KR19980051079A - Plasma growing welding method to obtain excellent stellite 6 growing layer - Google Patents

Plasma growing welding method to obtain excellent stellite 6 growing layer Download PDF

Info

Publication number
KR19980051079A
KR19980051079A KR1019960069944A KR19960069944A KR19980051079A KR 19980051079 A KR19980051079 A KR 19980051079A KR 1019960069944 A KR1019960069944 A KR 1019960069944A KR 19960069944 A KR19960069944 A KR 19960069944A KR 19980051079 A KR19980051079 A KR 19980051079A
Authority
KR
South Korea
Prior art keywords
growth
stellite
plasma
growing
layer
Prior art date
Application number
KR1019960069944A
Other languages
Korean (ko)
Other versions
KR100347583B1 (en
Inventor
김형준
윤익찬
강윤하
Original Assignee
김종진
포항종합제철 주식회사
신창식
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종진, 포항종합제철 주식회사, 신창식, 재단법인 포항산업과학연구원 filed Critical 김종진
Priority to KR1019960069944A priority Critical patent/KR100347583B1/en
Publication of KR19980051079A publication Critical patent/KR19980051079A/en
Application granted granted Critical
Publication of KR100347583B1 publication Critical patent/KR100347583B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3046Co as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

본 발명은 우수한 스텔라이트 6 육성층을 얻기 위한 플라즈마 육성용접방법에 관한 것으로, 강재나 철의 표면 육성을 위하여 중량%로 C:1.2, Ni:2.1, Cr:28.0, Co:62.9, Fe:1.8, W:4.0의 스텔라이트 6를 사용하여 플라즈마 육성시 예열 온도는 50∼100℃로 하고, 분말 송급 속도는 2.0∼2.2㎏/hr, 토치 이송속도는 6.0∼8.0㎝/min, 아크 전류는 140∼160A, 오시레이션(oscillation) 속도는 70∼100㎝/min로 플라즈마 육성하여 낮은 희석율과 높은 표면 경도를 지니도록 하여서 된 것이다.The present invention relates to a plasma growth welding method for obtaining an excellent stellite 6 growth layer, and to C and 1.2, Ni: 2.1, Cr: 28.0, Co: 62.9, Fe: 1.8, Preheating temperature during plasma growth using Stellite 6 of W: 4.0 is 50 to 100 ° C, powder feeding speed is 2.0 to 2.2 kg / hr, torch feeding speed is 6.0 to 8.0 cm / min, and arc current is 140 to 160A, the oscillation (oscillation) rate is 70 to 100cm / min by plasma growth to have a low dilution rate and high surface hardness.

Description

우수한 스텔라이트 6 육성층을 얻기 위한 플라즈마 육성용접 방법Plasma growing welding method to obtain excellent stellite 6 growing layer

본 발명은 우수한 스텔라이트 6 육성층을 얻기 위한 플라즈마 육성용접 방법에 관한 것으로, 특히 플라즈마의 고밀도 열원을 이용하여 분말을 용융시키는 플라즈라 육성용접( PTA, Plasma Transferred Arc)의 방법에 관한 것이다.The present invention relates to a plasma growth welding method for obtaining an excellent stellite 6 growth layer, and more particularly, to a plasma transfer welding (PTA) method in which a powder is melted by using a high density heat source of plasma.

일반적으로 표면 육성용접은 표면의 높은 내마모성과 내부식성을 요하는 부품에 상업적으로 널리 적용되고 있다.In general, surface forming welding is widely applied commercially to components requiring high wear resistance and corrosion resistance of the surface.

사용되는 분말 재료는 크게 철계, 코발트계, 니켈계, 그리고 복합재료로 분류될 수 있다. 사용조건과 경제성에 따라 적당한 분말을 선택하여 사용하게 된다.Powder materials used can be broadly classified into iron-based, cobalt-based, nickel-based, and composite materials. Depending on the conditions of use and economics, a suitable powder is selected and used.

스텔라이트(Stellite)6은 코발트계 합금증에서 가장 대표적으로 상업적으로 널리 사용되는 재료이다. 대표적인 조성은 Co∼28Cr∼4W∼1.1C(무게 분율)로써 고온 강도와 인성을 겸비하여 각종 벨브나 벨브 시트(Seat)등의 표면 육성에 사용되고 있다.Stellite 6 is the most representative commercially widely used material in cobalt alloys. Typical compositions are Co to 28Cr to 4W to 1.1C (weight fraction), which have high temperature strength and toughness and are used for surface growth of various valves and valve seats.

종래의 육성용접은 표면에 육성시키려는 재료뿐만 아니라 모재의 표면도 녹이는 과정이므로 필연적으로 육성 재료와 모재와의 희석이 접경 지역에서 일어난다.Conventional fusing welding is a process of melting not only the material to be grown on the surface but also the surface of the base material, so that dilution between the fusing material and the base material occurs in the border region.

이러한 희석 작용은 같은 양의 육성재료를 사용할 때 얻어지는 육성층의 두께가 낮아질 뿐만 아니라, 모재는 주로 값이 저렴한 철이므로 이러한 철과 우수한 내마모성과 내부식성을 지니는 육성층과의 희석 작용에 의하여 육성층의 부식 측정은 저하하게 된다.(P. Crook:Corrosion Science, Vol. 35, 1993, p.647-653)This dilution action not only lowers the thickness of the growth layer obtained when the same amount of growth material is used, but also the base material is mainly inexpensive iron, so the corrosion of the growth layer is measured by the dilution action between the iron and the growth layer having excellent wear resistance and corrosion resistance. (P. Crook: Corrosion Science, Vol. 35, 1993, p. 647-653)

희석율은 보통 전체 육성층 면적과의 비율로 측정되는데, 플라즈마 육성용접시 5∼15%의 희석율을 보이게 된다.(Metals Handbook, Vol. 6, 1984, p.771)The dilution rate is usually measured as a ratio with the total growth layer area, and shows a dilution rate of 5 to 15% during plasma growth welding (Metals Handbook, Vol. 6, 1984, p.771).

따라서 이러한 희석 작용을 최소로 하고 그 효과를 최소로 감소시키기 위하여 원하는 육성층 두께를 한번에 올리기 보다는 먼저 얇게 육성시키고, 두번째에 원하는 두께로 육성시키는 방법을 많이 사용하고 있다.Therefore, in order to minimize such dilution and reduce the effect to a minimum, rather than raising the desired growth layer thickness at a time, the thin growth is performed first, and the second growth method is used.

희석율을 감소하기 위한 특허로는 우선 특정 부품의 희석율 감소를 위한 특허로서 미국 특허(US 4686348, 1987), 미국 특허(US 4529169, 1985), 그리고 미국 특허(US 4019011, 1977)등이 있다.Patents for reducing the dilution rate include, for example, US patents (US 4686348, 1987), US patents (US 4529169, 1985), and US patents (US 4019011, 1977) as patents for reducing the dilution rate of a particular part.

일본 특허(JP 55001919, 1980)에서는 희석율을 감소하기 위한 티그(TIG) 육성용접 방법에 대하여 명시하고 있다. 희석율을 최소로 하기 위하여 두번 육성하는 방법에 관한 특허로는 유럽 특허 (EP 194050, 1986)와 톱날 적용을 위한 미국 특허(US 3760141, 1973)등이 있다.Japanese Patent (JP 55001919, 1980) describes a TIG growing welding method for reducing the dilution rate. Patents on methods of growing twice to minimize dilution rates include European patents (EP 194050, 1986) and US patents for saw blade applications (US 3760141, 1973).

원하는 육성층 두께를 한 번에 올리기보다 두 면씩 플라즈마 토치를 이송하여 작업하는 방법은 작업이 번거로울 뿐만 아니라, 작업시간이 증대되어 비용 상승을 초래하게 된다.The method of transporting the plasma torch by two sides rather than raising the desired thickness of the build-up layer at once is not only cumbersome, but also increases the working time, resulting in increased cost.

본 발명은 상기와 같은 제반 문제점을 감안하여 이를 해소하고자 발명한 것으로 스텔라이트 6 분말 재료의 표면 육성시 플라즈마 육성용접 변수를 조정하여 제조된 육성층이 매우 낮은 희석율을 보이면서 높은 표면 경도를 지니도록함에 목적이 있는 것이다.The present invention was invented to solve the above problems in view of the above problems, and aims to have a high surface hardness while showing a very low dilution rate by adjusting a plasma growth welding parameter during the surface growth of the Stellite 6 powder material. Is there.

이와 같은 목적을 갖는 본 발명의 특징은 강재나 철의 표면 육성을 위하여 중량%로 C:1.2, Ni:2.1, Cr:28.0, Co:62.9, Fe:1.8, W:4.0의 스텔라이트 6를 사용하여 플라즈마 육성시 예열 온도는 50∼100℃로 하고, 분말 송급 속도는 2.0∼2.2㎏/hr, 토치 이송속도는 6.0∼8.0㎝/min, 아크 전류는 140-60A, 오시레이션(oscillation) 속도는 70∼100㎝/min로 플라즈마 육성하여 낮은 희석율과 높은 표면경도를 지니도록 하여서 됨을 특징으로 하는 우수한 스텔라이트 6 육성층을 얻도록 함에 있다.The characteristics of the present invention having the above object is to use the stellite 6 of C: 1.2, Ni: 2.1, Cr: 28.0, Co: 62.9, Fe: 1.8, W: 4.0 by weight for the surface growth of steel or iron The preheating temperature during plasma growth is 50-100 ℃, the powder feeding speed is 2.0-2.2 kg / hr, the torch feeding speed is 6.0-8.0 cm / min, the arc current is 140-60A, and the oscillation speed is Plasma growth at 70 to 100 cm / min results in a low dilution rate and high surface hardness to obtain an excellent stellite 6 growth layer.

도 1은 희석율 측정 결과 그래프,1 is a dilution rate measurement result graph,

도 2 (a)(b)는 스텔라이트 6 육성층의 단면 광학 현미경 사진,(A) (b) is a cross-sectional optical micrograph of a stellite 6 growing layer,

도 3은 표면 경도 측정 결과 그래프,3 is a surface hardness measurement results graph,

도 4는 비교예 3의 단면 조직 사진,4 is a cross-sectional structure photograph of Comparative Example 3;

도 5는 발명예 1의 단면 조직 사진.5 is a cross-sectional structure photograph of Inventive Example 1. FIG.

플라즈마 육성용접은 마스모도제이고, 최대 출력이 200A인 기기를 사용하여 분말 송급 가스, 플라즈마 가스, 그리고 보호 가스로는 모두 아르곤을 사용하였다.Plasma growth welding was made of masmododo, and the maximum output power was 200 A. Argon was used as the powder supply gas, the plasma gas, and the protective gas.

모재로는 일반 저탄소강이고 두께가 15㎜인 SS41을 40㎜×100㎜로 가공하여 표면을 연마한 후 플라즈마 육성용접 작업을 하였다.As a base material, SS41, which is a general low carbon steel and a thickness of 15 mm, was processed to 40 mm x 100 mm, and the surface was polished, followed by plasma growth welding.

사용된 코발트계 스델라이트 6 분말의 조성은 하기 표 1에서 보이고 있다.The composition of the cobalt-based Sdelite 6 powder used is shown in Table 1 below.

상기의 스텔라이트 6 분말을 사용하여 예열은 50℃로 하고, 모재와 토치간 거리는 15㎜로 하여 하기 표 2에서 보이는 작업 변수를 사용하여 플라즈마 육성 작업하였다.Using the above Stellite 6 powder, preheating was 50 ° C., and the distance between the base material and the torch was 15 mm, and plasma growth was performed using the working parameters shown in Table 2 below.

예열을 전혀 하지 않으면 모재와의 열응력 발생이 증가할 뿐만 아니라 육성층이 잘 형성되지 않고, 예열 온도가 증가하면, 희석율이 증가하므로 50∼100℃가 가장 적당한 예열 온도이다.If the preheating is not performed at all, not only the generation of thermal stress with the base material increases but also the growth layer is not well formed. If the preheating temperature is increased, the dilution rate is increased, so 50 to 100 ° C is the most suitable preheating temperature.

분말 공급 속도는 2.0∼2.2㎏/hr가 제일 적당한데 그 이유는 낮은 분말 송급 속도로는 생산성이 저하하고 희석율이 증가하기 때문이다. 또한, 분말 송급 속도가 너무 증가되면 용융이 불완전하여 양호한 육성층을 얻을 수 없다.The powder feed rate is most suited at 2.0 to 2.2 kg / hr because the productivity decreases and the dilution rate increases at a low powder feed rate. In addition, if the powder feeding rate is increased too much, the melting is incomplete and a good growth layer cannot be obtained.

토치 이송속도는 6.0∼8.0㎝/min가 제일 적당한데, 느린 토치 이송속도는 생산성이 저하하고, 희석율이 증가한다. 또한, 너무 빠른 토치 이송 속도로는 용융이 불완전하여 양호한 육성층을 얻을 수 없다.The torch conveying speed is most suitably 6.0 to 8.0 cm / min, while the slow torch conveying speed lowers productivity and increases dilution rate. In addition, at too fast a torch conveying speed, melting is incomplete and a good growth layer cannot be obtained.

전류는 140-160A가 적당한데 높은 전류로는 희석율이 증가하고 용융풀(pool)의 크기가 증가하여 냉각 속도가 저하함으로 표면경도 저하를 초래한다. 또한, 너무 낮은 전류로는 충분한 에너지가 공급되지 않으므로 스텔라이트 6 분말을 완전히 용융시킬 수 없다.The current is suitable for 140-160A. At high current, the dilution rate increases and the size of the melt pool increases, causing the cooling rate to decrease, leading to a decrease in surface hardness. In addition, too low current does not provide enough energy to completely melt the Stellite 6 powder.

오시레이션(oscillation)속도는 70-100㎝/min가 제일 적당한데 느린 속도는 희석율이 증가하고 표면의 거칠기가 증가하여 후작업공정이 증가하게 된다.Oscillation speed is best suited to 70-100cm / min. Slower speed increases dilution rate and surface roughness, which increases post-working process.

한편, 너무 빠른 오시레이션 속도로는 완전한 용융을 성취할 수 없다.On the other hand, too fast oscillation speeds cannot achieve complete melting.

상기 표 2에서 작업한 육성층은 모두 예비 실험을 통하여 기공과 균열이 존재하지 않은 육성층이다. 도 1에서는 얻어진 육성층의 희석율 측정 결과를 보이고 있다.The growth layer worked in Table 2 is a growth layer in which no pores and cracks exist through preliminary experiments. In FIG. 1, the dilution rate measurement result of the grown layer obtained is shown.

발명예 1의 경우가 다른 비교예들에 비하여 대단히 낮은 희석율을 보임을 알수 있다. 도 2에서는 비교예 2와 발명예 1의 단면 광학현미경 사진을 보이고 있다.In the case of Inventive Example 1, it can be seen that the dilution rate is very low compared to other comparative examples. In FIG. 2, cross-sectional optical micrographs of Comparative Example 2 and Inventive Example 1 are shown.

사진에서 2% 나이탈로 에칭하여 스텔라이트 6 육성층이 검게 보이고 있다. 발명예 1의 경우는 아래의 모재와 검은 육성층의 경계가 거의 희석이 되지 않아서 거의 직선의 경계선을 보이고 있다.In the picture, the Stellite 6 growth layer is shown black by etching with 2% nital. In the case of Inventive Example 1, the boundary between the base metal and the black growth layer was hardly diluted so that the boundary line was almost straight.

도 3에서는 표면 경도 측정 결과를 보이고 있다. 역시 발명예 1의 육성층이 다른 비교예의 육성층에 비하여 높은 표면 경도를 보이고 있다. 이러한 경도차이는 용융층의 응고시 냉각 속도에 기인하는데, 냉각 속도 차이에 따라 조직이 차이를 보이게 되어 경도 차이를 나타낸다 할 수 있다.3 shows the surface hardness measurement results. In addition, the growth layer of Inventive Example 1 shows a higher surface hardness than the growth layer of the other comparative example. This hardness difference is due to the cooling rate during the solidification of the molten layer, the structure may show a difference in hardness according to the cooling rate difference may represent a hardness difference.

도 4와 도 5에서는 각각 비교예 3과 발명예 1의 표면 근처에서 단면 조직을 보이고 있다. 사진에서 밝은 부위는 코발트 조직이고, 검은 부위는 나중에 응고되는 공정 조직으로서 코발트 상과 M7C3의 공정 탄화물이 라멜라 형태로 구성되어 있다.4 and 5 show cross-sectional structures near the surfaces of Comparative Example 3 and Inventive Example 1, respectively. The bright part in the picture is the cobalt tissue, and the black part is the process tissue which is coagulated later. The cobalt phase and the process carbide of M 7 C 3 are composed of lamellar forms.

따라서 고정 탄화물이 함유되어 있는 검은 공정 조직이 많이 함유될 수록 경도는 상승한다.Therefore, the more the black process tissue containing the fixed carbide, the higher the hardness.

경도가 제일 낮은 비교예 3과 발명예 1을 비교하면 발명예 1의 조직이 검은 공정 조직을 많이 함유하고 있음을 용이하게 구별할 수 있다.Comparing Comparative Example 3 with the lowest hardness and Inventive Example 1, it can be easily distinguished that the tissue of Inventive Example 1 contains many black process tissues.

역시 상기 표 2에서 비교예 9는 발명예 범위에서 토치 이송속도만을 범위 바깥의 위와 아래에서 각각 실험한 경우이다. 도 1과 도 3의 결과에서 보면 조건이 모두 발명예 범위내에서만 우수한 스텔라이트 6육성층을 얻을 수 있음을 보이고 있다.Also in Table 2, Comparative Example 9 is a case where only the torch feed rate in the invention example range was tested above and below the range, respectively. From the results of FIGS. 1 and 3, it can be seen that an excellent sterilite 6 growth layer can be obtained only in the conditions of the invention examples.

이상과 같은 본 발명은 희석율 감소로 인하여 같은 양의 분말재료로 높은 육성층을 얻을 수 있고, 또한 희석율의 감소로 인하여 육성층의 부식 특성이 향상되며, 표면의 경도 향상으로 마모 특성이 되는 효과가 있다.The present invention as described above can obtain a high growth layer with the same amount of powder material due to the reduction of the dilution rate, and also improve the corrosion characteristics of the growth layer due to the reduction of the dilution rate, there is an effect of wear characteristics by improving the hardness of the surface.

Claims (1)

강재나 철의 표면 육성을 위하여 중량%로 C:1.2, Ni:2.1, Cr:28.0, Co:62.9, Fe:1.8, W:4.0의 스텔라이트 6를 사용하여 플라즈마 육성시 예열 온도는 50∼100℃로 하고, 분말 송급 속도는 2.0∼2.2㎏/hr, 토치 이송속도는 6.0∼8.0㎝/min, 아크 전류는 140~160A, 오시레이션 (oscillation) 속도는 70∼100㎝/min로 플라즈마 육성하여 낮은 희석율과 높은 표면 경도를 지니도록 하여서 됨을 특징으로 하는 우수한 스텔라이트 6 육성층을 얻기 위한 플라즈마 육성용접 방법.Preheating temperature during plasma growth using Stellite 6 of C: 1.2, Ni: 2.1, Cr: 28.0, Co: 62.9, Fe: 1.8, W: 4.0 in weight% for steel or iron surface growth ℃, powder feed rate is 2.0 to 2.2 kg / hr, torch feed rate is 6.0 to 8.0 cm / min, arc current is 140 to 160A, oscillation speed is 70 to 100 cm / min A plasma growth welding method for obtaining an excellent stellite 6 growth layer, characterized by low dilution rate and high surface hardness.
KR1019960069944A 1996-12-23 1996-12-23 Plasma transferred arc (pta) process for obtaining excellent stellite-6 overlay welded coatings KR100347583B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960069944A KR100347583B1 (en) 1996-12-23 1996-12-23 Plasma transferred arc (pta) process for obtaining excellent stellite-6 overlay welded coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960069944A KR100347583B1 (en) 1996-12-23 1996-12-23 Plasma transferred arc (pta) process for obtaining excellent stellite-6 overlay welded coatings

Publications (2)

Publication Number Publication Date
KR19980051079A true KR19980051079A (en) 1998-09-15
KR100347583B1 KR100347583B1 (en) 2002-11-20

Family

ID=37488781

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960069944A KR100347583B1 (en) 1996-12-23 1996-12-23 Plasma transferred arc (pta) process for obtaining excellent stellite-6 overlay welded coatings

Country Status (1)

Country Link
KR (1) KR100347583B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368245B1 (en) * 2000-12-21 2003-01-24 주식회사 포스코 A METHOD FOR PLASMA TRANSFERED ARC WELDING Ni BASED ALLOYS HAVING LOW CRACK

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368245B1 (en) * 2000-12-21 2003-01-24 주식회사 포스코 A METHOD FOR PLASMA TRANSFERED ARC WELDING Ni BASED ALLOYS HAVING LOW CRACK

Also Published As

Publication number Publication date
KR100347583B1 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
JP3305357B2 (en) Alloy with excellent corrosion resistance and wear resistance, method for producing the same, and material for producing the alloy
US9682531B2 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
CN101342626B (en) Welding method and silver based metal for hard-alloy heavy type cutting tools
Vilar et al. Laser surface treatment of tool steels
CN101818343A (en) Laser cladding method of composite coating containing spherical tungsten carbide
JP5371139B2 (en) Friction stir processing tool
JP2008522039A (en) Weldable cobalt alloy with crack resistance
CN111593250B (en) L12Precipitation strengthening high-entropy alloy and preparation method thereof
CN110468305A (en) A kind of nickel base superalloy and preparation method thereof
JPH1096037A (en) Copper alloy excellent in wear resistance
Colaco et al. Laser cladding of stellite 6 on steel substrates
KR100347583B1 (en) Plasma transferred arc (pta) process for obtaining excellent stellite-6 overlay welded coatings
CA2602014A1 (en) Co-based wire and method for saw tip manufacture and repair
KR940008938B1 (en) Production of anticorrosive and antiwearing alloy
JP7134026B2 (en) Fe-based alloy powder
JP2005297051A (en) Copper alloy powder for build up excellent in cladding performance and wear resistance, and valve seat using the same
JP2005199278A (en) Overlaying copper alloy powder excellent in cladding and wear resistance
JP2019122973A (en) Mold for continuous casting and method for producing the same
KR920010493B1 (en) Build-up welding method for wear resistant metal
Zhang et al. Influence of WC addition on microstructures of laser-melted Ni-based alloy coating
US10828865B1 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
JP2604908B2 (en) Surface modified metal member and method of manufacturing the same
KR100361743B1 (en) Composite material for plasma transferred arc welding and method for plasma transferred arc welding the composite material
JPH06190588A (en) Ni-base alloy for filling
Zhang et al. Process optimization for novel tungsten/metal gas suspended arc welding depositing iron base self-fluxing alloy coatings

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130719

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140722

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150710

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee