고 건식법으로 산화시켜 회수함으로써, 이산화황을 제거하는 방법에 관한 것으로 배가스중 산소의 함량을 7-10%로 조절한 후, 질소대 탄소의 원자비(N/C)가 0.06-0.1인 폴리아크릴로 나트릴계 활성탄소섬유에 실온-50℃의 반응온도로 이산화황 함유 배가스를 도입하여 배가스중의 이산화황을 제거함으로써 파과시간 및 탈황율이 증대되는 것으로, 배가스중 이산화황을 보다 효과적으로 제거하게 되는 것이다.The present invention relates to a method of removing sulfur dioxide by oxidizing and recovering sulfur dioxide contained in exhaust gas by dry method without generating waste water and solid waste, and after adjusting the content of oxygen in the exhaust gas to 7-10%, nitrogen Breakthrough time and desulfurization by introducing sulfur dioxide into the polyacrylonitrile activated carbon fiber having an atomic ratio (N / C) of carbon to 0.06-0.1 at a reaction temperature of room temperature-50 ° C to remove sulfur dioxide in the exhaust gas. As the rate is increased, sulfur dioxide in the exhaust gas is more effectively removed.

Description

배가스중 황산화물의 제거방법How to remove sulfur oxides in flue gas

본 발명은 배가스중에 함유되어 있는 이산화황을 제거하는 방법에 관한 것이며, 보다 상세하게는 배가스중에 함유되어 있는 이산화황을 건식법으로 폐수 및 고형폐기물을 발생시키지 않고 황산으로 회수함으로써 이산화황을 제거하는 방법에 관한 것이다.The present invention relates to a method for removing sulfur dioxide contained in flue gas, and more particularly, to a method for removing sulfur dioxide by recovering sulfur dioxide contained in flue gas as sulfuric acid without generating wastewater and solid waste by dry method. .

종래의 NOx및 SO2등 배가스 중에 함유되어 있는 공해물질중 이산화황을 제거하는공정은 석회석을 이용하여 석고로 전환하는 습식방법이 가장 일반적으로 사용되어왔다. 그러나 이 공정은 2차 공해를 유발하므로 앞으로는 사용하기 어러울 것으로 판단되며 현재는 주로 건식법이 개발 사용되고 있다. 건식법으로 대표적인 것은 촉매를 이용한 방법이 있으나 이러한 촉매공정은 바나듐산화물과 같은 고가의 촉매를 사용하여야 하므로 비경제적이다. 또한 값이 싼 활성탄을 이용한 탈황공정은 이러한 고가의 촉매를 대체하기 위행 사용되는 공정으로서 현재 상업화되어 실용화되어 있다.(VDI Berichte No.730, p121, 1989)In the conventional process of removing sulfur dioxide from pollutants contained in flue gas such as NO x and SO 2 , a wet method of converting gypsum using limestone has been most commonly used. However, this process is likely to be difficult to use in the future because it causes secondary pollution. Currently, a dry method is mainly used. Representative of the dry method is a method using a catalyst, but such a catalytic process is uneconomical because expensive catalysts such as vanadium oxide must be used. In addition, desulfurization using inexpensive activated carbon is commercially available as a process used to replace such expensive catalysts (VDI Berichte No. 730, p121, 1989).

그러나 이러한 활성탄을 사용하는 공정은 이동상 공정으로서 활성탄의 경도를 높여 주어야 하므로 비표면적이 매우 낯은 활성탄을 제조하여 사용하게 됨으로 장치의규모가 매우 큰 단점이 있다. 이를 개선하기 위해 일본에서는 활성탄섬유를 이용한 공정을 개발하고 있으며 활성탄소섬유를 사용하는 경우 장치의 규모를 1/2이하로 줄일수 있어 매우 경제적일 것으로 예상되고 있다.(일본 공개특허공보 평1-242410, Energy Fuels 8권 1337쪽, 194년)However, such a process using activated carbon has a disadvantage in that the size of the device is very large because it is necessary to increase the hardness of the activated carbon as a mobile phase process to manufacture and use activated carbon having a very specific surface area. In order to improve this, Japan is developing a process using activated carbon fibers, and when using activated carbon fibers, the size of the device can be reduced to less than 1/2, which is expected to be very economical. 242410, Energy Fuels Vol. 8, pp. 1337, 194).

일본에서 제안된 활성탄소섬유를 이용한 탈황공정에는 본 발명과 같이 폴리아크릴로 니트릴계 활성탄소섬유를 사용히는 것이 가장 효과적인 것으로 개시되어 있으나, 활성탄소섬유 자체의 특성만을 이용한 것으로서 공정상의 특징을 이용한 것은아니다.In the desulfurization process using the activated carbon fiber proposed in Japan, it is disclosed that polyacrylonitrile-based activated carbon fiber is most effective as in the present invention, but using only the characteristics of the activated carbon fiber itself. It is not.

이에 본 발명의 목적은 상기한 바와같은 문제를 해결하기 위해 제안된 것으로, 2차 공해 물질을 유발하지 않고 비표면이 넓은 활성탄소섬유를 사용하여 이산화황가스를 제거하는 방법을 제공하는 것이며, 더욱이 연소배가스중의 산소농도를 조절함으로써 배가스중 탈활율이 향상된 이산화황 제거방법을 제공하는 것이다.Accordingly, an object of the present invention has been proposed to solve the above problems, to provide a method for removing sulfur dioxide gas using a wide specific surface of activated carbon fibers without causing secondary pollutants, furthermore, combustion vessel It is to provide a method for removing sulfur dioxide by improving the deactivation rate in the flue gas by adjusting the oxygen concentration in the gas.

본 발명에 있어서, 이산화황-함유 연소배가스중 산소의 농도를 7-10%가 되도록 배가스중의 산소함량을 조절한 후, 연소배가스를 질소대 탄소의 원소비(N/C)가 0.06-0.1인 폴리아크릴로 니트릴계 활성탄소섬유에 실온 ∼5℃의 온도로 이산화황을 함유하는 배가스를 도입하여 배가스중의 이산화황을 제거하는 방법이 제공된다.In the present invention, after adjusting the oxygen content in the exhaust gas so that the concentration of oxygen in the sulfur dioxide-containing combustion exhaust gas is 7-10%, the elemental ratio (N / C) of nitrogen to carbon is 0.06-0.1. Provided is a method for removing sulfur dioxide in flue gas by introducing flue gas containing sulfur dioxide into a polyacrylonitrile-based activated carbon fiber at a temperature of room temperature to 5 ° C.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 연소배가스중 산소의 함량을 7-10%가 되도록 조절하고, 질소대 탄소의 원소비(N/C)가 0.06-0.1인 폴리아크릴로 니트릴계 활성탄소섬유상에서 연소배가스중의 이산화황을 제거하는 방법에 관한 것이다.The present invention controls the content of oxygen in the combustion flue gas to be 7-10%, and the sulfur dioxide in the combustion flue gas on a polyacrylonitrile-based activated carbon fiber having an element ratio of nitrogen to carbon (N / C) of 0.06-0.1. It is about how to remove.

본 발명에 의한 이산화황 제거방법에는 질소대 탄소의 원소비가 0.06-0.1인 폴리아클리로 니트릴계 활성탄소섬유가 촉매로 사용된다.In the method for removing sulfur dioxide according to the present invention, polyacrylonitrile-based activated carbon fiber having an element ratio of nitrogen to carbon of 0.06-0.1 is used as a catalyst.

일반적으로 대기오염물질중 이산화황은 활성코크스 또는 활성탄에 흡착 및 산화되어 황산으로 제거되며, 활성탄소섬유가 촉매 및 흡착제로 사용된다.In general, sulfur dioxide in air pollutants is adsorbed and oxidized in activated coke or activated carbon to remove sulfuric acid, and activated carbon fibers are used as catalysts and adsorbents.

활성탄소 섬유의 원료로는 핏치 페놀수지 및 아크릴 섬유등이 사용될수도 있으나, 이들 섬유 원사에는 극미량의 질소가 함유되어 있으며, 따라서 활성화 후에는 질소가 거의 잔존하지 않게 됨으로, 핏치, 페놀수지 및 아크릴섬유로 제조된 활성탄소섬유를 단순한 흡착이 아닌 촉매로 사용하기에는 부적절하며 질소의 함량이 큰 폴리아크릴로 니트릴 섬유를 원료로한 -폴리아크릴로니트릴계(PAN계) 활성탄소섬유를 사용하는 것이 바람직하다.Pitch phenolic resin and acrylic fiber may be used as raw materials of activated carbon fiber, but these fiber yarns contain a very small amount of nitrogen, and thus, after activation, there is almost no nitrogen remaining. Thus, pitch, phenolic resin and acrylic fiber -Acrylonitrile-based (PAN-based) activated carbon fiber made from polyacrylonitrile fiber having a high nitrogen content, which is inappropriate to be used as a catalyst rather than a simple adsorption, is preferable. .

특히 N/C원자비가 0.06-0.1인 PAN계 활성탄소섬유를 사용하여 이산화황을 제거하는경우, 가장 우수한 탈황성능을 나타낸다.In particular, when sulfur dioxide is removed using a PAN-based activated carbon fiber having an N / C atomic ratio of 0.06-0.1, it shows the best desulfurization performance.

또한 본 발명에서는 배가스중의 산소함량을 7-10%로 조절한 후 상기 PAN 계 활성탄소섬유에 배가스를 도입한다. 일반적으로 배가스에는 5-10%의 수분, 3-5%의 산소및 기타 불순물이 함유되어 있다. 이러한 배가스에서 이산화황을 제거하는 경우, 본 발명에서는 배가스에 공기를 주입하여 배가스중의 산소농도를 7-10%로 증가시킨다. 배가스중의 산소농도를 상기한 범위, 즉 7-10%로 산소농도를 조절함으로써, 활성화탄소섬유상에서 배기가스중 이삭화황을 제거하는 경우 활성탄소섬유의 촉매활성이 가장 우수함을 나타낸다.In the present invention, after adjusting the oxygen content of the exhaust gas to 7-10%, the exhaust gas is introduced into the PAN-based activated carbon fiber. In general, flue gas contains 5-10% moisture, 3-5% oxygen and other impurities. When sulfur dioxide is removed from such flue gas, in the present invention, air is injected into the flue gas to increase the oxygen concentration in the flue gas to 7-10%. By adjusting the oxygen concentration in the exhaust gas in the above range, that is, 7-10%, it shows that the catalytic activity of the activated carbon fiber is the best when the sulfur isol is removed from the exhaust gas on the activated carbon fiber.

배가스중 산소함량이 5%미만인 경우에는 탈황율이 80%이나, 동일조건에서 산소함량을 7%로 조절하는 경우 탈황율이 95%이상으로 증가한다.If the oxygen content in the flue gas is less than 5%, the desulfurization rate is 80%, but if the oxygen content is adjusted to 7% under the same conditions, the desulfurization rate increases to 95% or more.

상기한 바와같이 배가스중의 산소함량을 조절한 후 PAN계 활성탄소섬유에 의한 이산화황제거반응은 실은∼50℃와 온도범위에서 행하는 것이 바람직하다.As described above, after controlling the oxygen content in the exhaust gas, the sulfur dioxide removal reaction by the PAN-based activated carbon fiber is preferably carried out at a temperature range of -50 ° C.

가능한한 낮은 은도에서 이산화황이 산화되도록 하는 것이 바람직하며, 50℃이상의 온도에서는 산소함량에 따른 이산화황의 제거효율은 동일하지만, 온도가 증대됨에따라 전체적으로 탈황율이 감소됨으로 50℃이하의 온도에서 탈황반응하는 것이 좋다.It is desirable to allow sulfur dioxide to be oxidized at the lowest possible silver content, and the removal efficiency of sulfur dioxide according to oxygen content is the same at temperatures above 50 ° C, but as the temperature increases, the desulfurization rate decreases as a whole. Good to do.

즉, 본 발명에 따라 배가스중 산소농도를 7-10%로 조절한후, 이를 N/C원자비가0.06-0.1인 PAN계 탄소섬유에 실온-50℃로 도입함으로써 탄소섬유 표면에 배기가스가 흡착된다. 이때, 배기가스중의 이산화황, 수분, 산소등이 흡착되며, 흡착된 물질들이 탄소섬유표면에서 반응한다. 이산화황은 산소와 반응하여 삼산화황을 형성하며 이는 수소와 반응하여 최종적으로 이산화황은 황산으로서 제거된다.That is, according to the present invention, after adjusting the oxygen concentration in the exhaust gas to 7-10%, the exhaust gas is adsorbed on the surface of the carbon fiber by introducing it into the PAN-based carbon fiber having an N / C atomic ratio of 0.06-0.1 at room temperature -50 ° C. do. At this time, sulfur dioxide, moisture, oxygen, etc. in the exhaust gas are adsorbed, and the adsorbed materials react on the surface of the carbon fiber. Sulfur dioxide reacts with oxygen to form sulfur trioxide, which reacts with hydrogen and finally sulfur dioxide is removed as sulfuric acid.

이와 같이 본 발명에 의한 방법으로 배가스중 이산화황을 제거하는 경우, 황성화탄소 1g을 기준으로 1시간당 SO2농도가 1000ppm인 연소배가스 24ℓ를 처리하게 된다.As described above, when sulfur dioxide is removed from the exhaust gas by the method according to the present invention, the combustion exhaust gas having a concentration of 1000 ppm of SO 2 per hour is treated based on 1 g of carbon sulfide.

이하, 실시예를 통하여 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

폴리아크릴로 니트릴계 활성탄소섬유를 이용하여 배가스중 SO2농도가 1000 ppm, O27%수분 10%를 함유하는 연소배가스를 24L / g / hr 유량으로 30℃에서 반응시켰다. 반응개시 후 6시간 경과시 SO2가 파과되기 시작하였으며 파괴된 후 탈황율은 98%를 유지 하였다.Using a polyacrylonitrile-based activated carbon fiber, a combustion flue gas containing a concentration of 1000 ppm SO 2 and 10% O 2 7% water was reacted at 30 ° C. at a flow rate of 24 L / g / hr. Six hours after the start of the reaction, SO 2 began to break through and the desulfurization rate was 98% after destruction.

일한, 탈황율은 수일동안 계속되었으며 이 조건에서의 탈황율은 98% 이었다.The desulfurization rate continued for several days, at which time the desulfurization rate was 98%.

[실시예 2]Example 2

실시예 1과 같은 조건에서 산소농도를 10%로 조절하여 탈황시험하었다. 반응개시후 6시간 경과시 파괴되기 시작하었고 파괴된 다음 탈황율은 85%였다.Desulfurization test was performed by adjusting the oxygen concentration to 10% under the same conditions as in Example 1. Six hours after the start of the reaction, it started to break down and the desulfurization rate after breaking down was 85%.

[비교예 1]Comparative Example 1

실시예 1과 같은 조건에서 산소 농도를 5%조절하여 탈황시험하였다. 반응개시후 5시간 경과시 파괴되었으며 파괴된 이후 탈황율은 75%였다.Desulfurization test was performed by adjusting the oxygen concentration at 5% under the same conditions as in Example 1. It was destroyed 5 hours after the start of the reaction and the desulfurization rate was 75% after the destruction.

[비교예 2]Comparative Example 2

실시예 1과 같은 조건으로 산소 농도를 3%로 감소시켜 탈황시험하였다. 반응개시우 3시간 경과시 파괴되었으며 파괴된 이후 탈황율은 60%를 나타내었다.Desulfurization test was performed by reducing the oxygen concentration to 3% under the same conditions as in Example 1. The reaction was destroyed after 3 hours of initiation and the desulfurization rate was 60% after the destruction.

[비교예 3]Comparative Example 3

실시예 1과 같은 조건으로 산소 농도를 13% 조절하여 탈황시험하였다. 반응개시후 5시간 경과시 파괴되었으며 파괴된 이후의 탈황율은 60% 었다.Desulfurization test was performed by adjusting the oxygen concentration by 13% under the same conditions as in Example 1. It was destroyed 5 hours after the start of the reaction and the desulfurization rate after destruction was 60%.

[실시예 3]Example 3

폴리아크릴로니트릴계 활성탄소섬유를 사용하여 배가스중 SO2농도가 1500 ppm, O27%, 수분 10%를 함유하는 연소배기가스 24 L / g/ hr 유량으로 상온에서 탈황시험한 결과 2시간후에 파괴되었으나 파괴된 후 탈황율은 63%였다.After 2 hours of desulfurization test using a polyacrylonitrile activated carbon fiber at a room temperature of 24 L / g / hr of flue exhaust gas containing SO 2 concentration of 1500 ppm, O 2 7% and moisture 10% It was destroyed but after the destruction, the desulfurization rate was 63%.

[비교예 4][Comparative Example 4]

실시예 3과 같은 조건으로 산소 농도를 5%조절하여 탈황시험하였다. 반응개시후 2시간 경과시 파괴되었으며 파괴된 후 탈황율은 35%를 나타내었다.Desulfurization test was performed by adjusting the oxygen concentration to 5% under the same conditions as in Example 3. It was destroyed 2 hours after the start of the reaction and showed 35% of desulfurization rate after the destruction.

[비교예 5][Comparative Example 5]

실시예 3과 같은 반응조건으로 50℃ 반응온도에서 탈황시험하였다. 반응개시후 2시간 경과시 파괴되었었으며 파괴후의 탈황율은 35% 였다.Desulfurization test was carried out at the reaction temperature of 50 ℃ under the same reaction conditions as in Example 3. It was destroyed 2 hours after the start of the reaction and the desulfurization rate after destruction was 35%.

상기한 바와같이 배가스중의 산소함량은 7-10%로 증대시키고 N/C원자비가 0.06-0.1인 PAN계 활성탄소섬유에 상온∼5℃ 온도로 배가스를 도입하여 탈황반응시킴으로써, 산소함량이 이보다 낮은 경우에 비하여 피괴시간이 길어지고 탈황율이 최대 23%증대되는 것으로 배가스중에서 이산화황이 보다 효과적으로 제거된다.As described above, the oxygen content in the flue gas is increased to 7-10% and the desulfurization reaction is carried out by introducing the flue gas at room temperature to 5 ° C. into the PAN-based activated carbon fiber having an N / C atomic ratio of 0.06-0.1. Compared to the low case, the destruction time is longer and the desulfurization rate is increased by up to 23%. Thus, sulfur dioxide is more effectively removed from the flue gas.

Claims (1)

이산화황 함유 배가스중 산소의 함량을 7-10%로 조절한후, 질소대 탄소의 원자비(N/C)가 0.06-0.1인 폴리아크릴로 나트릴계 활성탄소섬유에 실온∼50℃의 반응온도로 이산화황을 함유하는 배가스를 도입하여 배가스중의 이산화황을 제거하는 방법After adjusting the oxygen content in sulfur dioxide-containing flue gas to 7-10%, reaction temperature of room temperature to 50 ℃ on polyacrylonitrile activated carbon fiber having an atomic ratio (N / C) of nitrogen to carbon of 0.06-0.1 To remove sulfur dioxide from flue gas by introducing flue gas containing sulfur dioxide
KR1019960070092A 1996-12-23 1996-12-23 Method of removing sulphur oxide from waste gas KR100270099B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960070092A KR100270099B1 (en) 1996-12-23 1996-12-23 Method of removing sulphur oxide from waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960070092A KR100270099B1 (en) 1996-12-23 1996-12-23 Method of removing sulphur oxide from waste gas

Publications (2)

Publication Number Publication Date
KR19980051218A true KR19980051218A (en) 1998-09-15
KR100270099B1 KR100270099B1 (en) 2000-10-16

Family

ID=19490234

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960070092A KR100270099B1 (en) 1996-12-23 1996-12-23 Method of removing sulphur oxide from waste gas

Country Status (1)

Country Link
KR (1) KR100270099B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968211B1 (en) * 2018-08-30 2019-08-13 주식회사 퍼팩트 Manufacturing method of plastic product for manhole comprising sulfur polymer cement and manhole product produced by the process
WO2020045907A1 (en) * 2018-08-30 2020-03-05 주식회사 퍼팩트 Manufacturing method for synthetic resin pipe containing sulfur polymer cement, and synthetic resin pipe manufactured thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968211B1 (en) * 2018-08-30 2019-08-13 주식회사 퍼팩트 Manufacturing method of plastic product for manhole comprising sulfur polymer cement and manhole product produced by the process
WO2020045907A1 (en) * 2018-08-30 2020-03-05 주식회사 퍼팩트 Manufacturing method for synthetic resin pipe containing sulfur polymer cement, and synthetic resin pipe manufactured thereby

Also Published As

Publication number Publication date
KR100270099B1 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
CA2193638C (en) Exhaust gas treating systems
CN1050816C (en) Process for the purification of carbon dioxide
EP0801978B1 (en) Process for the denitration of exhaust gases with heat treated activated carbon
CA1288215C (en) Process for the elimination of sulfur oxides carried in a gas, by means of anabsorbant mass that can be regenerated through a reaction with hydrogen sulfide
US6106791A (en) Exhaust gas treating systems
US6027704A (en) Process for the reduction of SO2 from wet lime/limestone tailgas in power plant desulfurization processes
KR100270099B1 (en) Method of removing sulphur oxide from waste gas
US6814948B1 (en) Exhaust gas treating systems
KR100653046B1 (en) Method for removal of hydrogen sulfide by reaction of catalyst
EP0502156A1 (en) Catalytic decomposition of cyanuric acid and use of product to reduce nitrogen oxide emissions
CA1296508C (en) Removal of water vapor diluent after regeneration of metal oxide absorbent to reduce recycle stream
CN111375274A (en) Containing SO2Gas treatment method and apparatus
WO2001056689A1 (en) METHOD FOR THE TREATMENT OF ACTIVATED CARBONACEOUS MATERIAL CONTAINING ALKALI/ALKALINE EARTH METALS FOR THE REDUCTION OF NOx FROM FLUE GAS
KR100451285B1 (en) The reduction method of nitrogen oxides and sulfur oxides using hydrogen peroxide solution and calcium oxide solution
US4855117A (en) Process for removing sulfur oxides from a gas by means of an absorption mass regenerable by reaction with elemental sulfur
KR100345727B1 (en) A resolvable method of NOx
CA1291859C (en) Sulphur oxide elimination process from a gas by means of an absorption mass regenerable through reaction with elemental sulphur
CN1068913C (en) Preparation of active carbon fiber with high desulfurization rate
KR100215737B1 (en) Selective oxidation catalyst of hydrogen sulfide including ammonia and water and its use for removing hydrogen sulfide
US4622213A (en) Sulfur dioxide removal from gas streams
KR100270092B1 (en) Active carbon fiber for removal of sulphur dioxide gas
Kisamori et al. SO~ 2 and NOx Removal at Ambient Temperatures Using Activated Carbon Fibers
CN1089018C (en) Application of chrome-contained waste catalyst as desulfurizing agent
KR100487944B1 (en) Catalyst for reducing sulfur dioxide and the method for eliminating sulfur dioxide thereby
SU1759444A1 (en) Method of cleaning effluent gases from sulfur dioxide

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070704

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee