KR100270092B1 - Active carbon fiber for removal of sulphur dioxide gas - Google Patents
Active carbon fiber for removal of sulphur dioxide gas Download PDFInfo
- Publication number
- KR100270092B1 KR100270092B1 KR1019960070072A KR19960070072A KR100270092B1 KR 100270092 B1 KR100270092 B1 KR 100270092B1 KR 1019960070072 A KR1019960070072 A KR 1019960070072A KR 19960070072 A KR19960070072 A KR 19960070072A KR 100270092 B1 KR100270092 B1 KR 100270092B1
- Authority
- KR
- South Korea
- Prior art keywords
- activated carbon
- carbon fiber
- sulfur dioxide
- polyacrylonitrile
- fiber
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/508—Sulfur oxides by treating the gases with solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8603—Removing sulfur compounds
- B01D53/8609—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/262—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28023—Fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0245—Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
- B01J31/0248—Nitriles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/302—Sulfur oxides
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Inorganic Chemistry (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Inorganic Fibers (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
제1도는 PAN계 활성탄소섬유중 N/C 원소비와 파괴시간의 관계를 나타내는 그래프이며,1 is a graph showing the relationship between the N / C element ratio and the breakdown time in the PAN-based activated carbon fiber,
제2도는 PAN계 활성탄소섬유중 O/C 원소비와 파괴시간의 관계를 나타내는 그래프이다.2 is a graph showing the relationship between the O / C element ratio and the breakdown time in the PAN-based activated carbon fibers.
본 발명은 연소배가스 또는 공기중에 함유되어 있는 이산화항가스제거에 사용되는 흡착제에 관한 것이며, 보다 상세하게는 이산화황가스제거에 성능이 우수한 폴리아크릴로 니트릴계 활성탄소섬유 흡착제에 관한 것이다.The present invention relates to an adsorbent for use in removing exhaust gas contained in combustion flue gas or air, and more particularly, to a polyacrylonitrile-based activated carbon fiber adsorbent having excellent performance in removing sulfur dioxide.
종래 대기오염물질 중 이산화황이나 산화질소화합물을 제거하기 위한 여러 가지 방법이 개발되어 제안되어 왔으며 이들중 대표적인 것으로는 활성코크스 또는 활성탄을 이용하여 공기 또는 배가스중에 함유된 이산화황가스를 흡착 또는 촉매산화작용으로 제거하는 방법이 사용되어 왔다.Various methods for removing sulfur dioxide or nitrogen oxide compounds from air pollutants have been developed and proposed. Among them, the active coke or activated carbon is used for adsorption or catalytic oxidation of sulfur dioxide gas contained in air or flue gas. Removal methods have been used.
활성탄 또는 활성코크스를 이용하여 방법은 다른 방법에 비해서 저렴하고 또한 공정을 적절히 적용하면 동일공정내에서 황화합물과 질소산화물을 동시에 제거할 수 있음으로 다른 공정에 비하여 경제적이다.By using activated carbon or activated coke, the method is cheaper than other methods, and if the process is properly applied, sulfur compounds and nitrogen oxides can be simultaneously removed in the same process, which is more economical than other processes.
활성탄 또는 활성코크스를 이용한 이산화황 가스제거 방법에서는 활성탄 또는 활성코크스에 공기 또는 연소배가스 중에 함유된 유황화합물이 우선 탄소표면 또는 세공에 흡착되고 또한 배가스 중에 함유되어 있는 산소 및 수분이 흡착되고 탄소표면상에서의 산화작용에 의해 황산으로 변화된다.In the sulfur dioxide degassing method using activated carbon or activated coke, sulfur compounds contained in air or combustion flue gas are first adsorbed to the carbon surface or pores, and oxygen and moisture contained in the flue gas are adsorbed, It is converted into sulfuric acid by oxidation.
상기 탄소표면에 형성된 황산은 탄소표면상에서 흘러내리고 탄소표면에 의해 다시 산화작용이 계속된다. 그러나 이러한 산화작용은 계속적으로 진행되지 못하고 일정시간이 경과되면 활성탄 및 활성코크스의 산화작용능력이 감소되어 그 영향을 상실하게 된다. 따라서 사용된 활성탄-및 활성코크스는 열적으로 재생시켜 사용하여야 한다. 이와 같이, 활성탄 및 활성코크스를 열적으로 재생시켜 사용하기 위해서 고정상으로 반응을 유지하기 어렵고 이동상을 사용하여야 한다. 이동상을 사용하기 위해서는 활성탄 및 활성 코크스의 경도가 매우 커야하며 경도를 증대시키기 위해서는 비표면적이 작은 활성탄 및 활성코크스가 사용된다. 그러나 활성탄 및 활성코크스의 비표면적이 감소됨에 따라 흡착성이 또한 감소된다.The sulfuric acid formed on the carbon surface flows down on the carbon surface and continues to be oxidized by the carbon surface again. However, such oxidation does not proceed continuously and after a certain period of time the oxidation capacity of the activated carbon and activated coke is reduced and the effect is lost. Therefore, the activated carbon and activated coke should be thermally regenerated and used. As such, in order to thermally regenerate activated carbon and activated coke, it is difficult to maintain a reaction in a fixed phase and a mobile phase must be used. In order to use the mobile phase, activated carbon and activated coke have to have a very high hardness, and to increase the hardness, activated carbon and activated coke having a small specific surface area are used. However, as the specific surface areas of activated carbon and activated coke decrease, sorption also decreases.
그러나 이러한 비표면적만이 영향을 미치는 것이 아니고 탄소계 흡착제를 이용하여 황산화물을 제거하기 위해서는 탄소흡착제 중에 질소함량이 많은 것이 좋은 성능을 가지는 것으로 발표되어 왔으며 따라서 활성탄도 질소함량이 있는 석탄을 원료로 사용하여 왔다.However, the specific surface area is not only affected, and in order to remove sulfur oxides using carbon-based adsorbents, it has been reported that a large amount of nitrogen in carbon adsorbents has a good performance. Has been used.
그러나 활성탄 및 활성코크스 공정에서는 비표면적이 작은 것이 사용됨으로 장치가 대형화되어 설비비가 증가하는 단점이 있다.However, in the activated carbon and activated coke process, a small specific surface area is used, so that the apparatus is enlarged, which increases the equipment cost.
따라서 이를 개선하기 위해 최근에는 우수한 흡착제로 평가되고 있는 활성탄소 섬유를 탈황촉매로서 사용하는 것이 발표되고 있으며 활성탄소섬유중에서도 폴리아크릴로니트릴계의 섬유가 우수한 것으로 발표되었으며, 이는 특히 원사에 함유되어 있는 질소의 함량이 높기 때문에 탈황에 우수한 것으로 알려져 있다.Therefore, in order to improve this, it has been announced to use activated carbon fiber which is recently evaluated as an excellent adsorbent as a desulfurization catalyst, and among the activated carbon fibers, polyacrylonitrile-based fiber has been reported to be excellent, which is particularly contained in yarn. It is known to be excellent for desulfurization because of high nitrogen content.
그러나 질소함량이 높은 것만을 규정하고 있으며 탄성탄소섬유에서의 구체적인 질소함량에 대하어는 알려진 바가 없는 것이다.However, it only specifies the high nitrogen content and is not known about the specific nitrogen content in the elastic carbon fiber.
일본특허 공보 60- 44012에는 질소를 4 -10%함량하는 폴리아크릴로니트릴계 활성탄소섬유에 철, 니켈, 및 구리와 같은 금속원소를 첨착하여 황화합물의 흡착을 개선하는 방법이 개시되었으나 이는 첨착공졍이 추가되어 공정이 복잡해지며 또한 단순히 흡착파괴시간만이 증대되는 것으로 계속적인 산화작용에 대해서는 언급하고 있지 않는 것이다.Japanese Patent Publication No. 60-44012 discloses a method of improving the adsorption of sulfur compounds by attaching metal elements such as iron, nickel, and copper to polyacrylonitrile-based activated carbon fibers containing 4 -10% nitrogen. The addition of fins adds to the complexity of the process and simply increases the adsorption breakdown time, which does not address continuous oxidation.
[발명이 이루고자 하는 기술적 과제][Technical problem to be achieved]
이에 본 발명의 목적은 상기한 바와 같은 문제를 해결하기 위하여 제안된 것으로 탈황성능이 우수한 이산화황가스 제거용 활성탄소섬유 흡착제를 제공하는 것이며, 더욱이, 우수한 탈황성능으로 연속적으로 이산화황가스를 분해제거할수 있는 활성탄소섬유를 제공하는 것이다.Accordingly, an object of the present invention is to provide an activated carbon fiber adsorbent for removing sulfur dioxide gas having excellent desulfurization performance, which has been proposed to solve the problems as described above. Moreover, the sulfur dioxide gas can be continuously decomposed and removed with excellent desulfurization performance. It is to provide activated carbon fibers.
본발명에 의하면, 배기가스중 이산화황의 제거에 사용되는, 원소비가 N/C = 0.06-0.1, 0/C = 0.05 - 0.1인 폴리아크릴로니트릴계 활성탄소섬유 흡착제가 제공된다.According to the present invention, there is provided a polyacrylonitrile-based activated carbon fiber adsorbent having an element ratio of N / C = 0.06-0.1, 0 / C = 0.05-0.1, which is used for removing sulfur dioxide in exhaust gas.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
일반적으로 대기오염물질중 이산화황은 활성코크스 또는 활성탄에 흡착 및 산화되어 황산으로 제거된다. 활성코크스 또는 활성탄으로는 활성탄소섬유가 사용된다.In general, sulfur dioxide in air pollutants is adsorbed and oxidized in activated coke or activated carbon and removed with sulfuric acid. Activated carbon fiber is used as activated coke or activated carbon.
활성탄소 섬유의 원료로는 핏치 페놀수지 및 아크릴 섬유등이 사용될수도 있으나, 이들 섬유 원사에는 극미량의 질소가 함유되어 있으며, 따라서 활성화 후에는 질소가 거의 잔존하지 않게 됨으로, 핏치, 페놀수지 및 아크릴섬유로 제조된 활성탄소섬유를 단순한 흡착이 아닌 촉매로 사용하기에는 부적절하며 질소의 함량이 큰 폴리아크릴로니트릴 섬유를 원료로한 폴리아크릴로니트릴계 활성탄소섬유를 사용하는 것이 바람직하다.Pitch phenolic resin and acrylic fiber may be used as raw materials of activated carbon fiber, but these fiber yarns contain a very small amount of nitrogen, and thus, after activation, there is almost no nitrogen remaining. Thus, pitch, phenolic resin and acrylic fiber It is preferable to use polyacrylonitrile-based activated carbon fibers made from polyacrylonitrile fibers having a high nitrogen content, which is inappropriate to use activated carbon fibers as a catalyst, rather than merely adsorption.
또한 수증기를 이용하는 물리적인 방법으로 상기 아크릴로니트릴 섬유를 활성화시키는 경우에는 활성화온도가 800℃이상이 되어야 함으로 원료에 함유된 질소성분이 열분해에 의해 제기되어 효과적인 탈황촉매로 작용되지 않는다. 따라서, NaOH 및 KOH 용액에 침지한 후 이를 건조시키고, 건조후 불활성분위기하에서 열처리하여 활성화 하는 화학적 방법으로 제조된다.In addition, when activating the acrylonitrile fiber by a physical method using water vapor, the activation temperature should be 800 ° C. or higher, so that the nitrogen component contained in the raw material is raised by pyrolysis, and thus does not act as an effective desulfurization catalyst. Therefore, it is prepared by a chemical method of immersing in NaOH and KOH solution and drying it, and then drying and activating by heat treatment under an inert atmosphere.
이때 열처리온도 및 시간 그리고 사용되는 NaCH 및 KOH의 농도에 따라 활성탄소섬유중의 원소비를 조절하게 된다. 본 발명에서는 폴리아크릴로니트릴 섬유원료 침치시 4M KOH 용액을 사용하였으며 600 - 900℃로 15 분 - 1시간동안 열처리하여, N/C의 원소중량비를 0.06- 0.1 그리고 O/C의 원소중량비를 0.05 - 0.15로 조절하였다.At this time, the element ratio in the activated carbon fiber is controlled according to the heat treatment temperature and time and the concentration of NaCH and KOH used. In the present invention, 4M KOH solution was used when the polyacrylonitrile fiber raw material was soaked and heat treated at 600-900 ° C for 15 minutes-1 hour, so that the element weight ratio of N / C was 0.06-0.1 and the element weight ratio of O / C was 0.05. Adjusted to 0.15.
N/C 및 O/C의 원소비를 조절하기 위해 온도를 600 - 900℃로 변화시키면서 시험하였으나, 활성화 온도가 800℃ 이상에서는 원료에 함유된 질소성분이 분해되며 700℃에서의 활성화 시키는 것이 가장 바람직하다.In order to control the element ratio of N / C and O / C, the temperature was changed to 600-900 ℃, but when the activation temperature is above 800 ℃, the nitrogen component contained in the raw material is decomposed and it is most activated at 700 ℃. desirable.
폴리 아크릴로니트릴계 활성탄소 섬유중 N/C의 원소중량비가 0.06 이하, 0.1 이상 그리고 O/C의 원소중량비가 0.05 이하, 0.15 이상인 겅우에는 활성탄소섬유를 탈황촉매로 사용할 때, 상기 범위내의 활성탄소섬유에 비하여 파괴시간이 급속히 감소된다. 즉, 흡착성이 감소됨을 폴리아크렬로 니트릴계 활성탄소 섬유중 N/C의 원소중량비를 0.06-0.1 그리고 O/C의 원소중량비를 0.05- 0.15로 조절하는 것이 바람직하다.When the N / C element weight ratio of polyacrylonitrile-based activated carbon fibers is 0.06 or less, 0.1 or more, and the O / C element weight ratio is 0.05 or less and 0.15 or more, when activated carbon fiber is used as a desulfurization catalyst, Compared to activated carbon fibers, breakdown time is reduced rapidly. That is, it is preferable to adjust the element weight ratio of N / C to 0.06-0.1 and the element weight ratio of O / C to 0.05-0.15 in the nitrile-based activated carbon fiber in the polyacrylamide to reduce the adsorptivity.
활성탄소섬유중의 원소비 이외에 비표면적에 의해 또한 활성탄소섬유의 특성이 좌우되나, 본발명에 의한 폴리아크릴로니트릴계 활성탄소섬유의 비표면적을 특히 한정하는 것은 아니다. 비표면적은 단순한 흡착에서는 큰 의미를 갖으나 본 발명에서와 같이 활성탄소 섬유에 이산화황이 흡착된후, 활성탄소섬유가 다시 촉매작용하여 이산화황이 분해 제거됨으로써 활성탄소섬유가 흡착제와 함께 촉매로 작용하는 경우에는 크게 영향을 미치지 않기 때문이다.In addition to the element ratio in the activated carbon fibers, the specific surface area also determines the characteristics of the activated carbon fibers, but the specific surface area of the polyacrylonitrile-based activated carbon fibers according to the present invention is not particularly limited. The specific surface area has a great meaning in simple adsorption, but as sulfur dioxide is adsorbed on the activated carbon fibers as in the present invention, the activated carbon fibers are catalyzed again so that the sulfur dioxide is decomposed and removed so that the activated carbon fibers act as a catalyst together with the adsorbent. This is because it does not greatly affect the case.
이하, 실시예를 통하여 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.
[실시예 1]Example 1
폴리아크릴로니트릴 섬유를 230℃에서 3시간 동안 공기중에 안정화한 다음 KOH 2몰 용액에 침적시킨후, 건조하고 이를 700℃에서 30분간 열처리하여 비표면적이 1810㎥/g이며 N/C가 0.1, O/C가 0.13인 활성탄소섬유를 제조하였다.The polyacrylonitrile fiber was stabilized in air at 230 ° C. for 3 hours, then immersed in a 2 molar solution of KOH, dried and heat-treated at 700 ° C. for 30 minutes to have a specific surface area of 1810 m 3 / g and N / C of 0.1, An activated carbon fiber having an O / C of 0.13 was prepared.
이를 유리로 만든 반응기에 넣은후 이산화황을 함유하는 공기를 흘려 이산화황의 제거율을 조사하였다.The removal rate of sulfur dioxide was investigated by pouring it into a glass reactor and flowing air containing sulfur dioxide.
실험조건은 다음과 같다.Experimental conditions are as follows.
가) 가스의 조성 : SO2: 1000ppm, H2O : 10 vol%, O2:5 vol%, N2:balanceA) Composition of gas: SO 2 : 1000ppm, H 2 O: 10 vol%, O 2 : 5 vol%, N 2 : balance
나) 공간속도 : 24000 ㎖/g.hrB) Space velocity: 24000 ㎖ / g.hr
다) 반응온도 : 30, 50, 80, 100℃C) Reaction temperature: 30, 50, 80, 100 ℃
상기 실험에서 각 온도별로 본발명에 의한 폴리아크릴로니트릴계 활성탄소섬유가 장입된 반응기에 이산화황을 함유하는 공기를 유입한후, 반응기에서 이산화황이 다시 누출되는데까지 걸리는 파괴시간을 측정하여 하기 표1에 나타내었다.In the above experiment, after introducing air containing sulfur dioxide into the reactor into which the polyacrylonitrile-based activated carbon fiber according to the present invention was charged at each temperature, the destruction time until the sulfur dioxide leaked from the reactor was measured. Shown in
[실시예 2]Example 2
실시예 1에서와같이 안정화한 섬유를 3몰의 KOH 용액에 침적시키고 이를 건조시킨후 700℃에서 15분간 열처리하여 비표면적 1700㎥/g, N/C가 0.125, O/C가 0.26인 활성탄소섬유를 제조하었다. 이와 같이 제조된 활성탄소섬유를 실시예 1의 반응조건에서 시험한 결과 파괴시간은 하기 표2와 같았다.As in Example 1, the stabilized fibers were immersed in 3 mol of KOH solution, dried and heat-treated at 700 ° C. for 15 minutes to obtain a specific surface area of 1700m 3 / g, N / C of 0.125, and O / C of 0.26. Fibers were prepared. As a result of testing the activated carbon fiber prepared in the reaction conditions of Example 1 was as shown in Table 2 below.
[실시예 3]Example 3
실시예 1과 같이 안정화섬유를 3몰 KOH 용액에 침적시키고 이를 건조시킨 후 700℃에서 15분간 열처리하여 비표면적이 2430 ㎡/g, N/C가 0.083, O/C가 0.7인 활성탄소섬유를 제조하였으며, 이와 같이 제조된 실시예 1의 조건으로 실험한 결과 파괴시간은 하기 표3과 같았다.As in Example 1, stabilized fibers were immersed in a 3 mol KOH solution, dried and heat-treated at 700 ° C. for 15 minutes to obtain activated carbon fibers having a specific surface area of 2430 m 2 / g, N / C of 0.083 and O / C of 0.7. It was prepared, as a result of the experiment in the conditions of Example 1 prepared as described above was shown in Table 3 below.
[실시에 4][Example 4]
상기 실시예와 같이 N/C, O/C의 비가 다른 여러종류의 활성탄소섬유를 제조하여 실시예 1의 반응조건으로 이산화유황을 제거시킨 결과를 도1 및 도2에 나타내었다.1 and 2 show the results of removing sulfur dioxide under the reaction conditions of Example 1 by preparing various types of activated carbon fibers having different ratios of N / C and O / C as in Example.
그림 제1도 및 제2도의 결과를 보면 N/C가 0.06 - 0.1, O/C가 0 - 0.15까지 탈황성능이 우수함을 보여주고 있다.Figures 1 and 2 show the excellent desulfurization performance of 0.06-0.1 for N / C and 0-0.15 for O / C.
30℃의 결과는 상기 범위에 있는 시료들이 파괴되지 않았으므로 그림으로 표면하기 어려워 나타내지 않았다.The results at 30 ° C. did not appear to be difficult to surface in the picture as the samples in this range were not destroyed.
[발명의 효과][Effects of the Invention]
상기한 바와 같이, N/C 원소비가 0.06- 0.1, O/C 원소비가 0.05- 0.1 인 폴리아크릴로 니트릴계 활성탄소섬유를 사용하는 경우 다른 N/C 및 O/C비가 원소비 범위에 비하여 파괴시간이 증대됨으로써 이산화황제거 효율이 증대됨을 알 수 있으며, 더욱이 30℃에서 이산화황을 제거하는 경우 다시 이산화황이 제거되지 않는 것(실시예 1 및 3)으로 부터 이산화황이 100% 분해제거됨을 알수 있고, 이와 같은 경우 촉매를 재생하지 않고 연속적으로 사용할수 있는 것이다.As described above, when polyacrylonitrile-based activated carbon fibers having an N / C element ratio of 0.06-0.1 and an O / C element ratio of 0.05-0.1 are used, other N / C and O / C ratios are in the element ratio range. It can be seen that the sulfur dioxide removal efficiency is increased by increasing the destruction time, and moreover, when sulfur dioxide is removed at 30 ° C., sulfur dioxide is 100% decomposed and removed from being not removed again (Examples 1 and 3). In this case, the catalyst can be used continuously without regenerating the catalyst.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960070072A KR100270092B1 (en) | 1996-12-23 | 1996-12-23 | Active carbon fiber for removal of sulphur dioxide gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960070072A KR100270092B1 (en) | 1996-12-23 | 1996-12-23 | Active carbon fiber for removal of sulphur dioxide gas |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980051198A KR19980051198A (en) | 1998-09-15 |
KR100270092B1 true KR100270092B1 (en) | 2000-10-16 |
Family
ID=19490224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960070072A KR100270092B1 (en) | 1996-12-23 | 1996-12-23 | Active carbon fiber for removal of sulphur dioxide gas |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100270092B1 (en) |
-
1996
- 1996-12-23 KR KR1019960070072A patent/KR100270092B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19980051198A (en) | 1998-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4442078A (en) | Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent | |
JP3272367B2 (en) | Heat-treated activated carbon fiber for denitration, method for producing the same, denitration method using the same, and denitration system using the same | |
US3926590A (en) | Process for treatment of waste gases | |
EP0779100B1 (en) | Flue-gas denitration und desulfurization processes | |
EP0776246B1 (en) | Process for regenerating nitrogen-treated carbonaceous chars used for hydrogen sulfide removal | |
JPH02118121A (en) | Pitch-based active carbon fiber and production thereof | |
JP2001019984A (en) | Activated carbon fiber adsorbent for removing odorant in fuel gas | |
CN108993504B (en) | Modified activated coke for demercuration of sulfur-containing flue gas and preparation method thereof | |
US6106791A (en) | Exhaust gas treating systems | |
US4325926A (en) | Process for removing sulfur dioxide from a gas | |
KR100270092B1 (en) | Active carbon fiber for removal of sulphur dioxide gas | |
US6814948B1 (en) | Exhaust gas treating systems | |
CN116510688A (en) | Nitrogen-doped high-microporous carbon material and preparation method and application thereof | |
US4558022A (en) | Regeneration of caustic impregnated activated carbons | |
JP4263829B2 (en) | Catalyst regeneration method | |
CN113578251A (en) | Nitrogen-doped modified mesoporous adsorbent and preparation method and application thereof | |
SU1582975A3 (en) | Method of purifying gases from mercaptanes | |
JP2000015053A (en) | Method for activation of active carbon fibrous desulfurizer and activated active carbon fibrous desulfurizer | |
JPH0679176A (en) | Active carbon fiber catalyst for reducing nitrogen monoxide with ammonia and nitrogen monoxide removing process for nitrogen monoxide containing gas | |
KR100345727B1 (en) | A resolvable method of NOx | |
KR100270099B1 (en) | Method of removing sulphur oxide from waste gas | |
JPH05253435A (en) | Nitrogen monoxide adsorbent and production thereof | |
EP0058116B1 (en) | Improved regeneration of caustic impregnated activated carbon | |
SU827132A1 (en) | Method of cleaning oxygen-containing gases | |
RU2187362C1 (en) | Method of preparing sulfur-containing carbon sorbent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20070704 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |