KR100368245B1 - A METHOD FOR PLASMA TRANSFERED ARC WELDING Ni BASED ALLOYS HAVING LOW CRACK - Google Patents

A METHOD FOR PLASMA TRANSFERED ARC WELDING Ni BASED ALLOYS HAVING LOW CRACK Download PDF

Info

Publication number
KR100368245B1
KR100368245B1 KR10-2000-0079916A KR20000079916A KR100368245B1 KR 100368245 B1 KR100368245 B1 KR 100368245B1 KR 20000079916 A KR20000079916 A KR 20000079916A KR 100368245 B1 KR100368245 B1 KR 100368245B1
Authority
KR
South Korea
Prior art keywords
welding
nickel
growth
based alloy
plasma
Prior art date
Application number
KR10-2000-0079916A
Other languages
Korean (ko)
Other versions
KR20020051950A (en
Inventor
윤병현
김형준
Original Assignee
주식회사 포스코
제일 엠.피.티 주식회사
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 제일 엠.피.티 주식회사, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR10-2000-0079916A priority Critical patent/KR100368245B1/en
Publication of KR20020051950A publication Critical patent/KR20020051950A/en
Application granted granted Critical
Publication of KR100368245B1 publication Critical patent/KR100368245B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/042Built-up welding on planar surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 플라즈마 분말 육성용접(Plasma Transfered Arc Welding, PTA Welding)에 관한 것이며; 그 목적은 니켈계 합금의 플라즈마 분말육성용접시 용접균열을 감소시키고자 함에 있다.The present invention relates to Plasma Transfered Arc Welding (PTA Welding); The purpose is to reduce the welding crack during plasma powder growth welding of nickel-based alloy.

본 발명은 니켈계 합금의 플라즈마 분말 육성용접방법에 있어서, 니켈계 합금의 용융된 모재의 면적과 육성부의 면적의 합에 대한 용융된 모재의 면적비로 정의되는 희석율이 15~ 35%의 범위가 되도록 용접공정변수를 조정하여 육성용접하므로써, 육성 용접층의 응고균열을 방지한다.In the plasma powder growth welding method of the nickel-based alloy, the dilution rate defined by the area ratio of the molten base material to the sum of the area of the molten base material and the growth portion of the nickel-based alloy is in the range of 15 to 35%. By adjusting the welding process parameters and fusing welding, the solidification crack of the fusing welding layer is prevented.

Description

용접균열이 적은 니켈계 합금의 플라즈마 분말 육성용접방법{A METHOD FOR PLASMA TRANSFERED ARC WELDING Ni BASED ALLOYS HAVING LOW CRACK}Welding method for the growth of plasma powder of nickel-based alloy with low welding crack {A METHOD FOR PLASMA TRANSFERED ARC WELDING Ni BASED ALLOYS HAVING LOW CRACK}

본 발명은 니켈계 합금의 플라즈마 분말 육성용접(Plasma Transfered Arc, PTA)방법에 관한 것으로, 보다 상세하게는 니켈계 합금의 플라즈마 분말육성용접시 용접균열을 감소시키기 위한 용접방법에 관한 것이다.The present invention relates to a plasma transfer arc (PTA) method of nickel-based alloys, and more particularly, to a welding method for reducing welding cracks during plasma powder-grown welding of nickel-based alloys.

플라즈마 분말 육성용접방법이란 분말을 플라즈마 열원으로 용융시켜 모재위에 적층시켜 육성층을 만드는 방법으로서, 주로 내마모성 및 내부식성을 향상시키기 위해 사용한다.Plasma powder growth welding method is a method of melting a powder with a plasma heat source and laminating it on a base material to form a growth layer. The plasma powder growth welding method is mainly used to improve wear resistance and corrosion resistance.

구체적으로 플라즈마 분말 육성용접법은 도1에 도시된 바와 같이, 텅스텐 전극(1) 주위로 플라즈마 가스를 흘리면서 상기 전극(1)과 모재(2)사이에서 플라즈마 아크를 발생시킨 후, 분말을 이 플라즈마 아크사이로 공급해주어 플라즈마 아크 열에 의하여 분말을 녹여 모재(2) 위에 적층되므로써 육성용접되는 방법이다. 도1에서 알곤 보호가스는 용접시 산화를 방지하기 위하여 공급해 준다.Specifically, the plasma powder growth welding method generates a plasma arc between the electrode 1 and the base material 2 while flowing plasma gas around the tungsten electrode 1, as shown in FIG. It is a method of fostering and welding by supplying through and melting the powder by plasma arc heat to be laminated on the base material (2). In Figure 1 argon protective gas is supplied to prevent oxidation during welding.

이러한 플라즈마 분말 육성용접을 행할 때 분말이 용융되어 모재위에 적층되기 때문에 모재일부가 녹게되고, 이때 이 녹은 영역의 정도는 희석율(dilution %)로서 표현된다. 도2에는 육성된 영역(2a)과 모재(2)의 녹은 영역(2b)의 정도를 보인 용접부에 대한 모식도로서, 희석율은 수학식 1과 같이 정의된다.When the plasma powder growth welding is performed, a portion of the base material is melted because the powder is melted and laminated on the base material, and the degree of the melted area is expressed as a dilution percentage. FIG. 2 is a schematic diagram of a welded portion showing the extents of the grown region 2a and the molten region 2b of the base material 2, and the dilution ratio is defined as in Equation 1. As shown in FIG.

(여기서, As: 용융된 모재의 면적, Afm: 육성부의 면적)(A s : area of the molten base material, A fm : area of the growing part)

그런데, 플라즈마 분말 육성용접방법을 이용하여 니켈계 합금을 용접할 경우 편석에 유의해야 한다. 특히, 고온피로특성을 향상시키기 위해 Nb 원소가 첨가된 니켈계 합금을 육성용접시 육성층의 조직은 수지상 조직(dendrite)이 되며 이 수지상 조직중 수지상과 수지상 경계에 Nb이 편석되어 레이브스(Laves)라는 취약한 상을 형성되어 응고되면서 균열을 발생시키게 된다. 대체로 희석율이 적은 경우는 이상의 양이 많아져 응고균열이 많이 발생하게 된다.However, when welding nickel-based alloy using the plasma powder growth welding method, care should be taken in segregation. In particular, in the case of welding welding nickel-based alloys containing Nb element to improve high temperature fatigue characteristics, the structure of the growth layer becomes dendrite, and Nb is segregated at the dendritic and dendritic boundaries among the dendritic structures. The fragile phase forms and solidifies, causing cracks. In general, when the dilution rate is small, the amount of abnormality increases, so that a lot of coagulation cracks are generated.

이러한 응고균열을 방지하기 위하여 Nb이 함유된 니켈계 합금을 플라즈마 분말 육성용접하는 방법이 다수 제안되어 있는데, 그 대표적인 예로서 미국 특허 제5,624,717호에는 모재의 일부가 녹게 되는 영역, 즉 희석율을 약 10% 정도로 적게하므로써 녹은 영역에서의 입자성장을 억제시키는 용접기술이 개시되어 있다.In order to prevent such solidification cracks, a number of methods for growing plasma powder by welding Nb-containing nickel-based alloys have been proposed. For example, US Pat. No. 5,624,717 describes a region in which a part of the base material melts, that is, a dilution rate of about 10. A welding technique is disclosed which suppresses grain growth in the molten region by reducing it to about%.

그러나, 상기 미국특허에 나와 있는 방법으로 Nb함유 니켈계 합금을 육성용접할 경우 생각보다 응고균열이 많아 발생하여 육성용접층의 품질이 떨어지는 단점이 있었다.However, when fusing and welding the Nb-containing nickel-based alloy by the method disclosed in the above-mentioned US patent, there was a disadvantage in that the quality of the fusing welding layer was lowered due to more coagulation cracks than expected.

본 발명은 이와같은 종래의 문제점을 해결하고자 제안된 것으로서, 그 목적은 니켈계 합금을 플라즈마 분말 육성용접할 때 응고균열을 억제시켜 육성용접층의 특성을 향상시키고자 함에 있다.The present invention has been proposed to solve such a conventional problem, and an object thereof is to improve the characteristics of the growth welding layer by suppressing the coagulation crack when the nickel-based alloy is subjected to the plasma powder growth welding.

도1은 통상적인 플라즈마 분말 육성용접법의 원리를 설명하기 위한 모식도.1 is a schematic diagram for explaining the principle of a conventional plasma powder growth welding method.

도2는 용접부의 희석율을 정의한 모식도.Figure 2 is a schematic diagram defining the dilution rate of the welded portion.

도3은 바레스트레인트(Varesraint) 균열시험장치의 개략 구조도.3 is a schematic structural diagram of a varesraint crack test apparatus.

도4는 육성용접후 희석율과 균열감수성과의 관계를 나타내는 그래프.4 is a graph showing the relationship between dilution rate and crack susceptibility after growth welding.

도5는 육성용접후 희석율과 균열감수성과의 관계를 나타내는 다른 그래프.Figure 5 is another graph showing the relationship between dilution rate and crack susceptibility after growth welding.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1. 텅스텐 전극 2. 모재 11,13 고정핀 12. 시편1. Tungsten electrode 2. Base material 11, 13 Fixing pin 12. Specimen

14. 용접토치 15. 굽힘 블럭14. Welding Torch 15. Bending Block

상기 목적달성을 위한 본 발명은 니켈계 합금의 플라즈마 분말 육성용접방법에 있어서,In the present invention for achieving the above object in the plasma powder growth welding method of a nickel-based alloy,

니켈계 합금의 용융된 모재의 면적과 육성부의 면적의 합에 대한 용융된 모재의 면적비로 정의되는 희석율이 15~ 35%의 범위가 되도록 용접공정변수를 조정하여 육성용접하는, 용접균열이 적은 니켈계 합금의 플라즈마 분말 육성용접방법에 관한 것이다.Nickel with little weld cracking by adjusting and welding welding process variables so that the dilution rate, which is defined as the area ratio of the molten base material to the sum of the area of the molten base material and the growing part of the nickel-based alloy, is in the range of 15 to 35%. The present invention relates to a plasma powder growth welding method for a base alloy.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 육성용접방법은 니켈계 합금의 육성용접에 적합한데, 바람직하게는 Nb이 함유된 니켈계 합금에 적용하는 것이다. 또한, 육성용접층을 형성하는 분말로는 통상적인 니켈계 합금 분말을 사용할 수 있으며, 바람직하게는 Nb이 함유된 니켈계 합금을 사용하는 것이다.The growth welding method of the present invention is suitable for the growth welding of nickel-based alloys, and is preferably applied to nickel-based alloys containing Nb. In addition, as the powder for forming the growth welding layer, a conventional nickel-based alloy powder can be used, and preferably a nickel-based alloy containing Nb is used.

본 발명은 니켈계 합금의 용융된 모재의 면적과 육성부의 면적의 합에 대한 용융된 모재의 면적비, 즉 수학식1과 같이 정의되는 희석율이 15~ 35%가 되도록 플라즈마 용접공정변수를 조절함에 특징이 있다. 본 발명에서 육성용접시 희석율을 15% 이하로 하면 육성층의 균열이 너무 많이 발생하기 때문에 최소 15%를 유지하는 것이 바람직하다. 그러나, 희석율을 계속해서 높일 경우 균열감수성은 떨어지지만 희석율이 40% 정도되면 모재의 경도보다 육성층의 경도가 낮아지기 때문에 희석율을 35% 이하로 유지하는 것이 바람직하다.The present invention is characterized in that the plasma welding process variable is adjusted so that the area ratio of the molten base material to the sum of the area of the molten base material of the nickel-based alloy and the area of the growing part, that is, the dilution rate defined as Equation 1 is 15 to 35%. There is this. In the present invention, if the dilution rate during the growth welding is 15% or less, it is preferable to maintain at least 15% because cracking of the growth layer occurs too much. However, if the dilution rate is continuously increased, the crack susceptibility is inferior, but when the dilution rate is about 40%, it is preferable to maintain the dilution rate at 35% or less because the hardness of the growth layer is lower than the hardness of the base material.

상기 희석율을 조절하기 위한 상기 용접공정변수는 다양한데, 예를들어 니켈계 합금 분말의 공급속도나 전류, 전압, 그리고 용접속도 등에 따라 변한다. 또한, 육성층의 두께에 따라서도 분말의 공급속도도 달라질 수 있기 때문에 희석율을 조절하기 위한 수단은 특별히 한정되지 않는다. 구체적인 예로서, 니켈계 합금 분말의 공급속도를 3.3kg/hr으로 하는 경우 전류를 170~ 210A의 범위로 조정하면 된다.The welding process variable for adjusting the dilution rate is various, for example, it varies depending on the feed rate, current, voltage and welding speed of the nickel-based alloy powder. In addition, since the feed rate of the powder may also vary depending on the thickness of the growing layer, the means for adjusting the dilution rate is not particularly limited. As a specific example, when the feed rate of the nickel-based alloy powder is 3.3 kg / hr, the current may be adjusted in the range of 170 to 210 A.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

PTA 육성용접시 사용된 모재는 니켈계 합금인 Nimonic 80A를 사용하였다. 그리고, PTA 육성용 분말은 Nb이 함유된 니켈계 합금인 Inconel 718을 사용하였다.표1은 Nimonic 80A와 Inconel 718의 조성을 나타낸 것이다.Nimonic 80A, a nickel-based alloy, was used as the base material for PTA growth welding. In addition, NTA-containing nickel-based alloy Inconel 718 was used as the powder for PTA growth. Table 1 shows the compositions of Nimonic 80A and Inconel 718.

구분division 화학조성(중량%)Chemical composition (% by weight) NiNi CrCr TiTi AlAl SiSi FeFe MnMn CoCo CC MoMo NbNb Nimonic 80ANimonic 80A 나머지Remainder 17.5717.57 2.502.50 1.311.31 0.0160.016 1.431.43 0.0110.011 0.00650.0065 0.0700.070 -- -- Inconel 718Inconel 718 나머지Remainder 17.7117.71 1.011.01 0.460.46 0.200.20 17.3717.37 0.150.15 0.230.23 0.0450.045 2.932.93 4.974.97

본 실시예에서 표2와 같이 육성용접시 상기 분말의 공급속도는 3.3kg/hr로 하고, 용접속도는 100mm/min으로 하였다. 그리고, Inconel 718 육성부의 응고균열은 조성변화에 의존하므로 육성부의 조성을 다르게 하기 위해 전압을 25V로 고정한 상태에서 전류를 160~ 220A로 변화시켜 모재와의 희석율을 10%, 20%, 30%, 40%로 조절하였다. 이와같이 용접된 용접육성층에 대한 경도를 표3에 나타내었다.In this example, the feed rate of the powder during welding welding as shown in Table 2 was 3.3kg / hr, the welding speed was 100mm / min. In addition, the solidification crack of Inconel 718 growth part depends on the composition change, so the dilution rate with the base metal is changed to 160 ~ 220A with the voltage fixed at 25V to change the composition of the growth part. Adjusted to%. Table 3 shows the hardness of the welded growth layer welded in this way.

용접조건Welding condition 분말공급속도(kg/hr)Powder feed rate (kg / hr) 용접속도(mm/min)Welding speed (mm / min) 전류(A)Current (A) 전압(V)Voltage (V) 진동폭(mm)Vibration width (mm) 1One 3.33.3 100100 160160 2525 2525 22 180180 33 200200 44 220220

구분division 용접조건Welding condition 희석율(%)Dilution rate (%) 경도(Hv, 5kg)Hardness (Hv, 5 kg) 비고Remarks Nimonic 80ANimonic 80A -- -- 300300 모재Base material Inconel 718Inconel 718 1One 1010 350350 육성층Growth layer 22 2020 330330 육성층Growth layer 33 3030 320320 육성층Growth layer 44 4040 290290 육성층Growth layer

표 3은 희석율과 경도와의 관계를 나타낸 것으로 희석율이 10%에서 40%로 증가하면서 경도값이 낮아지는 것을 알 수 있으며, 희석율이 40% 정도되면 모재의 경도보다 육성층의 경도가 낮아지기 때문에 희석율을 35% 이하로 유지하는 것이 바람직함을 보이고 있다.Table 3 shows the relationship between the dilution rate and the hardness. The dilution rate increases from 10% to 40%, indicating that the hardness value decreases.When the dilution rate is about 40%, the hardness of the growing layer is lower than the hardness of the base material. It has been shown to be desirable to keep below 35%.

또한, 육성부에 대하여 도3과 같은 응고균열시험을 행하고, 희석율에 따른 육성층의 균열길이를 도4에 나타내었다. 응고균열시험은 도3에 도시된 바와 같이, 보편적인 시험법인 Varestraint 시험법을 사용하였다. 즉, 시편(12)의 양쪽을 고정핀(11)(13)으로 고정시킨후, 용접토치(14)로 시편의 일부를 녹이면서 용접방향으로 진행되고, 이때, 용접토치(14)가 굽힘 블록(15)의 중앙에 일치하는 위치에 오게되면 시편 아래에 있는 굽힘 블록을 위로 올려서 시편에 변형을 가하는 방법이다. 시편은 표면의 일부가 용융된 상태에서 변형이 가해진 후 응고되는 과정을 거치게 되고, 이때 시편에 가해지는 변형(ε)의 정도에 따른 균열길이를 측정한다. 본 실시예에서는 변형량을 각각 1%, 4% 부여하였는데, 이때 변형은 굽힘 블록의 반경(R)과 시편의 두께(t)에 따라 달라지게 된다. 즉, ε=t/R로 표시된다.In addition, the solidification cracking test of FIG. 3 was performed on the growing part, and the crack length of the growing layer according to the dilution rate is shown in FIG. 4. As shown in Fig. 3, the coagulation crack test used the Varestraint test method, which is a universal test method. That is, after fixing both sides of the test piece 12 with the fixing pins 11 and 13, the welding torch 14 proceeds in the welding direction while melting part of the test piece, wherein the welding torch 14 is a bending block. When it comes to a position coinciding with the center of (15), it is a method to deform the specimen by raising the bending block under the specimen. The specimen undergoes a solidification process after deformation is applied while a part of the surface is melted, and the crack length is measured according to the degree of deformation (ε) applied to the specimen. In the present embodiment, the deformation amount is 1% and 4%, respectively, where the deformation is dependent on the radius R of the bending block and the thickness t of the specimen. That is, ε = t / R.

도4에 나타난 바와 같이, 희석율이 10%에서 30%로 증가함에 따라 균열길이가 줄어드는 것을 알 수 있다. 즉, 희석율이 30%로 증가할수록 응고균열 감수성은 떨어진다. 다시 말해서, 희석율이 15% 이하이면 균열이 너무 많이 발생하기 때문에 최소 15%를 유지하는 것이 바람직함을 알 수 있다. 여기서, 희석율을 계속해서 높일 경우 균열감수성은 떨어지지만 경도가 너무 많이 떨어지는 경향이 있기 때문에 내마모성이 떨어질 수 있다.As shown in Figure 4, it can be seen that the crack length decreases as the dilution rate increases from 10% to 30%. In other words, as the dilution rate is increased to 30%, the coagulation cracking sensitivity is lowered. In other words, if the dilution rate is 15% or less, it can be seen that it is desirable to maintain at least 15% because too many cracks occur. Here, if the dilution rate is continuously increased, the crack susceptibility is inferior, but the wear resistance may be deteriorated because the hardness tends to drop too much.

[실시예 2]Example 2

육성용 분말을 Inconel 718에서 표4와 같은 조성을 갖는 Inconel 625로 바꾼 것을 제외하고는 실시예1과 동일한 방법으로 육성용접을 행하고, 희석율에 따른 육성층의 경도를 표5에, 그리고 균열감수성을 도5에 나타내었다.Except for changing the growth powder from Inconel 718 to Inconel 625 having the composition shown in Table 4, the growth welding was carried out in the same manner as in Example 1, the hardness of the growth layer according to the dilution rate in Table 5, and crack susceptibility Figure 5 Shown in

구분division 화학조성(중량%)Chemical composition (% by weight) NiNi CrCr TiTi AlAl SiSi FeFe MnMn CoCo CC MoMo NbNb Inconel 625Inconel 625 나머지Remainder 19.7619.76 0.100.10 0.230.23 0.480.48 2.742.74 0.250.25 0.190.19 0.0580.058 8.508.50 3.563.56

구분division 용접조건Welding condition 희석율(%)Dilution rate (%) 경도(Hv, 5kg)Hardness (Hv, 5 kg) 비고Remarks Nimonic 80ANimonic 80A -- 300300 모재Base material Inconel 625Inconel 625 1One 1010 250250 육성층Growth layer 22 2020 240240 육성층Growth layer 33 3030 220220 육성층Growth layer 44 4040 200200 육성층Growth layer

표 5는 희석율과 경도와의 관계를 나타낸 것으로 희석율이 10%에서 40%로 증가하면서 경도값이 낮아지는 것을 알 수 있으며, 희석율이 40% 정도되면 희석율 10%일 때 경도 80%수준까지 육성층의 경도가 낮아지기 때문에 희석율을 35% 이하로 유지하는 것이 바람직함을 보이고 있다.Table 5 shows the relationship between the dilution rate and hardness. The dilution rate increases from 10% to 40%, indicating that the hardness value decreases.When the dilution rate is about 40%, the dilution rate is 10% and the hardness level reaches 80%. It is shown that it is desirable to keep the dilution rate below 35% because the hardness is lowered.

도5에 나타난 바와 같이, 희석율이 10%에서 30%로 증가함에 따라 균열길이가 줄어들고 희석율이 30%로 증가할수록 응고균열 감수성은 떨어지는 동일한 결과를 보이고 있다.As shown in FIG. 5, as the dilution rate is increased from 10% to 30%, the crack length decreases and as the dilution rate is increased to 30%, the coagulation crack susceptibility is inferior.

이와 같은 실험결과에서 알 수 있듯이, 희석율을 15~ 35%정도로 조절하므로써 육성층의 경도도 유지하면서 응고균열감수성을 낮출 수 있음을 확인할 수 있었다.As can be seen from the experimental results, it was confirmed that the coagulation cracking sensitivity could be lowered while maintaining the hardness of the growing layer by adjusting the dilution rate to about 15 to 35%.

상술한 바와 같이, 본 발명에 의하면, 니켈계 합금을 플라즈마 분말 육성용접할 때 응고균열을 억제시켜 육성용접층의 특성을 향상시킬 수 있는 매우 유용한효과가 있다.As described above, according to the present invention, when the nickel-based alloy is subjected to plasma powder growth welding, there is a very useful effect of suppressing the coagulation crack to improve the characteristics of the growth welding layer.

Claims (2)

니켈계 합금의 플라즈마 분말 육성용접방법에 있어서,In the plasma powder growth welding method of the nickel-based alloy, 니켈계 합금의 용융된 모재의 면적과 육성부의 면적의 합에 대한 용융된 모재의 면적비로 정의되는 희석율이 15~ 35%의 범위가 되도록 용접공정변수를 조정하여 육성용접함을 특징으로 하는 용접균열이 적은 니켈계 합금의 플라즈마 분말 육성용접방법.A welding crack characterized in that the welding process is controlled by adjusting the welding process variable so that the dilution rate, which is defined as the area ratio of the molten base material to the sum of the area of the molten base material and the growing part of the nickel-based alloy, is in the range of 15 to 35%. Plasma powder growth welding method of less nickel-based alloy. 제1항에 있어서,The method of claim 1, 상기 용접공정변수는 니켈계 합금 분말의 공급속도를 3.3kg/hr으로 할 때 170~ 210A의 범위로 조정함을 특징으로 하는 용접균열이 적은 니켈계 합금의 플라즈마 분말 육성용접방법.The welding process parameter is a plasma powder growth welding method of the nickel-based alloy with a low welding crack, characterized in that to adjust the range of 170 ~ 210A when the feed rate of the nickel-based alloy powder to 3.3kg / hr.
KR10-2000-0079916A 2000-12-21 2000-12-21 A METHOD FOR PLASMA TRANSFERED ARC WELDING Ni BASED ALLOYS HAVING LOW CRACK KR100368245B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079916A KR100368245B1 (en) 2000-12-21 2000-12-21 A METHOD FOR PLASMA TRANSFERED ARC WELDING Ni BASED ALLOYS HAVING LOW CRACK

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079916A KR100368245B1 (en) 2000-12-21 2000-12-21 A METHOD FOR PLASMA TRANSFERED ARC WELDING Ni BASED ALLOYS HAVING LOW CRACK

Publications (2)

Publication Number Publication Date
KR20020051950A KR20020051950A (en) 2002-07-02
KR100368245B1 true KR100368245B1 (en) 2003-01-24

Family

ID=27684359

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0079916A KR100368245B1 (en) 2000-12-21 2000-12-21 A METHOD FOR PLASMA TRANSFERED ARC WELDING Ni BASED ALLOYS HAVING LOW CRACK

Country Status (1)

Country Link
KR (1) KR100368245B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624717A (en) * 1992-11-27 1997-04-29 Snmi-Societe Nouvelle De Metallisation Industrie Process for coating or hardfacing a part by means of a plasma transferred arc
KR19980051080A (en) * 1996-12-23 1998-09-15 김종진 Plasma powder growth welding method with excellent wear resistance and corrosion resistance
KR19980051079A (en) * 1996-12-23 1998-09-15 김종진 Plasma growing welding method to obtain excellent stellite 6 growing layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624717A (en) * 1992-11-27 1997-04-29 Snmi-Societe Nouvelle De Metallisation Industrie Process for coating or hardfacing a part by means of a plasma transferred arc
KR19980051080A (en) * 1996-12-23 1998-09-15 김종진 Plasma powder growth welding method with excellent wear resistance and corrosion resistance
KR19980051079A (en) * 1996-12-23 1998-09-15 김종진 Plasma growing welding method to obtain excellent stellite 6 growing layer

Also Published As

Publication number Publication date
KR20020051950A (en) 2002-07-02

Similar Documents

Publication Publication Date Title
Yilmaz et al. Microstructure characterization of SS308LSi components manufactured by GTAW-based additive manufacturing: shaped metal deposition using pulsed current arc
Madhusudhana Reddy et al. Improvement of mechanical properties of Inconel 718 electron beam welds—influence of welding techniques and postweld heat treatment
CA2830543C (en) Fine grained ni-based alloys for resistance to stress corrosion cracking and methods for their design
KR100196989B1 (en) Wear-resistant copper-based alloy
KR100791706B1 (en) Pulsed arc welding method
US7165325B2 (en) Welding material, gas turbine blade or nozzle and a method of repairing a gas turbine blade or nozzle
KR102237760B1 (en) Precipitation strengthened nickel based welding material for fusion welding of superalloys
KR100876171B1 (en) Electron beam welding method
CA1326143C (en) Ferritic stainless steel and processing therefore
EP2902516B1 (en) A weld filler for nickel-base superalloys
KR100764301B1 (en) Solid wires for gas-shielded arc welding and gas-shielded arc welding method using the same
CN1339996A (en) Weld repair of directionally solidified articles
KR101832654B1 (en) Ni-Ir-BASED HEAT-RESISTANT ALLOY AND PROCESS FOR PRODUCING SAME
WO1997032684A9 (en) Consumable electrodes for gma welding of hsla steels
CN104511702B (en) For welding the welding material of superalloy
US20010030221A1 (en) Method of welding high nitrogen containing stainless steel and welding material therefor
CN105246642A (en) A ductile boron bearing nickel based welding material
KR100368245B1 (en) A METHOD FOR PLASMA TRANSFERED ARC WELDING Ni BASED ALLOYS HAVING LOW CRACK
Gordine Welding of Inconel 718
Madhusudhana Reddy et al. Effects of electron beam oscillation techniques on solidification behaviour and stress rupture properties of Inconel 718 welds
KR920010493B1 (en) Build-up welding method for wear resistant metal
JP4112264B2 (en) Seal welding method for turbine blade core support hole and turbine blade
JP3803698B2 (en) Ni-base cast heat-resistant alloy
JP3957261B2 (en) Filler material for Ni-base heat-resistant superalloy and method for fusion welding of Ni-base heat-resistant superalloy
Sivaprasad et al. Coupled effect of heat input and beam oscillation on mechanical properties of alloy 718 electron beam weldments

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100105

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee