KR19980046982A - MOS transistor for power - Google Patents

MOS transistor for power Download PDF

Info

Publication number
KR19980046982A
KR19980046982A KR1019960065418A KR19960065418A KR19980046982A KR 19980046982 A KR19980046982 A KR 19980046982A KR 1019960065418 A KR1019960065418 A KR 1019960065418A KR 19960065418 A KR19960065418 A KR 19960065418A KR 19980046982 A KR19980046982 A KR 19980046982A
Authority
KR
South Korea
Prior art keywords
insulating film
mos transistor
power
interlayer insulating
polysilicon gate
Prior art date
Application number
KR1019960065418A
Other languages
Korean (ko)
Other versions
KR100422438B1 (en
Inventor
박용포
홍능표
Original Assignee
김광호
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광호, 삼성전자 주식회사 filed Critical 김광호
Priority to KR1019960065418A priority Critical patent/KR100422438B1/en
Publication of KR19980046982A publication Critical patent/KR19980046982A/en
Application granted granted Critical
Publication of KR100422438B1 publication Critical patent/KR100422438B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

본 발명은 전력용 모스트랜지스터에 관한 것으로서, 상세히 말하자면, 제 1 도전형 드리프트영역, 제 2 도전형 베이스영역, 제 1 도전형 소스영역, 게이트산화막, 폴리실리콘게이트, 층간절연막, 및 전극을 구비하는 전력용 모스펫에 있어서, 상기 폴리실리콘게이트와 층간절연막 사이에 새로운 절연막이 형성되어 있는 것을 특징으로 한다.The MOS transistor includes a first conductive drift region, a second conductive type base region, a first conductive type source region, a gate oxide film, a polysilicon gate, an interlayer insulating film, and an electrode. A power MOSPET is characterized in that a new insulating film is formed between the polysilicon gate and the interlayer insulating film.

Description

전력용 모스트랜지스터MOS transistor for power

본 발명은 전력용 모스트랜지스터에 관한 것으로서, 상세히 말하자면, 제 1 도전형 드리프트영역, 제 2 도전형 베이스영역, 제 1 도전형 소스영역, 게이트산화막, 폴리실리콘게이트, 층간절연막, 및 전극을 구비하는 전력용 모스트랜지스터에 관한 것이다.The MOS transistor includes a first conductive drift region, a second conductive type base region, a first conductive type source region, a gate oxide film, a polysilicon gate, an interlayer insulating film, and an electrode. To a MOS transistor for power.

전력용 모스트랜지스터는 바이폴라 트랜지스터와 비교해서 본질적으로 소수 캐리어의 이동이 없기 때문에 고주파 동작에서의 이용이 가능하다. 전력용 모스트랜지스터가 고주파에서 동작하는데는 캐리어가 드리프트영역을 통과하는데 걸리는 시간과 입력 커패시턴스의 촤징속도(charging rate)에 의해 제한이 된다. 또 전력용 모스트랜지스터는 대용량의 전류를 흐르게 하기 때문에 큰 액티브영역이 필요하게 되어 다른 전력용 소자에 비해 입력 커패시턴스가 커지게 된다. 따라서 고주파 동작에서 모스트랜지스터의 입력 커패시턴스를 줄여야만 한다.The MOS transistor for power can be used in high-frequency operation because there is essentially no movement of minority carriers as compared with a bipolar transistor. The operation of the power MOS transistor at high frequency is limited by the time it takes for the carrier to pass through the drift region and the charging rate of the input capacitance. In addition, since a MOS transistor for power flows a large amount of current, a large active region is required, and the input capacitance becomes larger than that of other power devices. Therefore, the input capacitance of the MOS transistor must be reduced in high-frequency operation.

종래 모스트랜지스터에서 입력 커패시턴스의 조절은 게이트산화막의 두께를 두껍게 하는 방법이나 웰 드라이브 인(WDR) 시간을 줄여 폴리실리콘게이트와 정션(junction)간의 중첩부분을 줄이는 방법이 사용되었다. 그러나 게이트산화막의 두께를 두껍게 하는 것은 문턱전압(threshhold voltage)을 조절하기 어려운 문제가 있고, 웰 드라이브 인(WDR) 시간을 줄이는 방법은 파괴전압(breakdown voltage)과 애벌란쉬 에너지(Avalanche energy)에 밀접한 영향을 주기 때문에 문제가 있다.In the conventional MOS transistor, the input capacitance is controlled by either increasing the thickness of the gate oxide film or reducing the well drive in (WDR) time to reduce the overlap between the polysilicon gate and the junction. However, thickening the thickness of the gate oxide film has a problem in that it is difficult to control the threshold voltage, and a method of reducing the well drive in (WDR) time is a method of reducing the breakdown voltage and the avalanche energy There is a problem because it affects.

본 발명의 목적은 이와 같은 종래기술의 문제점을 해결하기 위하여, 폴리실리콘게이트와 소스영역간의 커패시턴스(Cgs)를 감소시킴으로써, 고주파에서도 동작할 수 있는 전력용 모스트랜지스터를 제공하는 데 있다.An object of the present invention is to provide a MOS transistor for power capable of operating at a high frequency by reducing a capacitance (C gs ) between a polysilicon gate and a source region in order to solve the problems of the related art.

상기 목적을 달성하기 위하여, 본 발명은 제 1 도전형 드리프트영역, 제 2 도전형 베이스영역, 제 1 도전형 소스영역, 게이트산화막, 폴리실리콘게이트, 층간절연막, 및 전극을 구비하는 전력용 모스트랜지스터에 있어서, 상기 폴리실리콘게이트와 층간절연막 사이에 새로운 절연막이 형성되어 있는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a MOS transistor having a first conductivity type drift region, a second conductivity type base region, a first conductivity type source region, a gate oxide film, a polysilicon gate, an interlayer insulating film, , Characterized in that a new insulating film is formed between the polysilicon gate and the interlayer insulating film.

도 1 은 종래의 전력용 모스트랜지스터 및 그 입력 커패시턴스의 구성요소를 도시한 도면.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing a conventional MOS transistor for power and its input capacitance. Fig.

도 2 는 본 발명의 일실시예로서의 전력용 모스트랜지스터 및 그 입력 커패시턴스의 구성요소를 도시한 도면.2 is a diagram showing the components of a MOS transistor for power and an input capacitance thereof as an embodiment of the present invention.

*도면의 주요 부분에 대한 부호의 설명*Description of the Related Art [0002]

10 : n형 반도체기판20 : p형 베이스영역10: n-type semiconductor substrate 20: p-type base region

30 : 고농도 n형 소스영역40 : 게이트산화막30: high concentration n-type source region 40: gate oxide film

41 : 고농도 n형 소스영역과 폴리실리콘게이트의 중첩부의 커패시턴스(Cn+)41: Capacitance (C n + ) of the overlapping portion of the high concentration n-type source region and the polysilicon gate

42 : p형 베이스영역과 폴리실리콘게이트의 중첩부의 커패시턴스(Cp)42: Capacitance (C p ) of the overlapping portion of the p-type base region and the polysilicon gate

43 : 폴리실리콘게이트와 드리프트영역의 중첩부의 커패시턴스(Cgd)43: capacitance of overlapping portion of polysilicon gate and drift region (C gd )

50 : 폴리실리콘게이트55 : 절연막50: polysilicon gate 55: insulating film

60 : 층간절연막61 : 층간절연막 커패시턴스(Co)60: interlayer insulating film 61: interlayer insulating film capacitance (C 0 )

62 : 층간절연막 두께62a : 층간절연막과 절연막의 총두께62: thickness of interlayer insulating film 62a: total thickness of interlayer insulating film and insulating film

70 : 전극70: Electrode

본 발명에서는 폴리실리콘게이트상에 적정한 두께의 새로운 절연막을 형성시킨 구조가 제시되었다. 이 새로운 구조는 전력용 모스트랜지스터의 다른 특성에 영향을 주지 않으면서 실리콘게이트와 소스영역간의 커패시턴스(Cgs)를 감소시켜 전체적으로 입력 커패시턴스(Cinput)를 감소시키게 된다.In the present invention, a structure in which a new insulating film having a proper thickness is formed on a polysilicon gate is proposed. This new structure reduces the capacitance (C gs ) between the silicon gate and the source region without affecting the other characteristics of the power MOS transistor, thereby reducing the overall input capacitance (C input ).

이하, 첨부도면을 참조하여 본 발명을 보다 상세히 설명하고자 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1 및 도 2 에 각각 종래 및 본 발명의 일실시예로서의 전력용 모스트랜지스터가 도시되어 있다.Figs. 1 and 2 show a MOS transistor for power as a conventional and an embodiment of the present invention, respectively.

그 구조상의 차이점은, 본 발명의 일실시예에 있어서는, 종래의 전력용 모스트랜지스터의 폴리실리콘게이트(50)와 층간절연막(60) 사이에 새로운 절연막(SiOF막)(55)이 형성되어 있다는 점이다. 제조공정면에서 보자면, 종래의 전력용 모스트랜지스터 제조공정 순서에 따라 게이트산화막(40), 폴리실리콘게이트(50)를 형성하고, 그 상부에 절연막(SiOF막)(55)을 적층한다. 그 상부에 통상의 층간절연막(60) 및 전극(70)을 순차적으로 형성하게 된다. 즉 종래의 공정에 대하여, 폴리실리콘게이트(50) 상부에 절연막(SiOF막)(55)을 적층하는 공정만이 추가된 것이다.The difference in structure is that in the embodiment of the present invention, a new insulating film (SiOF film) 55 is formed between the polysilicon gate 50 of the conventional power MOS transistor and the interlayer insulating film 60 to be. The gate oxide film 40 and the polysilicon gate 50 are formed in accordance with the conventional fabrication process of MOS transistor for power and the insulating film (SiOF film) 55 is formed on the gate oxide film 40 and the polysilicon gate 50, respectively. And an ordinary interlayer insulating film 60 and an electrode 70 are sequentially formed thereon. That is, only a step of laminating an insulating film (SiOF film) 55 on the polysilicon gate 50 is added to the conventional process.

도 1 을 참조하여, 하기식들로부터 종래의 전력용 모스트랜지스터의 입력 커패시턴스의 구성요소를 살펴보겠다.Referring to FIG. 1, the components of the input capacitance of a conventional MOS transistor for power will be described by the following formulas.

Cinput= Cgs+ Cm C input = C gs + C m

Cm= (1 + gmRl)Cgd C m = (1 + g m R l ) C gd

Cgs= Cn++ Cp+ Co C gs = C n + + C p + C o

Co= εoεrAo/to C o = ε o ε ra o / t o

여기서, Cinput: 입력 커패시턴스Where C input : input capacitance

Cgs: 폴리실리콘게이트와 소스영역간의 커패시턴스C gs : capacitance between polysilicon gate and source region

Cm: 등가입력 게이트 커패시턴스C m : Equivalent input gate capacitance

gm: 증폭상수g m : Amplification constant

Rl: 부하(load)저항R l : load resistance

Cgd: 폴리실리콘게이트와 드리프트영역의 중첩부의 커패시턴스(43)C gd : the capacitance of the overlapping portion of the polysilicon gate and the drift region (43)

Cn+: 고농도 n형 소스영역과 폴리실리콘게이트의 중첩부의 커패시턴스(41)C n + : capacitance of the overlapping portion of the high concentration n-type source region and the polysilicon gate (41)

Cp: p형 베이스영역과 폴리실리콘게이트의 중첩부의 커패시턴스(42)C p : capacitance of the overlapping portion of the p-type base region and the polysilicon gate (42)

Co: 층간절연막 커패시턴스(61)C o : interlayer insulating film capacitance (61)

εo: 층간절연막의 유전상수(3.9)ε o : Dielectric constant of interlayer insulating film (3.9)

εr: 유전율ε r : Permittivity

Ao: 층간절연막과 폴리실리콘게이트의 접합면의 면적A o : the area of the bonding surface of the interlayer insulating film and the polysilicon gate

to: 층간절연막의 두께(62)t o : thickness of interlayer insulating film (62)

상기식들로부터, 본 발명의 구조적 특징이 어떻게 전력용 모스트랜지스터의 입력 커패시턴스를 줄이게 되는지를 설명할 수 있다.From the above equations, it can be shown how the structural features of the present invention reduce the input capacitance of the MOS transistor for power.

도 2 에서처럼 폴리실리콘게이트(50) 상부에 절연막(SiOF막)(55)이 형성되어 있으면, 상기식에서 to는 층간절연막(60)과 절연막(SiOF막)(55)의 총두께(62a)에 해당하므로, 종래구조에 비해 큰 값을 가지게 된다. 또한 절연막(SiOF막)(55)은 층간절연막(60)보다 작은 유전상수(2.5)를 가지므로 상기식의 εo가 종래구조에 비해 작은 값을 가지게 된다. 상기 절연막(55)의 형성에 의해 다른 요소는 영향을 받지 않으므로, 이 두가지 요소에 의해 Co가 감소하고, 그에 의해 Cgs가 감소하며 결국 Cinput이 감소하게 된다.2, when the insulating film (SiOF film) 55 is formed on the polysilicon gate 50, t o is a total thickness 62a of the interlayer insulating film 60 and the insulating film (SiOF film) 55 It has a larger value than the conventional structure. Since the insulating film (SiOF film) 55 has a smaller dielectric constant (2.5) than that of the interlayer insulating film 60,? O of the above formula has a smaller value than that of the conventional structure. Since the other element is not influenced by the formation of the insulating film 55, C o is reduced by these two elements, whereby C gs is decreased and C input is decreased.

본 발명은, 절연막(SiOF막)의 추가적 형성에 의해, 실질적으로 층간절연막의 두께 증가 및 유전상수 감소를 가져온다. 이에 의해서 층간절연막 커패시턴스를 감소시켜 결국 전력용 모스트랜지스터의 입력 커패시턴스를 감소시킨다. 즉 본 발명에 의한 전력용 모스트랜지스터는 고주파에서 동작할 수 있다.According to the present invention, the additional formation of the insulating film (SiOF film) substantially increases the thickness of the interlayer insulating film and the dielectric constant. Thereby reducing the interlayer insulating film capacitance and eventually reducing the input capacitance of the power MOS transistor. That is, the MOS transistor for power according to the present invention can operate at a high frequency.

Claims (3)

제 1 도전형 드리프트영역, 제 2 도전형 베이스영역, 제 1 도전형 소스영역, 게이트산화막, 폴리실리콘게이트, 층간절연막, 및 전극을 구비하는 전력용 모스트랜지스터에 있어서, 상기 폴리실리콘게이트와 층간절연막 사이에 상기 층간절연막보다 작은 유전상수를 가지는 절연막이 형성되어 있는 것을 특징으로 하는 전력용 모스트랜지스터.A MOS transistor for power comprising a first conductive type drift region, a second conductive type base region, a first conductive type source region, a gate oxide film, a polysilicon gate, an interlayer insulating film, and an electrode, Wherein an insulating film having a dielectric constant smaller than that of the interlayer insulating film is formed between the first electrode and the second electrode. 제 1 항에 있어서, 상기 절연막은 SiOF막인 것을 특징으로 하는 전력용 모스트랜지스터.The MOS transistor for power according to claim 1, wherein the insulating film is a SiOF film. 제 1 항에 있어서, 상기 제 1 도전형은 n형인 것을 특징으로 하는 전력용 모스트랜지스터.The MOS transistor for power according to claim 1, wherein the first conductivity type is n-type.
KR1019960065418A 1996-12-13 1996-12-13 Power mos transistor KR100422438B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960065418A KR100422438B1 (en) 1996-12-13 1996-12-13 Power mos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960065418A KR100422438B1 (en) 1996-12-13 1996-12-13 Power mos transistor

Publications (2)

Publication Number Publication Date
KR19980046982A true KR19980046982A (en) 1998-09-15
KR100422438B1 KR100422438B1 (en) 2004-05-17

Family

ID=37329075

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960065418A KR100422438B1 (en) 1996-12-13 1996-12-13 Power mos transistor

Country Status (1)

Country Link
KR (1) KR100422438B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954420B1 (en) * 2003-02-05 2010-04-26 매그나칩 반도체 유한회사 Method for manufacturing of dmos transistor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167372A (en) * 1984-02-09 1985-08-30 Seiko Epson Corp Manufacture of thin-film transistor
JP3241705B2 (en) * 1990-11-09 2001-12-25 株式会社半導体エネルギー研究所 Method for manufacturing thin film transistor
JPH0645603A (en) * 1992-07-23 1994-02-18 Nec Corp Mos thin-film transistor
KR100238872B1 (en) * 1997-05-28 2000-01-15 윤종용 Method of manufacturing semiconductor device
KR19990070938A (en) * 1998-02-26 1999-09-15 김덕중 Power MOS transistor
JP3594550B2 (en) * 2000-11-27 2004-12-02 シャープ株式会社 Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954420B1 (en) * 2003-02-05 2010-04-26 매그나칩 반도체 유한회사 Method for manufacturing of dmos transistor

Also Published As

Publication number Publication date
KR100422438B1 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
US5323040A (en) Silicon carbide field effect device
US6288424B1 (en) Semiconductor device having LDMOS transistors and a screening layer
KR100532208B1 (en) Decoupling capacitors for thin gate oxides
US8685812B2 (en) Logic switch and circuits utilizing the switch
KR20010080325A (en) Power semiconductor devices having improved high frequency switching and breakdown characteristics
JPH0697428A (en) Mos controlled power semiconductor device provided with switching-off capability and its manufacture
JP2983110B2 (en) Semiconductor device and manufacturing method thereof
US4072868A (en) FET inverter with isolated substrate load
CN115224024B (en) Super junction device of integrated gate-drain capacitor and manufacturing method
JPH06132538A (en) Semiconductor electronic device provided with dynamic insulation circuit
US5079607A (en) Mos type semiconductor device
US6812079B1 (en) Method for a junction field effect transistor with reduced gate capacitance
US20020145173A1 (en) Low voltage transistors with increased breakdown voltage to substrate
US6914270B2 (en) IGBT with PN insulation and production method
KR20010102237A (en) Depletion type mos transistor
US20230147486A1 (en) Integrated freewheeling diode and extraction device
Ueda et al. A new vertical double diffused MOSFET—the self-aligned terraced-gate MOSFET
CN116031303A (en) Super junction device, manufacturing method thereof and electronic device
JPH08186261A (en) Semiconductor device
KR100422438B1 (en) Power mos transistor
US20220278205A1 (en) Silicon Carbide Transistor Device
JPS62274775A (en) Semiconductor device
JPH07211899A (en) Mos type semiconductor element
KR100424450B1 (en) Lateral dual channel emitter-switched thyristor
RU2229758C1 (en) Planar power mos transistor with schottky barrier for suppressing drain capacitance

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130125

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131217

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee