JP4112264B2 - Seal welding method for turbine blade core support hole and turbine blade - Google Patents

Seal welding method for turbine blade core support hole and turbine blade Download PDF

Info

Publication number
JP4112264B2
JP4112264B2 JP2002120201A JP2002120201A JP4112264B2 JP 4112264 B2 JP4112264 B2 JP 4112264B2 JP 2002120201 A JP2002120201 A JP 2002120201A JP 2002120201 A JP2002120201 A JP 2002120201A JP 4112264 B2 JP4112264 B2 JP 4112264B2
Authority
JP
Japan
Prior art keywords
turbine blade
core
welding
hole
core support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002120201A
Other languages
Japanese (ja)
Other versions
JP2003311404A (en
Inventor
武志 塚本
邦夫 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002120201A priority Critical patent/JP4112264B2/en
Publication of JP2003311404A publication Critical patent/JP2003311404A/en
Application granted granted Critical
Publication of JP4112264B2 publication Critical patent/JP4112264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル基耐熱合金により形成されたタービン翼に係り、特に中子を用い精密鋳造によってタービン翼を製造した際に、タービン翼表面に残る中子支持部を封止溶接する方法に関する。本発明は、溶接による高温割れの抑制,溶接後の熱処理過程におけるひずみ時効割れの抑制に好適であり、かつ高歩留りのガスタービン翼中子支持穴の封止溶接方法に関する。
【0002】
【従来の技術】
高温環境で使用されるガスタービン翼は、ニッケル基の耐熱合金を用い、精密鋳造で作製されるのが一般的である。このとき翼の内部に、空気等の冷媒による冷却を行うための複雑な冷却通路を設ける手法が用いられている。この冷却通路は鋳造時に中子を用いて形成される。中子は鋳造後に薬剤により溶出,除去されるが、中子の支持部が鋳造された翼に支持穴として残るため、この支持穴を封止して製品とする必要がある。
【0003】
この中子支持穴の封止方法として、溶加材を用いたアーク溶接法が用いられているが、タービン翼を形成するニッケル基耐熱合金は、添加されているAlやTi等の強化元素の影響により、溶接時に結晶粒界の強度低下に起因した割れを生じやすい。このため、この溶接割れを抑制する溶接方法が、特開平1−107973号公報に記載されている。この方法では、封止溶接の溶加材として、翼材よりも延性に優れるニッケル基または鉄基の合金を用いることで、溶接金属の組成を調整し、翼材に含まれる強化元素の影響を抑制して割れを生じにくくしていた。
【0004】
しかしながら、前記公報に記載されているアーク溶接法では、溶接時の入熱量が大きいため、形成される溶接金属の体積が封止する中子支持穴に対し必要以上に大きくなる傾向がある。溶接金属は溶加材による成分調整のため、溶接時の割れは生じにくくなっているが、高温強度等の特性が翼材よりも劣ることから、過大な溶接金属はタービン翼性能の低下を招く。
【0005】
また、封止溶接後に、時効熱処理などの熱処理過程がある場合には、溶接時に割れを生じなかった溶接金属においても、溶接によって生じたひずみの緩和過程において、溶接金属の延性不足による割れを生ずることがあり、製品の歩留まりを低下させる要因となる。この熱処理時に生じる割れも、翼材から溶接金属に溶け込んだAl,Ti等の強化元素に起因するものと考えられ、割れを抑制するためには溶接金属中に含まれる翼材成分の割合を低減する、すなわち溶接時の翼材の溶融量を低減する必要がある。
【0006】
この問題を解決する手法としては、所定の形状に成形した溶加材をあらかじめ中子支持穴を塞ぐように配し、この溶加材にレーザまたはアークを収束させて優先的に加熱溶融することで、翼材の溶融量を抑制しながら支持穴を封止する溶接方法が有効である。この手法によれば、翼性能を低下させる低強度の溶接金属を縮小することが可能であるばかりでなく、溶接時の割れや時効熱処理時の割れを著しく抑制することが可能である。
【0007】
【発明が解決しようとする課題】
上記の従来技術では、封止溶接を行う中子支持穴周囲の翼の肉厚に応じて、適正な溶接条件を選択して施工を行うことが必要である。適正な範囲から外れた溶接条件で施工した場合には、溶融過多により溶接金属の垂れ落ちが生じたり、反対に溶け込み不足やアンダーカットなどの溶接不良を生じる可能性がある。鋳造によって製作されるタービン翼は、中子位置の変動等によって個々の翼ごとに、また中子支持穴の位置ごとに、その肉厚が異なるため、封止溶接施工の際には個々の支持穴部の肉厚を測定し、溶接条件を変更する必要があり、施工効率低下の要因となる。
【0008】
本発明は、このような事情に鑑みてなされたもので、精密鋳造後、粗加工を行ったタービン翼から中子の溶出を行う前に、中子支持部の穴加工を行って、中子支持部の除去ならびに支持穴側面を整形するとともに、支持穴底部の中子に溶接金属の余盛に所定の形状を転写するための窪み状のパターンを形成し、その後、溶加材を用いた封止溶接を行うことにより、溶接金属の垂れ落ちを防止して常に所定の余盛形状が得られるようにすることで、封止溶接部の翼肉厚の変動に対する裕度が大きいタービン翼中子支持穴の封止溶接方法、ならびにこの方法を用いたタービン翼を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために、以下の構成を採用した。
【0010】
すなわち、タービン翼の中子支持穴の封止溶接に関する第一の方法では、精密鋳造されたタービン翼から中子を溶出する前に、タービン翼外面側から該中子を支持している部分を除去してタービン翼内部の中子に向って穴加工を行い、更に該穴の部に位置する中子の表面の一部を除去して、該穴を封止する溶接金属に所定の余盛形状を転写するためのパターンを形成し、その後、該穴にニッケル基合金からなる溶加材を供給して、封止溶接を行う。
【0011】
第二の方法では、タービン翼の外径部に中子支持部があり、この中子支持部が穴として残るタービン翼の前記穴の封止溶接方法において、前記タービン翼から中子を溶出除去する前にタービン翼外面側から該中子支持部を除去する穴加工を行ってタービン翼内部の中子に向って穴を形成し、更に該穴の部に位置する中子に該穴を封止する溶接金属に所定の余盛形状を転写するためのパターンを形成し、その後、該穴にニッケル基合金からなる溶加材を供給して封止溶接を行う。
【0012】
前記第一および第二の方法において、前記穴の部に位置する中子に加工したパターンにより転写される溶接金属の余盛形状は、余盛の径に対する余盛高さの比が1/10〜1/2となる球面形状とすることが望ましい。
【0013】
本発明の封止溶接方法では、前記溶加材として封止用の部材を、溶接前に前記支持穴に配置する。
【0014】
封止溶接の具体的方法としては、不活性ガスにより溶接部の酸化を抑制しながらレーザ溶接により封止する方法,不活性ガスにより溶接部の酸化を抑制しながらTIG溶接により封止する方法,不活性ガスにより溶接部の酸化を抑制しながらプラズマ溶接により封止する方法、あるいは電子ビーム溶接により封止する方法が好ましい。
【0015】
本発明のタービン翼は、精密鋳造時に形成された中子支持部が穴として残存するタービン翼において、該穴が溶接により封止され、該穴を封止せしめている溶接金属の翼内面側に余盛を有し、該余盛が精密鋳造後に翼内部に残留している中子に形成したパターンの転写によって形成されたものであることを特徴とする。前記余盛は球面形状を有し、余盛の径に対する余盛高さの比が1/10〜1/2であることが望ましい。
【0016】
【発明の実施の形態】
[第一実施例]
本発明に係るタービン翼の中子支持穴封止溶接方法の第一実施例を、図1から図7を参照しながら説明する。
【0017】
本実施例のタービン翼中子支持穴の封止溶接方法は、図1から図4に示すように、ニッケル基耐熱合金で形成されたタービン翼1の翼頂部10、すなわちタービン翼1の外径部に配された中子支持穴2に、前記ニッケル基耐熱合金よりも延性に優れるニッケル基合金で形成された封止用部材3を配し、レーザを封止用部材3の表面に照射することにより、封止用部材3と中子支持穴2周囲の翼材を溶融させて封止溶接するものであり、大略して以下の工程を経て完了する。
【0018】
まず、第1工程として、精密鋳造により形成された後、粗加工され、必要に応じて熱処理が施されたタービン翼1に対し、翼頂部10に配された中子支持穴2を図2に示すように整形加工する。この中子支持穴は、穴加工する前に中子支持部として使用されていたところである。図2に示すように、タービン翼外面側から中子支持部を形成していたセラミックを除去してタービン翼内部の中子に向って中子支持穴2を形成するとともに、中子支持穴2の底部にある中子4の表面の一部を除去する。この除去した部分は、中子支持穴2を溶接金属で封止した際に、余盛となる。溶接金属の余盛の形状は球面状が望ましく、したがって、中子4の表面を除去する際に球面状の余盛のパターン5を付与することが望ましい。本実施例では、余盛の直径dに対する余盛高さhの比が約1/6となるようにパターン5の形状を制御した。中子支持穴2の整形加工と、中子4へ余盛のパターン5を付与する加工は、一つの加工ツールで同時に行うことが望ましいが、中子支持穴2の加工を行った後、別の加工ツールにより余盛のパターン5の加工を行っても構わない。また本実施例では、図2に示すように中子支持穴2にテーパー状の整形を施したが、ストレートの穴形状に整形してもよい。
【0019】
第2工程では、図3に示すように第1工程で整形した中子支持穴2に封止用部材3を配置し、必要に応じてパーカッション溶接等により仮付けを行う。封止用部材3の体積は、封止する中子支持穴2の設計値の上での容積に対し、1.5 倍から3倍程度の大きさにすることが望ましい。封止用部材3の体積を変えることにより、溶接金属の表面側の余盛量を調整することが可能である。本実施例では中子支持穴2の設計値の上での容積に対し、1.8 倍の体積を有する封止用部材3を用いた。封止用部材3の形状は、中子支持穴2と嵌め合いとなるように整形すると配置が容易になる。
【0020】
次に第3工程では、図3に示すようにレーザトーチ14から噴出させた不活性ガス流8により封止溶接部を翼の外面側からシールドしながら、レーザ6を封止用部材3に照射して溶融させるとともに、熱伝導により中子支持穴2の周囲の翼材も同時に溶し込むことにより封止溶接が行われる。溶接終了時にレーザ出力を徐々に減少させるダウンスロープ処理を行うと、図4に示した溶接金属7の翼外面側の余盛に生じる引け9を抑制することが可能である。ダウンスロープ処理を行っても引け9が十分に抑制されない場合には、封止溶接の時よりも小さい入熱量で、溶接金属7の上部のみを再溶融することにより、引け9を縮小させることも有効である。本実施例ではレーザにYAGレーザを用いたが、半導体レーザやCO2 レーザであっても同様な溶接が可能である。
【0021】
第4工程では、翼外面から封止溶接部の検査を行った後、必要に応じてタービン翼に熱処理を施す。
【0022】
最終の第5工程では、タービン翼内部の中子を溶出した後、翼外面および内面側から封止溶接部の検査を行い、不具合が無いことを確認する。
【0023】
本実施例では、タービン翼1の材質を、重量%で炭素(C)0.07 ,クロム(Cr)7.1,コバルト(Co)1.0,モリブデン(Mo)0.8 ,タングステン(W)8.8,ニオブ(Nb)0.8,アルミニウム(Al)5.1 ,ボロン(B)0.02,タンタル(Ta)8.9,ハフニウム(Hf)0.25 ,レニウム(Re)3.0 ,残部ニッケル(Ni)の組成を有するニッケル基耐熱合金単結晶材とし、封止用部材3の材質を、重量%で炭素(C)0.05 ,マンガン(Mn)0.25,鉄(Fe)2.5,シリコン(Si)0.25,クロム(Cr)21.5,モリブデン(Mo)9.0,アルミニウム(Al)0.2 ,チタン(Ti)0.2,ニオブ(Nb)とタンタル(Ta)の合計が3.65,ニッケル(Ni)61.0 、及び残部不可避的不純物、の組成を有するニッケル基合金とした場合に、表1に示した溶接条件範囲から選択した条件を用いることで、タービン翼1の翼頂部10の肉厚が1.2から1.8mmの範囲でばらついた場合にも、一定の溶接条件で施工を行うことが可能で、封止溶接部外面および内面の余盛形状は良好であり、なおかつ溶接割れ,熱処理割れの無い健全な封止溶接が実現できた。
【0024】
【表1】

Figure 0004112264
【0025】
本実施例では、溶接割れ,熱処理割れ防止の観点から、封止溶接における翼材の溶融量を抑制するために、溶接の熱源に収束性,制御性に優れるレーザを用いたが、類似した熱源特性を有する電子ビームであっても同様に封止溶接が可能である。
【0026】
[第二実施例]
第二の実施例におけるタービン翼中子支持穴の封止溶接方法は、図1および図5から図7に示すように、ニッケル基耐熱合金で形成されたタービン翼1の翼頂部10に配された中子支持穴2に、前記ニッケル基耐熱合金よりも延性に優れるニッケル基合金で形成された封止用部材3を配し、TIG溶接により封止用部材3と中子支持穴2周囲の翼材を溶融させて封止溶接するものであり、大略して以下の工程を経て完了する。
【0027】
まず、第1工程として、精密鋳造により形成された後、粗加工され、必要に応じて熱処理が施されたタービン翼1に対し、翼頂部10に配された中子支持穴2を図5に示すように整形加工する。このとき、第一実施例と同様に、中子支持穴2の整形加工の際に中子支持部を除去するとともに、中子支持穴2底部の中子4に溶接金属の余盛に所定の形状を転写するための球面状の余盛のパターン5を付与する。本実施例では、余盛の直径dに対する余盛高さhの比が約1/5となるように余盛のパターン5の形状を制御した。中子支持穴2の整形加工と、中子4へ余盛のパターン5を付与する加工は、一つの加工ツールにより中子支持穴2の整形加工と同時に行った。また本実施例では、図5に示すように中子支持穴2をストレートの穴形状に整形した。もちろん、中子支持穴2の形状は第一実施例と同様にテーパーを有していても構わない。
【0028】
第2工程では、図6に示すように第1工程で整形した中子支持穴2に嵌合するように円柱状に加工した封止用部材3を中子支持穴に配置した。また本実施例では封止用部材3の体積を、封止する中子支持穴2の設計値の上での容積に対し、2倍の大きさとした。
【0029】
次に第3工程では、図6に示すようにTIGトーチ15から噴出させた不活性ガス流8により封止溶接部を翼の外面側からシールドしながら、アーク11を溶接電極12と封止用部材3の間で発生させ、封止用部材3を溶融するとともに、熱伝導により中子支持穴2の周囲も同時に溶し込むことにより封止溶接が行われる。
【0030】
本実施例では、アークによるエネルギーを選択的に封止用部材3に投入して翼材の溶融量を抑制するため、図6に示したように、不導体で形成され中央部に穴を設けた円盤状のアークマスク13を中子支持穴2の上部に配し、支持穴周囲の翼頂部表面をマスキングした。アークマスク13にはアルミナを使用したが、他の耐熱性不導体であってもよく、耐熱性不導体と高融点金属を積層もしくは重ねたものであっても構わない。アークマスク13の中央に設けた穴の径は、中子支持穴2の翼外面側の直径より0.5〜2.0mm程度大きくすることが望ましい。
【0031】
また、溶接の終了時に溶接出力を徐々に減少させるダウンスロープ処理を行うと、図7に示した溶接金属7の翼外面側の余盛に生じる引け9を抑制することが可能である。ダウンスロープ処理を行っても引け9が十分に抑制されない場合には、封止溶接の時よりも小さい入熱量で、溶接金属7の上部のみを再溶融することにより、引け9を縮小させることも有効である。
【0032】
第4工程および第5工程では、第一実施例と同様に、封止溶接部の検査や熱処理を実施する。
【0033】
本実施例では、タービン翼1の材質を、重量%で炭素(C)0.07 ,クロム(Cr)6.0,コバルト(Co)9.0,モリブデン(Mo)0.5 ,タングステン(W)8.0,アルミニウム(Al)5.7,チタン(Ti)0.7 ,ボロン(B)0.015,タンタル(Ta)3.0,ハフニウム(Hf)1.4 ,レニウム(Re)3.0 ,残部ニッケル(Ni)の組成を有するニッケル基耐熱合金一方向凝固材とし、封止用部材3の材質を第一実施例と同様に、重量%で炭素(C)0.05,マンガン(Mn)0.25,鉄(Fe)2.5,シリコン(Si)0.25,クロム(Cr)21.5,モリブデン(Mo)9.0,アルミニウム(Al)0.2,チタン(Ti)0.2 ,ニオブ(Nb)とタンタル(Ta)の合計が3.65,ニッケル(Ni)61.0、及び残部不可避的不純物、の組成を有するニッケル基合金とした場合に、表2に示した溶接条件範囲から選択した条件を用いることで、タービン翼1の翼頂部10の肉厚が1.2から1.8mmの範囲でばらついた場合にも、一定の溶接条件で施工を行うことが可能で、封止溶接部外面および内面の余盛形状は良好であり、なおかつ溶接割れや熱処理割れの無い健全な封止溶接が実現された。
【0034】
【表2】
Figure 0004112264
【0035】
本実施例では、溶接割れ,熱処理割れ防止の観点から、封止溶接における翼材の溶融量を抑制するために、TIG溶接とアークマスクを組合せて封止溶接を行ったが、溶接熱源にプラズマを用いた場合であっても、同様にアークマスクとの組合せにより良好な封止溶接が可能である。
【0036】
以上、二つの実施例では、ニッケル基耐熱合金単結晶材および一方向凝固材で形成されたタービン翼翼頂部の中子支持穴の封止溶接方法を示したが、タービン翼の他の部位に形成される中子支持穴や冷却孔等の封止に適用してもよい。また、本発明に係るタービン翼中子支持穴の封止溶接方法は、本実施例に記載したニッケル基耐熱合金以外の他のニッケル基耐熱合金単結晶材や一方向凝固材で形成されたタービン翼中子支持穴の封止溶接にも好適である。
【0037】
【発明の効果】
本発明によれば、ニッケル基耐熱合金で形成されたタービン翼の中子支持穴、特に翼頂部に配された中子支持穴の封止溶接において、溶加材を用いて中子支持穴を封止溶接する際に、あらかじめ翼内部の中子に形成した余盛形状のパターンを転写することにより、溶接金属の翼内面側の余盛形状をほぼ一定の形状にすることが可能であり、翼の肉厚のばらつきによる溶接不良を低減することが可能である。
【0038】
また、溶接金属の翼内面側の余盛形状を、余盛の直径に対する余盛高さの比が1/10〜1/2の範囲となるように制御することにより、溶接によって生じる残留応力を分散させ、余盛部に発生しやすい溶接割れや熱処理割れを低減することができる。
【0039】
また前記封止溶接に用いる溶加材として、封止用の部材をあらかじめ中子支持穴に配置しておき、封止溶接を行うことにより、溶接により溶融する翼材の割合を低減し、翼材に含まれる強化元素に起因して生じる溶接金属の割れを抑制することができる。
【0040】
また、前記封止溶接の溶接熱源にレーザ,アーク,プラズマあるいは電子ビームを用い、溶加材に優先的にエネルギーを投入することにより、溶接により溶融する翼材の割合を低減し、溶接金属の割れを抑制することができるだけでなく、溶接金属のサイズが小さく抑えられることで封止溶接部に起因したガスタービン翼の強度低下が抑制される。
【0041】
これらの効果により、タービン翼製造時の歩留まりが向上するとともに、溶接による翼の性能低下が抑制され、翼寿命を長期化することができる。
【図面の簡単な説明】
【図1】翼頂部に中子支持穴を有するタービン翼の斜視図である。
【図2】本発明に係るタービン翼中子支持穴の封止溶接方法の実施例において、中子支持部の除去、ならびにテーパ―状の整形加工を施された中子支持穴と中子に形成された余盛のパターンの形状を示す、翼頂部中子支持穴近傍の断面図である。
【図3】本発明に係るタービン翼中子支持穴の封止溶接方法の実施例において、中子支持穴に封止用部材を配し、レーザ溶接により封止を行う場合の概略構成を示す、翼頂部中子支持穴近傍の断面図である。
【図4】本発明に係るタービン翼中子支持穴の封止溶接方法の実施例において、中子支持穴に封止用部材を配し、レーザ溶接により封止を行った後の状態を示した翼頂部中子支持穴近傍の断面図である。
【図5】本発明に係るタービン翼中子支持穴の封止溶接方法の実施例において、中子支持部の除去、ならびに整形加工を施された中子支持穴と中子に形成された余盛のパターンの形状を示す、翼頂部中子支持穴近傍の断面図である。
【図6】本発明に係るタービン翼中子支持穴の封止溶接方法の実施例において、中子支持穴に封止用部材を配し、TIG溶接により封止を行う場合の概略構成を示す、翼頂部中子支持穴近傍の断面図である。
【図7】本発明に係るタービン翼中子支持穴の封止溶接方法の実施例において、TIG溶接により封止を行った後の状態を示した翼頂部中子支持穴近傍の断面図である。
【符号の説明】
1…タービン翼、2…中子支持穴、3…封止用部材、4…中子、5…余盛のパターン、6…レーザ、7…溶接金属、8…不活性ガス流、9…引け、10…翼頂部、11…アーク、12…溶接電極、13…アークマスク、14…レーザトーチ、15…TIGトーチ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a turbine blade formed of a nickel-base heat-resistant alloy, and more particularly to a method for sealing and welding a core support portion remaining on a turbine blade surface when a turbine blade is manufactured by precision casting using a core. The present invention relates to a method for sealing and welding a gas turbine blade core support hole having a high yield, which is suitable for suppressing high temperature cracking due to welding and suppressing strain aging cracking in a heat treatment process after welding.
[0002]
[Prior art]
A gas turbine blade used in a high temperature environment is generally manufactured by precision casting using a nickel-based heat-resistant alloy. At this time, a technique is used in which a complicated cooling passage for cooling with a refrigerant such as air is provided inside the blade. This cooling passage is formed using a core during casting. The core is eluted and removed by the chemical after casting. However, since the support portion of the core remains as a support hole in the cast blade, it is necessary to seal the support hole to obtain a product.
[0003]
As a method for sealing the core support hole, an arc welding method using a filler material is used, but the nickel-base heat-resistant alloy forming the turbine blade is made of an added strengthening element such as Al or Ti. Due to the influence, cracks due to a decrease in the strength of the grain boundaries are likely to occur during welding. For this reason, the welding method which suppresses this weld crack is described in Unexamined-Japanese-Patent No. 1-107973. In this method, the composition of the weld metal is adjusted by using a nickel-base or iron-base alloy that is more ductile than the blade material as the filler material for sealing welding, and the influence of the strengthening elements contained in the blade material is affected. It suppressed and made it hard to produce a crack.
[0004]
However, in the arc welding method described in the above publication, since the heat input during welding is large, the volume of the formed weld metal tends to be larger than necessary for the core support hole to be sealed. Weld metal is less susceptible to cracking during welding due to component adjustment by filler material, but excessive weld metal leads to a decrease in turbine blade performance because properties such as high-temperature strength are inferior to blade materials. .
[0005]
In addition, if there is a heat treatment process such as aging heat treatment after sealing welding, even in the weld metal that did not crack during welding, cracks due to insufficient ductility of the weld metal occur in the process of relaxing strain caused by welding. In some cases, it is a factor that reduces the yield of products. The cracks that occur during this heat treatment are also thought to be caused by strengthening elements such as Al and Ti that have melted into the weld metal from the blade material. To suppress cracking, the proportion of the blade material component contained in the weld metal is reduced. That is, it is necessary to reduce the amount of melting of the blade material during welding.
[0006]
As a technique for solving this problem, a filler material molded into a predetermined shape is arranged in advance so as to close the core support hole, and a laser or an arc is converged on the filler material to preferentially heat and melt. Thus, a welding method for sealing the support hole while suppressing the melting amount of the blade material is effective. According to this technique, it is possible not only to reduce the low-strength weld metal that degrades the blade performance, but also to significantly suppress cracks during welding and aging heat treatment.
[0007]
[Problems to be solved by the invention]
In the above-described conventional technology, it is necessary to select an appropriate welding condition and perform the construction in accordance with the thickness of the blade around the core support hole to be sealed. When the welding conditions are outside the proper range, the weld metal may sag due to excessive melting, and conversely, welding defects such as insufficient penetration and undercutting may occur. Turbine blades manufactured by casting have different wall thickness for each blade due to fluctuations in the core position, etc., and for each core support hole position. It is necessary to measure the wall thickness of the hole and change the welding conditions, which causes a reduction in construction efficiency.
[0008]
The present invention has been made in view of such circumstances, and after the precision casting, before the core is eluted from the roughened turbine blade, the core support portion is drilled, The support part was removed and the side surface of the support hole was shaped, and a hollow pattern was formed on the core of the bottom part of the support hole to transfer the predetermined shape to the weld metal, and then a filler material was used. By performing sealing welding, it is possible to prevent drooping of the weld metal and always obtain a predetermined surging shape. It is an object of the present invention to provide a method for sealing welding a child support hole and a turbine blade using this method.
[0009]
[Means for Solving the Problems]
The present invention employs the following configuration in order to achieve the above object.
[0010]
That is, in the first method relating to sealing welding of the core support hole of the turbine blade, before the core is eluted from the precision-cast turbine blade, the portion supporting the core from the outer surface side of the turbine blade is removed. The hole is drilled toward the core inside the turbine blade , and a part of the surface of the core located at the bottom of the hole is further removed, and a predetermined margin is added to the weld metal that seals the hole. A pattern for transferring the prime shape is formed, and then a filler material made of a nickel-based alloy is supplied to the hole to perform sealing welding.
[0011]
In the second method, there is a core supporting portion to the outer diameter of the turbine blades, the sealing welding method of the hole of the turbine blades the core supporting portion remains as well, elution removed a core from said turbine blades Before performing the hole processing for removing the core support portion from the turbine blade outer surface side , a hole is formed toward the core inside the turbine blade, and the hole is further formed in the core located at the bottom of the hole. A pattern for transferring a predetermined overlay shape is formed on the weld metal to be sealed, and then a filler metal made of a nickel-based alloy is supplied to the hole to perform seal welding.
[0012]
In the first and second methods, the surplus shape of the weld metal transferred by the pattern processed in the core located at the bottom of the hole has a ratio of the surplus height to the diameter of the surplus. It is desirable that the spherical shape is 10 to 1/2.
[0013]
In the sealing welding method of the present invention, a sealing member as the filler material is disposed in the support hole before welding.
[0014]
As a specific method of sealing welding, a method of sealing by laser welding while suppressing oxidation of the weld with an inert gas, a method of sealing by TIG welding while suppressing oxidation of the weld with an inert gas, A method of sealing by plasma welding while suppressing oxidation of the weld with an inert gas, or a method of sealing by electron beam welding is preferable.
[0015]
The turbine blade of the present invention is a turbine blade in which a core support portion formed at the time of precision casting remains as a hole. The hole is sealed by welding, and the inner surface of the weld metal blade is sealed with the hole. It has a surplus, and the surplus is formed by transferring a pattern formed on the core remaining inside the blade after precision casting. The surplus has a spherical shape, and the ratio of the surplus height to the diameter of the surplus is preferably 1/10 to 1/2.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
[First embodiment]
A first embodiment of a turbine blade core hole sealing welding method according to the present invention will be described with reference to FIGS.
[0017]
As shown in FIG. 1 to FIG. 4, the sealing welding method for the turbine blade core support hole of this embodiment is the blade top portion 10 of the turbine blade 1 formed of a nickel-based heat-resistant alloy , that is, the outer diameter of the turbine blade 1. A sealing member 3 made of a nickel-base alloy that is more ductile than the nickel-base heat-resistant alloy is disposed in the core support hole 2 disposed in the section, and the surface of the sealing member 3 is irradiated with a laser. Thus, the sealing member 3 and the blade material around the core support hole 2 are melted and sealed and welded, and are roughly completed through the following steps.
[0018]
First, as a first step, the core support hole 2 disposed in the blade top portion 10 is shown in FIG. 2 with respect to the turbine blade 1 which is formed by precision casting, then roughed and heat-treated as necessary. Shaping as shown. This core support hole has been used as a core support portion before drilling. As shown in FIG. 2, the ceramic that has formed the core support portion from the turbine blade outer surface side is removed to form the core support hole 2 toward the core inside the turbine blade , and the core support hole 2. A part of the surface of the core 4 at the bottom of the core is removed. This removed portion becomes a surplus when the core support hole 2 is sealed with a weld metal. The shape of the weld metal surplus is preferably spherical, and therefore it is desirable to provide a spherical surplus pattern 5 when removing the surface of the core 4. In this example, the shape of the pattern 5 was controlled so that the ratio of the height h to the height d of the height was about 1/6. Although it is desirable that the shaping process of the core support hole 2 and the process of giving the extra pattern 5 to the core 4 be performed simultaneously with one processing tool, after the core support hole 2 has been processed, The extra pattern 5 may be processed by the processing tool. In the present embodiment, the core support hole 2 is tapered as shown in FIG. 2, but it may be shaped into a straight hole.
[0019]
In the second step, as shown in FIG. 3, the sealing member 3 is disposed in the core support hole 2 shaped in the first step, and temporary attachment is performed by percussion welding or the like as necessary. It is desirable that the volume of the sealing member 3 is about 1.5 to 3 times larger than the design volume of the core support hole 2 to be sealed. By changing the volume of the sealing member 3, it is possible to adjust the surplus amount on the surface side of the weld metal. In this embodiment, the sealing member 3 having a volume 1.8 times larger than the design volume of the core support hole 2 is used. If the shape of the sealing member 3 is shaped so as to be fitted with the core support hole 2, the arrangement becomes easy.
[0020]
Next, in the third step, the sealing member 3 is irradiated with the laser 6 while shielding the sealing weld from the outer surface side of the blade by the inert gas flow 8 ejected from the laser torch 14 as shown in FIG. In addition, the welding is performed by simultaneously melting the blade material around the core support hole 2 by heat conduction. When the downslope process for gradually decreasing the laser output at the end of welding is performed, it is possible to suppress the shrinkage 9 that occurs in the surging on the blade outer surface side of the weld metal 7 shown in FIG. If the shrinkage 9 is not sufficiently suppressed even after the downslope treatment, the shrinkage 9 may be reduced by remelting only the upper part of the weld metal 7 with a smaller heat input than that in the sealing welding. It is valid. In this embodiment, a YAG laser is used as the laser, but similar welding is possible even with a semiconductor laser or a CO 2 laser.
[0021]
In the fourth step, after the sealing weld is inspected from the blade outer surface, the turbine blade is heat-treated as necessary.
[0022]
In the final fifth step, after the core inside the turbine blade is eluted, the sealed welded portion is inspected from the blade outer surface and the inner surface side to confirm that there is no defect.
[0023]
In this embodiment, the material of the turbine blade 1 is, by weight%, carbon (C) 0.07, chromium (Cr) 7.1, cobalt (Co) 1.0, molybdenum (Mo) 0.8, tungsten (W 8.8, Niobium (Nb) 0.8, Aluminum (Al) 5.1, Boron (B) 0.02, Tantalum (Ta) 8.9, Hafnium (Hf) 0.25, Rhenium (Re) 3 A nickel base heat-resistant alloy single crystal material having a composition of 0.0, balance nickel (Ni), and the material of the sealing member 3 is carbon (C) 0.05, manganese (Mn) 0.25, iron (Fe) 2.5, silicon (Si) 0.25, chromium (Cr) 21.5, molybdenum (Mo) 9.0, aluminum (Al) 0.2, titanium (Ti) 0.2, niobium (Nb) ) And tantalum (Ta) total 3.65, nickel (Ni) 61.0, and the balance is inevitable The thickness of the top 10 of the turbine blade 1 is 1.2 to 1.8 mm by using the conditions selected from the welding condition range shown in Table 1 Even if there is variation in the range, it is possible to carry out the work under certain welding conditions, the outer and inner surfaces of the sealed welded part are good, and the sealed sealing is free of weld cracks and heat treatment cracks. Was realized.
[0024]
[Table 1]
Figure 0004112264
[0025]
In this example, from the viewpoint of preventing weld cracking and heat treatment cracking, a laser with excellent convergence and controllability was used as the heat source for welding in order to suppress the melting amount of the blade material in sealing welding. Even an electron beam having characteristics can be sealed and welded in the same manner.
[0026]
[Second Example]
As shown in FIGS. 1 and 5 to 7, the sealing welding method for the turbine blade core support hole in the second embodiment is arranged on the blade top portion 10 of the turbine blade 1 formed of a nickel-based heat-resistant alloy. In addition, a sealing member 3 made of a nickel-base alloy having superior ductility than the nickel-base heat-resistant alloy is disposed in the core support hole 2, and the sealing member 3 and the periphery of the core support hole 2 are surrounded by TIG welding. The blade material is melted and sealed and welded, and is roughly completed through the following steps.
[0027]
First, as a first step, the core support hole 2 disposed in the blade top portion 10 is shown in FIG. 5 with respect to the turbine blade 1 that is formed by precision casting, then roughened and heat-treated as necessary. Shaping as shown. At this time, in the same manner as in the first embodiment, the core support part is removed during the shaping process of the core support hole 2 and the core 4 at the bottom of the core support hole 2 has a predetermined amount of weld metal. A spherical extra-pattern 5 for transferring the shape is applied. In the present embodiment, the shape of the extra pattern 5 was controlled so that the ratio of the extra height h to the extra diameter d was about 1/5. The shaping process of the core support hole 2 and the process of giving the extra pattern 5 to the core 4 were performed simultaneously with the shaping process of the core support hole 2 with one machining tool. In the present embodiment, the core support hole 2 was shaped into a straight hole shape as shown in FIG. Of course, the core support hole 2 may have a taper as in the first embodiment.
[0028]
In the second step, as shown in FIG. 6, the sealing member 3 processed into a cylindrical shape so as to be fitted into the core support hole 2 shaped in the first step was disposed in the core support hole. Further, in this embodiment, the volume of the sealing member 3 is set to be twice as large as the volume on the design value of the core support hole 2 to be sealed.
[0029]
Next, in the third step, the arc 11 is sealed with the welding electrode 12 while the sealed weld is shielded from the outer surface side of the blade by the inert gas flow 8 ejected from the TIG torch 15 as shown in FIG. Sealing welding is performed by generating between the members 3, melting the sealing member 3, and simultaneously melting the periphery of the core support hole 2 by heat conduction.
[0030]
In this embodiment, in order to suppress the melting amount of the wing material by selectively supplying the energy from the arc to the sealing member 3, as shown in FIG. A disc-shaped arc mask 13 was placed on the upper part of the core support hole 2 to mask the blade top surface around the support hole. Although alumina is used for the arc mask 13, other heat-resistant non-conductors may be used, or a heat-resistant non-conductor and a refractory metal may be laminated or stacked. The diameter of the hole provided in the center of the arc mask 13 is preferably about 0.5 to 2.0 mm larger than the diameter of the core support hole 2 on the blade outer surface side.
[0031]
Moreover, if the down slope process which reduces welding output gradually at the time of completion | finish of welding is performed, it is possible to suppress the shrinkage 9 which arises in the surplus on the blade outer surface side of the weld metal 7 shown in FIG. If the shrinkage 9 is not sufficiently suppressed even after the downslope treatment, the shrinkage 9 may be reduced by remelting only the upper part of the weld metal 7 with a smaller heat input than that in the sealing welding. It is valid.
[0032]
In the fourth step and the fifth step, the seal welded portion is inspected and heat-treated as in the first embodiment.
[0033]
In this embodiment, the material of the turbine blade 1 is, by weight%, carbon (C) 0.07, chromium (Cr) 6.0, cobalt (Co) 9.0, molybdenum (Mo) 0.5, tungsten (W ) 8.0, aluminum (Al) 5.7, titanium (Ti) 0.7, boron (B) 0.015, tantalum (Ta) 3.0, hafnium (Hf) 1.4, rhenium (Re) 3 0.0, a nickel-base heat-resistant alloy unidirectionally solidified material having a composition of remaining nickel (Ni), and the material of the sealing member 3 is carbon (C) 0.05, manganese in weight% as in the first embodiment. (Mn) 0.25, iron (Fe) 2.5, silicon (Si) 0.25, chromium (Cr) 21.5, molybdenum (Mo) 9.0, aluminum (Al) 0.2, titanium (Ti 0.2), the total of niobium (Nb) and tantalum (Ta) is 3.65, nickel (Ni) 61.0, and When the nickel base alloy having the composition of the remaining inevitable impurities is used, by using the conditions selected from the welding condition range shown in Table 2, the thickness of the blade top 10 of the turbine blade 1 is 1.2. Even if it varies within a range of 1.8 mm, it is possible to perform the work under certain welding conditions, the outer and inner surfaces of the sealed welded part are good, and there are no weld cracks or heat treatment cracks. Seal welding was realized.
[0034]
[Table 2]
Figure 0004112264
[0035]
In this example, from the viewpoint of preventing weld cracking and heat treatment cracking, sealing welding was performed by combining TIG welding and an arc mask in order to suppress the melting amount of the blade material in sealing welding. Even in the case of using, it is possible to perform good sealing welding in combination with an arc mask.
[0036]
As described above, in the two embodiments, the sealing welding method of the core support hole at the top of the turbine blade blade formed of the nickel-based heat-resistant alloy single crystal material and the unidirectional solidified material has been described. It may be applied to sealing of a core support hole or a cooling hole. The turbine blade core support hole sealing welding method according to the present invention is a turbine formed of a nickel-based heat-resistant alloy single crystal material or a unidirectionally solidified material other than the nickel-based heat-resistant alloy described in the present embodiment. It is also suitable for sealing welding of blade core support holes.
[0037]
【The invention's effect】
According to the present invention, in a core welding hole for a turbine blade formed of a nickel-base heat-resistant alloy, particularly a core support hole arranged at the top of the blade, the core support hole is formed using a filler material. When sealing welding, by transferring the pattern of the extra shape formed in the core inside the blade in advance, it is possible to make the extra shape on the inner surface side of the weld metal into a substantially constant shape, It is possible to reduce welding defects due to variations in blade thickness.
[0038]
Moreover, the residual stress produced by welding is controlled by controlling the shape of the surging on the blade inner surface side of the weld metal so that the ratio of the surfacing height to the diameter of the surplus is in the range of 1/10 to 1/2. Dispersion can reduce weld cracks and heat treatment cracks that are likely to occur in the overfilled portion.
[0039]
In addition, as a filler material used for the sealing welding, a sealing member is arranged in advance in the core support hole, and by performing sealing welding, the ratio of the blade material melted by welding is reduced. It is possible to suppress cracking of the weld metal caused by the strengthening element contained in the material.
[0040]
In addition, by using laser, arc, plasma, or electron beam as the welding heat source for the sealing welding and preferentially putting energy into the filler metal, the ratio of the blade material that is melted by welding is reduced. Not only can cracking be suppressed, but the size of the weld metal can be kept small, so that a decrease in strength of the gas turbine blade caused by the sealed welded portion can be suppressed.
[0041]
By these effects, the yield at the time of manufacturing the turbine blade is improved, and the performance degradation of the blade due to welding is suppressed, and the blade life can be prolonged.
[Brief description of the drawings]
FIG. 1 is a perspective view of a turbine blade having a core support hole at the blade top.
FIG. 2 shows an embodiment of a method for sealing and welding a turbine blade core support hole according to the present invention; a core support hole and a core that have been subjected to removal of a core support portion and a tapered shaping process; It is sectional drawing of the blade top part core support hole vicinity which shows the shape of the formed surging pattern.
FIG. 3 shows a schematic configuration when a sealing member is arranged in the core support hole and sealing is performed by laser welding in the embodiment of the sealing welding method of the turbine blade core support hole according to the present invention. FIG. 5 is a cross-sectional view of the vicinity of a blade top core support hole.
FIG. 4 shows a state after a sealing member is arranged in the core support hole and sealed by laser welding in the embodiment of the sealing welding method of the turbine blade core support hole according to the present invention. FIG. 6 is a cross-sectional view of the vicinity of a blade top core support hole.
FIG. 5 shows an embodiment of a method for sealing and welding a turbine blade core support hole according to the present invention; a core support hole that has been subjected to removal of the core support portion and a shaping process; It is sectional drawing of the blade top part core support hole vicinity which shows the shape of a peak pattern.
FIG. 6 shows a schematic configuration when a sealing member is arranged in the core support hole and sealing is performed by TIG welding in the embodiment of the sealing welding method of the turbine blade core support hole according to the present invention. FIG. 5 is a cross-sectional view of the vicinity of a blade top core support hole.
FIG. 7 is a sectional view of the vicinity of a blade top core support hole showing a state after sealing by TIG welding in an embodiment of a sealing welding method for a turbine blade core support hole according to the present invention. .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Turbine blade, 2 ... Core support hole, 3 ... Sealing member, 4 ... Core, 5 ... Extra pattern, 6 ... Laser, 7 ... Weld metal, 8 ... Inert gas flow, 9 ... Close DESCRIPTION OF SYMBOLS 10 ... Blade top part, 11 ... Arc, 12 ... Welding electrode, 13 ... Arc mask, 14 ... Laser torch, 15 ... TIG torch

Claims (10)

ニッケル基耐熱合金よりなり、精密鋳造されたタービン翼の中子支持穴の封止溶接方法において、前記タービン翼から中子を溶出する前にタービン翼外面側から中子支持部を除去してタービン翼内部の中子に向って穴をあけ、該穴の部に位置する中子の一部を除去して該穴を封止する溶接金属に所定の余盛形状を転写するためのパターンを形成し、その後、該穴にニッケル基合金からなる溶加材を供給して封止溶接を行なうことを特徴とするタービン翼中子支持穴の封止溶接方法。Made of nickel-base heat-resistant alloy, the precision cast sealing welding method of the core supporting holes of the turbine blades, to remove the core supporting portion from the turbine Tsubasagaimen side before eluting the core from the turbine blade turbine A pattern is formed for making a hole toward the core inside the blade , removing a part of the core located at the bottom of the hole, and transferring a predetermined overlay shape to the weld metal that seals the hole. A sealing welding method for a turbine blade core support hole, characterized by forming and then performing sealing welding by supplying a filler material made of a nickel-based alloy to the hole. ニッケル基耐熱合金よりなり、精密鋳造されたタービン翼の外径部の中子支持穴を封止溶接する方法において、前記タービン翼の精密鋳造時に用いた中子を溶出して除去する前に、タービン翼外面側から該中子を支持している部分を除去してタービン翼内部の中子に向って穴をあけ、この穴の部に位置する中子の表面の一部を除去して該穴を封止する溶接金属に所定の余盛形状を転写するためのパターンを形成し、その後、該穴にニッケル基合金からなる溶加材を供給して封止溶接を行なうことを特徴とするタービン翼中子支持穴の封止溶接方法。Made of nickel-base heat-resistant alloy, the method of sealing welding a core supporting hole of the outer diameter portion of the precision cast turbine blade, before removal by eluting the core used during precision casting of the turbine blade, Remove the part that supports the core from the outer surface of the turbine blade, make a hole toward the core inside the turbine blade, and remove a part of the surface of the core located at the bottom of this hole. A pattern for transferring a predetermined overlay shape is formed on the weld metal that seals the hole, and then a filler material made of a nickel-based alloy is supplied to the hole to perform sealing welding. And sealing welding method for the turbine blade core support hole. 請求項1又は2において、前記穴の部に位置する中子に加工したパターンにより転写される前記溶接金属の余盛形状が、余盛の直径に対する余盛高さの比が1/10〜1/2となる球面形状を有することを特徴とするタービン翼中子支持穴の封止溶接方法。In Claim 1 or 2, the ratio of the height of the surplus height to the diameter of the surplus is 1/10 to 10 of the surplus shape of the weld metal transferred by the pattern processed in the core located at the bottom of the hole. A sealing welding method for a turbine blade core support hole, characterized by having a spherical shape that is ½. 請求項1又は2において、前記溶加材は溶接前に前記穴に配置する封止用の部材であることを特徴とするタービン翼中子支持穴の封止溶接方法。  3. The sealing welding method for a turbine blade core support hole according to claim 1, wherein the filler material is a sealing member disposed in the hole before welding. 請求項1から4のいずれか1つにおいて、前記封止溶接は不活性ガスにより溶接部の酸化を抑制しながらレーザ溶接で行なうことを特徴とするタービン翼中子支持穴の封止溶接方法。  5. The seal welding method for a turbine blade core support hole according to claim 1, wherein the seal welding is performed by laser welding while suppressing oxidation of a welded portion with an inert gas. 請求項1から4のいずれか1つにおいて、前記封止溶接は不活性ガスにより溶接部の酸化を抑制しながらTIG溶接で行なうことを特徴とするタービン翼中子支持穴の封止溶接方法。  5. The sealing welding method for a turbine blade core support hole according to claim 1, wherein the sealing welding is performed by TIG welding while suppressing oxidation of the welded portion with an inert gas. 請求項1から4のいずれか1つにおいて、前記封止溶接は不活性ガスにより溶接部の酸化を抑制しながらプラズマ溶接で行なうことを特徴とするタービン翼中子支持穴の封止溶接方法。  5. The seal welding method for a turbine blade core support hole according to claim 1, wherein the seal welding is performed by plasma welding while suppressing oxidation of the welded portion with an inert gas. 請求項1から4のいずれか1つにおいて、前記封止溶接は電子ビーム溶接で行なうことを特徴とするタービン翼中子支持穴の封止溶接方法。  5. The seal welding method for a turbine blade core support hole according to claim 1, wherein the seal welding is performed by electron beam welding. 6. 精密鋳造時に形成された中子支持部が残存するニッケル基耐熱合金製のタービン翼において、該中子支持部が除去されることにより形成された穴が溶接により封止され、該穴を封止せしめている溶接金属の翼内面に余盛を有し、該余盛が精密鋳造後に残留している中子に形成したパターンの転写によって形成されたものであることを特徴とするタービン翼。  In a nickel-base heat-resistant alloy turbine blade in which the core support formed during precision casting remains, the hole formed by removing the core support is sealed by welding, and the hole is sealed A turbine blade having a surplus on the inner surface of a brazed weld metal blade, the surplus being formed by transferring a pattern formed on a core remaining after precision casting. 請求項9において、前記余盛が球面形状を有し、該余盛の直径に対する余盛高さの比が1/10〜1/2であることを特徴とするタービン翼。  The turbine blade according to claim 9, wherein the surplus has a spherical shape, and the ratio of the surplus height to the diameter of the surplus is 1/10 to 1/2.
JP2002120201A 2002-04-23 2002-04-23 Seal welding method for turbine blade core support hole and turbine blade Expired - Lifetime JP4112264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120201A JP4112264B2 (en) 2002-04-23 2002-04-23 Seal welding method for turbine blade core support hole and turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120201A JP4112264B2 (en) 2002-04-23 2002-04-23 Seal welding method for turbine blade core support hole and turbine blade

Publications (2)

Publication Number Publication Date
JP2003311404A JP2003311404A (en) 2003-11-05
JP4112264B2 true JP4112264B2 (en) 2008-07-02

Family

ID=29536489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120201A Expired - Lifetime JP4112264B2 (en) 2002-04-23 2002-04-23 Seal welding method for turbine blade core support hole and turbine blade

Country Status (1)

Country Link
JP (1) JP4112264B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2920681B1 (en) * 2007-09-10 2009-12-04 Snecma USE OF AN ACTING FLOW FOR TIG WELDING OF METAL PARTS
US8573949B2 (en) * 2009-09-30 2013-11-05 General Electric Company Method and system for focused energy brazing
EP2754528A1 (en) * 2013-01-14 2014-07-16 Siemens Aktiengesellschaft Method of build up welding a substrate through laser remelting of a prefabricated mold
JP6421525B2 (en) 2013-10-09 2018-11-14 信越化学工業株式会社 Method for producing thermal spray molded body
GB2550966A (en) * 2016-06-03 2017-12-06 The Welding Inst Joining method using in-situ formed fasteners

Also Published As

Publication number Publication date
JP2003311404A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP4060083B2 (en) Nickel-based brazing filler metal and brazing repair method
US6814544B2 (en) Method for manufacturing turbine blade and manufactured turbine blade
JP3982630B2 (en) Parts welding repair method and parts repaired by the method
TW527251B (en) Weld repair of directionally solidified articles
EP1296796B1 (en) Welding superalloy articles
US8987629B2 (en) Process of closing an opening in a component
US20090014421A1 (en) Weld Repair Method for a Turbine Bucket Tip
EP1637274A1 (en) Forming structures by laser deposition
US20220241881A1 (en) Repair of through-hole damage using braze sintered preform
JP2000160313A (en) Nickel base super heat resistant alloy and heat treatment before welding, and welding for this nickel base superalloy
JP6948807B2 (en) Forced weld cracking and brazing repair of superalloys
KR20150113149A (en) Selective laser melting/sintering using powdered flux
JP2006291344A (en) Ni-based alloy member, manufacturing method therefor, turbine engine part, welding material and manufacturing method therefor
US5951792A (en) Method for welding age-hardenable nickel-base alloys
US9186724B2 (en) Electroslag and electrogas repair of superalloy components
EP3034229B1 (en) Weld filler for superalloys
JP4112264B2 (en) Seal welding method for turbine blade core support hole and turbine blade
JP5138149B2 (en) Surface oxide welding penetration strengthening method and article
EP3345708A1 (en) Method, brazed article, and brazing assembly
JP2024514238A (en) Nickel-based alloy compositions for component parts having reduced cracking susceptibility and optimized high temperature properties - Patents.com
JP3845819B2 (en) Gas turbine blade and method for manufacturing the same
JP2003227350A (en) Manufacturing method for turbine blade and turbine blade using the method
JPS63230279A (en) Method for welding super alloy heat resistant material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Ref document number: 4112264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250