KR19980044924A - Manufacturing method of directional electric steel sheet by low temperature slab heating method - Google Patents

Manufacturing method of directional electric steel sheet by low temperature slab heating method Download PDF

Info

Publication number
KR19980044924A
KR19980044924A KR1019960063077A KR19960063077A KR19980044924A KR 19980044924 A KR19980044924 A KR 19980044924A KR 1019960063077 A KR1019960063077 A KR 1019960063077A KR 19960063077 A KR19960063077 A KR 19960063077A KR 19980044924 A KR19980044924 A KR 19980044924A
Authority
KR
South Korea
Prior art keywords
temperature
annealing
hours
recrystallization
coil
Prior art date
Application number
KR1019960063077A
Other languages
Korean (ko)
Other versions
KR100273095B1 (en
Inventor
봉원석
이청산
Original Assignee
김종진
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종진, 포항종합제철 주식회사 filed Critical 김종진
Priority to KR1019960063077A priority Critical patent/KR100273095B1/en
Publication of KR19980044924A publication Critical patent/KR19980044924A/en
Application granted granted Critical
Publication of KR100273095B1 publication Critical patent/KR100273095B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명은 저온 슬라브 가열이 가능하도록 제어된 특정 성분을 첨가하여 이후 2차재결정의 안정화 및 방향성 향상 공정을 거쳐 자속밀도 특성이 우수한 방향성 전기강판을 제조하는 방법에 관한 것으로, 고온소둔 승온중 1차재결정조식 형성을 위해 400~650℃의 온도에서 15~25시간 1차균열하고, 방향성이 우수한 2차재결정조직의 핵생성을 위해 T2=600+9×104/A+1(℃)을 만족하는 온도에서 15~25시간 2차균열하여 B10값이 1.85Tesla이상이고 코일 내권부의 자성열화 현상의 방지가 가능한 저온 슬라브 가열방식의 방향성 전기강판을 제조하여서 된 것이다.The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic flux density characteristics by adding a specific component controlled to be able to heat a slab at a low temperature and then stabilizing the secondary recrystallization and improving the directionality, For the formation of recrystallization breakfast, T 2 = 600 + 9 × 10 4 / A + 1 (° C) for primary nucleation of the secondary recrystallized structure with excellent direction and cracking at 400 ~ 650 ℃ for 15 ~ 25 hours. And a secondary slit for 15 to 25 hours at a satisfactory temperature to have a B 10 value of 1.85 Tesla or more and to prevent magnetic deterioration of the inner coil portion.

Description

저온 슬라브 가열 방식의 방향성 전기강판 제조방법Manufacturing method of directional electric steel sheet by low temperature slab heating method

본 발명은 변압기, 발전기 및 기타 전자기기등의 철심재료로 사용되는 방향성 전기강판 제조방법에 관한 것으로, 특히 저온 슬라브 가열이 가능하도록 제어된 특정 성분을 첨가하고 이후 2차재결정의 안정화 및 방향성 향상공정을 거쳐 자속밀도 특성이 우수한 방향성 전기강판을 제조하고자 하는 것이다.The present invention relates to a method of manufacturing a directional electric steel sheet used as an iron core material such as a transformer, a generator and other electronic equipment, and more particularly, to a method for manufacturing a directional electric steel sheet by adding a specific component controlled to heat a low temperature slab, To produce a directional electric steel sheet having excellent magnetic flux density characteristics.

일반적으로 방향성 전기강판은 결정립의 방위가(110)[001]방향으로 정렬된 집합조직을 가지고 있으며, 이 제품은 냉간압연방향으로 우수한 자기적 특성을 가진다.Generally, the grain oriented electrical steel sheet has a texture in which the orientation of the grain is aligned in the (110) [001] direction, and the product has excellent magnetic properties in the cold rolling direction.

방향성 전기강판의 자기적 특성은 주로 자속밀도와 철손으로 나타내는데 자속밀도는 통상 1000A/m의 자장에 의해 철심내에 유기되는 자속밀도, B10으로, 철손은 일정한 주파수, 50Hz의 교류에 의해 1.7Tesla의 자속밀도가 얻어지도록 할 때 철심내에서 열등으로 낭비되는 에너지 손실, W17/50으로 평가하고 있다.The magnetic properties of the grain-oriented electrical steel sheet are mainly represented by the magnetic flux density and the iron loss. The magnetic flux density is a magnetic flux density B 10 induced in the iron core by a magnetic field of 1000 A / m and an iron loss is 1.7 Tesla The energy loss, W 17/50 , which is wasted as inferiority in the iron core when the magnetic flux density is obtained, is evaluated.

자속밀도가 높은 소재를 사용하게 되면 소형, 소성능의 전기기기 제작이 가능하게 되며, 철손이 적으면 적을 수록 전기 에너지 손실을 대폭 줄일 수 있다.If a material with high magnetic flux density is used, it is possible to manufacture a small-sized and small-sized electric device. The smaller the iron loss, the greater the electric energy loss can be.

상기 (100)[001]집합조직은 2차재결정 현상을 이용하여 얻어지는데, 2차 재결정은 보통의 1차재결정에 의해 생긴 미세한 결정립들 중에서 특정방위의 결정립, 소위 고스(Goss) 방위라 불리우는 (110)[001]의 방위를 가진 결정립(통상 2차재결정의 핵이라 칭함)이 시편 전체로 이상성장(Abnormal growth)한 것으로, 이러한 2차재결정이 완전히 일어나고 그 방향성이 우수할 때 고자속밀도가 얻어진다고 알려져 있다.The (100) [001] texture is obtained by using a secondary recrystallization phenomenon. The secondary recrystallization is a crystal grains of a specific azimuth among fine grains formed by ordinary primary recrystallization, which is called a so-called Goss azimuth 110) [001] (usually referred to as a nucleus of secondary recrystallization) is abnormally grown throughout the specimen. When such a secondary recrystallization occurs completely and its directionality is excellent, Is known to be obtained.

우수한 자속밀도를 얻기 위해서는 2차재결정의 안정화와 동시에 2차재결정의 방향성을 향상시킬 수 있어야 하는데, 이를 위해서는 1차재결정립들의 크기가 균일함과 동시에 1차재결정립들의 방위(이후 1차재결정 집합조직으로 함)가 2차재결정의 핵에 잘 잠식될 뿐만 아니라 2차 재결정의 성장과정에서 2차재결정이 이상적인[001]방향을 고수하는데, 즉 우수한 방향성을 갖는 2차재결정립을 발달시키는데 유리한 것이어야 하는 것으로 알려져 있다. 이러한 목적을 달성하기 위해서는 적절한 합금설계 및 이에 따른 적절한 공정제어가 필요하다.In order to obtain a good magnetic flux density, it is necessary to stabilize the secondary recrystallization and simultaneously improve the directionality of the secondary recrystallization. For this purpose, the size of the primary recrystallized grains is uniform and the orientation of the primary recrystallized grains Tissue) is well encapsulated in the nucleus of the secondary recrystallization, and the secondary recrystallization in the growth process of the secondary recrystallization adheres to the ideal orientation, that is, it is advantageous to develop the secondary recrystallization with excellent orientation It is said to be. To achieve this goal, proper alloy design and appropriate process control accordingly are required.

대한민국 특허출원 93-23751호는 저온 슬라브 가열이 가능하도록 성분이 조정된 규소강 슬라브를 열간압연, 산세, 1차냉간압연, 중간탈탄소둔, 2차 냉간압연, 2차소둔(미재결정 조건으로 함), 소둔분리 제도포 및 최종고온열처리하는 방법으로서, 2차재결정의 방향성을 향상시키기 위한 전제조건으로, 2차소둔을 1차재결정이 형성되지 않는 온도에서 행하여 고온소둔중 1차재결정이 일어나도록 함으로서 1차재결정 입도를 증가시켜 2차재결정이 개시되는 온도를 증가시키고, 이에 따라 우수한 자속밀도가 얻어진다고 하였다. 그것은 2차재결정 온도가 높을수 (110)[001]과 압연방향간의 편차가 극히 적은 1차재결정입들만이 2차재결정될 확률이 커지기 때문이라 한다.Korean Patent Application No. 93-23751 discloses a steel slab which is subjected to hot rolling, pickling, primary cold rolling, intermediate decarburization annealing, secondary cold rolling, secondary annealing (non-recrystallization conditions) As a precondition for improving the directionality of the secondary recrystallization, the secondary annealing is performed at a temperature at which the primary recrystallization is not formed, so that the primary recrystallization occurs at the high temperature annealing , The temperature at which the secondary recrystallization starts is increased by increasing the primary recrystallization grain size, and thus a superior magnetic flux density is obtained. This is because the second recrystallization temperature is high and the probability of secondary recrystallization is increased only by the first recrystallization bins having a very small deviation between the rolling direction and (110).

그러나 상기 공지기술은 코일상태로 제품생산시 내권부의 자성이 열화되어, 전체적으로 볼때, 길이 방향의 자성편차가 유발되는 문제점을 안고 있었다. 이러한 자성편차는 상기제조공정에 있어서 최종 고온소둔시 코일내권부와 외권부 또는 중심부간에 승온중 온도편차가 발생하기 때문인 것으로 추정되고 있으며, 이로인해 종래의 고온소둔 조건에서는 내, 외권부강판에 있어서 2차재결정 형성과정이 달라지기 때문인 것으로 판단된다.However, the above-mentioned known technology has a problem that the magnetic property of the inner portion is deteriorated when the product is produced in the coil state, and the magnetic deviation in the longitudinal direction is caused as a whole. This magnetic deviation is presumed to be caused by a temperature difference between the inner coil portion and the outer coil portion or the central portion during the final high-temperature annealing in the above-described manufacturing process. Therefore, in the conventional high temperature annealing conditions, And the second recrystallization process is different.

대한민국 특허출원 94-34279호에는 상기한 문제점을 해결하기 위한 방법으로 산가용성 Al함량에 따라 2차재결정 개시온도가 달라짐을 착안하여고온소둔중 T5≒950+5×(α×103)+5(℃)[여기서, T5적정 2차균열온도, α:산가용성 Al함량(중량%)]을 만족하는 온도에서 2차균열하는 방법을 제시하고 있다.Korean Patent Application No. 94-34279 discloses that the secondary recrystallization starting temperature varies depending on the amount of acid soluble Al as a method for solving the above problems, and it is known that T5? 950 + 5 占 (? 10 3 ) + 5 (° C), where T 5 is the titration specific secondary cracking temperature, and α is the acid-soluble Al content (wt%).

그러나 이 방법은 산가용성 Al 함량의 정확한 측정을 전제로 하는 것으로, 실제 산가용성 Al함량의 분석오차가 0.010~0.020%범위에서 약 5~8%인 점을 고려할 때 적용하기 어려운 단점이 있다.However, this method is based on the accurate measurement of the acid soluble Al content, and it is difficult to apply it in consideration of the fact that the analysis error of the acid soluble Al content is about 5 to 8% in the range of 0.010 to 0.020%.

본 발명은 상기와 같은 제반 문제점을 감안하여 이를 해소하고자 발명한 것으로 일반 탄소강과 작업간섭이 일어나지 않는 1250~1320℃의 온도로 슬라브를 가열하는 것을 가능하게 할 뿐만 아니라, 후속되는 마무리 고온소둔 공정을 최적화 함으로서 코일 내권부의 자성열화를 방지함과 동시에 B10≥1.85Tesla 이상의 자속밀도를 안정하게 확보할 수 있는 방향성 전기강판의 제조방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and it is an object of the present invention to provide a method of manufacturing a slab which can heat a slab at a temperature of 1250 to 1320 캜, The magnetic flux density of B 10 > = 1.85 Tesla can be stably secured while preventing magnetic deterioration of the inner coil portion by optimizing the magnetic flux density.

이와 같은 목적을 갖는 본 발명의 특징은 방향성이 우수한 2차재결정 조직의 핵생성을 유도하여 최종적으로, 완성된 2차재결정의 방향성을 향상시키는 방안으로서, 2차소둔시 소둔온도를 달리하여 강판조직의 회복(Recovery)정도를 변화할 경우 2차재결정 개시전 1차재결정 집합조직이 변화되는 것에 주목하여 2차소둔 온도와 함께 고온소둔 중 1차 및 2차 균열온도를 변화한 후, 2차재결정의 방향성(자속밀도 값으로 치환할 수 있음)을 조사하였으며, 결국 고온소둔 승온 중 400~600℃, 15~25시간의 1차 균열 처리와 함께, 2차 소둔 온도에 따라 T2=600+9×104/A+10(℃)[여기서, T2:적정 2차 균열온도(℃), A:2차 소둔 온도(℃)]를 만족하는 온도에서 15~25시간 2차 균열하여서 됨에 의한다.A feature of the present invention having such an object is to induce nucleation of a secondary recrystallized structure having excellent directionality and finally to improve the directionality of the completed secondary recrystallization, , It is noted that the primary recrystallization texture changes before the start of the secondary recrystallization, and the primary and secondary cracking temperatures are changed during the high-temperature annealing together with the secondary annealing temperature. Thereafter, And the directionality (which can be replaced with the magnetic flux density value) was investigated. As a result, with the primary cracking treatment at 400 to 600 ° C. for 15 to 25 hours during the high temperature annealing, T 2 = 600 + 9 × (T 2 : titration secondary cracking temperature (° C), A: secondary annealing temperature (° C)) for 10 to 25 hours at a temperature satisfying 10 4 / A + 10 .

본 발명은 중량%로, C≤0.025~0.043%, Si:2.95~3.30, Mn:0.12~0.43% S≤0.007%, 산가용성Al:0.008~0.018%, N:0.0085~0.0110%, P≤0.015%, Cu:0.4~0.55%, Cr:0.03~0.06% 및 잔부 Fe로 조성된 150~350㎜두께의 규소강 슬라브를 제조하고;The present invention relates to a steel sheet comprising, by weight%, C 0.025-0.043%, Si 2.95-3.30, Mn 0.12-0.43% S 0.007%, acid soluble Al 0.008-0.018%, N 0.0085-0.0110% % Of Cu, 0.4 to 0.55% of Cu, 0.03 to 0.06% of Cr, and the remainder of Fe, to obtain a silicon steel slab having a thickness of 150 to 350 mm;

상기 규소강 슬라브를 1250~1320℃에서 3~6시간 가열후 1.8~2.5㎜두께로 열간압연하고;Heating the silicon steel slab at 1250 to 1320 캜 for 3 to 6 hours and then hot-rolling the steel slab to a thickness of 1.8 to 2.5 mm;

상기 열간압코일을 600~950℃에서 30초~10분간 예비소둔 및 산세후, 830~930℃에서 30초~10분간, 이슬점이 30~70℃인 습윤 질소 및 수소의 혼합가스 분위기중에서 행해지는 중간소둔을 포함하는 2회냉간압연을 하여 0.23~0.35㎜ 두께의 최종냉간압연 코일로만든 후;The hot-dip coil is subjected to pre-annealing and pickling at 600 to 950 ° C for 30 seconds to 10 minutes and then at 830 to 930 ° C for 30 seconds to 10 minutes in a mixed gas atmosphere of wet nitrogen and hydrogen having a dew point of 30 to 70 ° C Followed by cold rolling twice, including intermediate annealing, to a final cold rolled coil having a thickness of 0.23 to 0.35 mm;

상기 열간압연코일을 450~600℃의 온도에서 30초~10분간 회복조직을 형성시키기 위해 2차소둔하고, 이어서 2차소둔 코일에 중량%로, TiO2:1~5% 및 나머지 MgO로 구성되 소둔분리제를 도포한 후;The hot-rolled coil is subjected to secondary annealing at a temperature of 450 to 600 ° C for 30 seconds to 10 minutes to form a recovered structure. Subsequently, in the secondary annealing coil, TiO 2 is contained in an amount of 1 to 5% After application of the re-annealing separator;

이어서 상기 소둔분리제 도포코일을 2차재결정 조직의 형성을 위해 10~50℃/hr의 승온으로 건조한 수소 또는 수소 및 질소의 혼합가스 분위기 중에서 1170~1230℃까지 가열한 후;Heating the annealing separator coating coil to 1170 to 1230 캜 in a mixed gas atmosphere of hydrogen or hydrogen and nitrogen at an elevated temperature of 10 to 50 캜 / hr to form a secondary recrystallized structure;

이어서 상기 온도, 1170~1230℃에서 유리질 피막(Glass film)의 형성 및 불순물 제거를 위해 10~30 시간 균열하는 열 사이클로 마무리 고온소둔하는 것으로 이루어지는 저온 슬라브 가열 방식의 방향성 전기강판을 제조하되, 상기 고온소둔 승온중 1차재결정조식 형성을 위해 400~650℃의 온도에서 15~25시간 1차 균열하고, 방향성이 우수한 2차재결정조직의 핵생성을 위해 T2=600+9×104/A+10(℃)[여기서, T2:적정 2차 균열온도(℃), A:2차 소둔 온도(℃)]을 만족하는 온도에서 15~25시간 2차균열하는 것을 특징으로 하는, B10값이 1.85Teala 이상이고 코일 내권부의 자성열화 현상의 방지가 가능한 저온 슬라브 가열 방식의 방향성 전기강판을 제조하여서 된 것이다.Forming a glass film at the above-mentioned temperature, 1170 to 1230 ° C, and heat-annealing at a high temperature for 10 to 30 hours to remove impurities; and heating the slab at a high temperature In order to form primary recrystallization during the annealing temperature, primary cracking is carried out at a temperature of 400 to 650 ° C for 15 to 25 hours and T 2 = 600 + 9 × 10 4 / A + 10 (℃) [where, T 2: fair secondary soaking temperature (℃), a: a secondary annealing temperature (℃)] characterized in that the temperature 15-25 hours secondary cracking in satisfying, B 10 value And a low temperature slab heating method capable of preventing magnetic deterioration of the inner coil portion.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 사용되는 규소강 슬라브의 성분 및 제조조건은 다음과 같은 조건을 충족시켜야 한다.The composition and conditions of the silicon steel slab used in the present invention should satisfy the following conditions.

C는 0.025%미만인 경우 슬라브 가열시 결정립들이 조대 성장하여, 최종 고온소둔시 2차재결정의 발달이 불안정해지므로 좋지 않으며, 0.043%를 초과하면 중간 탈탄소둔에 장시간이 소요되어 바람직하지 않다.If C is less than 0.025%, the crystal grains grow coarsely during the heating of the slab, and the development of secondary recrystallization becomes unstable when the final high-temperature annealing is performed. If 0.043% is exceeded, it takes a long time for intermediate decarburization annealing.

Si은 2.95% 미만인 경우 우수한 철손 특성이 얻어지지 않으며, 3.30%를 초과하는 경우 냉간압연성이 열화되므로 바람직하지 않다.When Si is less than 2.95%, excellent iron loss property is not obtained, and when it exceeds 3.30%, cold rolling property deteriorates, which is not preferable.

Mn은 슬라브에 오스테나이트를 형성하여 A1N 의 고용을 용이하게 하는 원소로 0.12%미만으로 첨가된 경우 오스테나이트의 형성량이 너무 적게 되므로 좋지 않으며, 0.43%을 초과하는 경우 압연시 Roll force가 너무 증가하여 판형상이 불균일해지므로 좋지 않다.Mn is an element which forms austenite in the slab and facilitates the solidification of A1N. If it is added in an amount of less than 0.12%, the formation amount of austenite becomes too small. If it exceeds 0.43%, roll force is excessively increased The plate shape is not uniform because it becomes uneven.

S는 과도하게 첨가하면 슬라브 중심부의 S편석이 심해져 이를 균질화하는데, 본 발명범위 이상의 온도로 슬라브를 가열해야 하므로 0.007%이하로 함유되도록 하는 것이 바람직하다.If S is excessively added, the S segregation at the central portion of the slab is increased and homogenized. Since the slab must be heated to a temperature higher than the range of the present invention, it is preferable that the slab is contained at 0.007% or less.

산가용성 Al및 N은 A1N 석출물의 형성에 필요한 원소이다. 산가용성 Al은 0.008%미만인 경우 2차재결정의 방향성이 열화되어 자속밀도가 저하되며, 0.018%를 초과하면 2차재결정의 발달이 불안정해지므로 좋지 않다.Acid soluble Al and N are elements necessary for the formation of A1N precipitates. When the acid soluble Al is less than 0.008%, the directionality of the secondary recrystallization deteriorates and the magnetic flux density lowers. When the content of Al exceeds 0.008%, the secondary recrystallization becomes unstable.

한편 N은 0.0085%미만인 경우 A1N의 양이 부족하게되며, 0.011%를 초과하면 제품에 Bilster 형태의 결함이 발생하기 쉬워지므로 바람직하지 않다.On the other hand, if N is less than 0.0085%, the amount of A1N becomes insufficient, and when N is more than 0.011%, it is not preferable because Bilster type defects easily occur in the product.

P는 본 발명에서 같이 Mn의 함유량이 통상보다 많은 경우 냉간압연시 판파단을 초래할 수 있으므로 제강에서 비용 상승을 유발하지 않고 제어할 수 있는 양인 0.015% 이하로 제한한다.In the present invention, P is limited to 0.015% or less, which is a controllable amount without causing an increase in cost in steelmaking because the steel sheet may cause plate breakage during cold rolling when the content of Mn is larger than usual.

Cu는 오스테나이트 형성 원소로서 A1N의 고용 및 미세석출에 기여하여 2차재결정을 안정화하는 원소이다. 0.4%미만으로 첨가된 경우 그 효과가 미약하여 2차재결정이 불안정하게 일어나 자기적 특성이 열화되며, 반면에 0.55%를 초과하는 경우는 탈탄성 저하를 초래하여 중간 탈탄소둔시간을 길게해야하므로 바람직하지 않다.Cu is an element that stabilizes the secondary recrystallization by contributing to solidification and fine precipitation of A1N as an austenite forming element. If it is added in an amount of less than 0.4%, the effect is insignificant and secondary recrystallization occurs unstably to degrade the magnetic properties. On the other hand, when it exceeds 0.55%, the decarburization degrades and the intermediate decarburization annealing time is lengthened I do not.

상기 Cr은 A1N 등의 석출물이 열연후 강판내에 균일하게 분포되도록 하는 원소이다. 그러나 Cr의 첨가량이 0.03%미만인 경우는 그 효과가 미약하게 되며, 0.06%를 초과하는 경우는 그 효과가 더 크게 나타나지 않으므로, 고가의 합금첨가에 따른 원가상승을 저감시키기 위해 0.06%이하로 첨가하는 것이 좋다.The Cr is an element that allows precipitates such as A1N to be uniformly distributed in the steel sheet after hot rolling. However, when the addition amount of Cr is less than 0.03%, the effect becomes insignificant. When the addition amount of Cr exceeds 0.06%, the effect is not shown to be larger. Therefore, it is added to the amount of 0.06% or less to reduce the cost increase due to the addition of the expensive alloy It is good.

본 발명의 강 성분은 이상과 같으며, 그 외는 Fe 및 불가피한 미량의 불순물로 구성된다. 상기와 같은 규소강 소재는 통상의 여하한 용해법, 조괴법, 연주법등을 이용하여 제조한 경우에도 본 발명의 소재로 사용할 수 있다.The steel component of the present invention is as described above, and the others are composed of Fe and inevitable trace impurities. The above-mentioned silicon steel material can be used as a material of the present invention even when it is produced by any conventional melting method, roughing method, and playing method.

이어서 전술한 강 성분으로 구성된 규소강 슬라브의 가열조건은 1250~1320℃, 3~6시간이 바람직하다. 본 발명범위 미만의 가열온도 및 시간에서는 A1N등의 석출물의 고용이 불충분하게 되어 우수한 자기적 특성을 얻을 수 없게 되며, 본 발명범위를 초과하는 가열온도 및 시간에서는 산화 스케일 양이 늘어나게 될 뿐만 아니라 슬래그 용융이 일어날 수도 있으므로 본 발명의 범위에서 제외하였다.Next, the heating conditions of the silicon steel slab composed of the above-described steel components are preferably 1250 to 1320 DEG C for 3 to 6 hours. At the heating temperature and time under the range of the present invention, solidification of the precipitate such as A1N becomes insufficient and excellent magnetic properties can not be obtained. In addition, at the heating temperature and time exceeding the range of the present invention, So that the present invention is excluded from the scope of the present invention.

상기 슬라브의 두께는 너무 얇으면 열간압연 생산성이 떨어지고 너무 두꺼우면 슬라브 가열시간이 길어져야 하므로 150~350㎜로 제어하는 것이 바람직하다.If the thickness of the slab is too thin, the productivity of hot rolling is deteriorated. If the thickness of the slab is too thick, the slab heating time should be long. Therefore, it is preferable to control the thickness to 150 to 350 mm.

이후 통상의 열간압연으로 후속의 최적 냉간압하율을 고려하여 보통 1.8~2.5㎜의 두께의 열간압연 코일로 만든다.The hot rolled coil is usually made of a hot rolled coil having a thickness of 1.8 to 2.5 mm in consideration of a subsequent optimum cold rolling reduction by ordinary hot rolling.

예비소둔은 산세성과 A1N의 조대화 방지를 위해 600~950℃의 온도에서 30초~10분간 실시하는 것이 바람직하다.Preliminary annealing is preferably carried out at a temperature of 600 to 950 ° C for 30 seconds to 10 minutes to prevent pickling and to prevent coarsening of A1N.

본 발명범위 미만의 가열온도 및 시간에서는 산세가 용이한 패막형성이 곤란하여 산세공정 소요시간이 증가하므로 바람직하지 않으며, 본 발명범위를 초과하는 가열온도 및 시간에서 A1N의 조대화로 2차재결정이 불안정해지므로 좋지 않다.It is not preferable since it is difficult to form a film which is easy to pick up at a heating temperature and time which is less than the range of the present invention, and the time required for the pickling process is increased. Secondary recrystallization occurs at the heating temperature and time exceeding the range of the present invention, It is not good because it becomes unstable.

상기 예비소둔 및 산세된 코일은 중간탈탄소둔을 사이에 넣은, 2회의 냉간압연으로 최종 두께로 조정된다. 이때의 중간 탈탄소둔의온도가 830℃미만이거나 소둔시간이 30초 미만의 경우는 잔류 탄소량의 허용치 이하로 낮추기 어렵게 되며, 903℃를 초과하는 온도이거나 10분을 초과하는 소둔시간에서는 강판 표면층의 결정립이 조대화 되어 2차재결정이 불안정해지므로 바람직하지 않다.The pre-annealing and picked-up coils are adjusted to a final thickness by cold rolling two times with intermediate decarburization annealing interposed therebetween. If the intermediate decarburization annealing temperature is less than 830 占 폚 or the annealing time is less than 30 seconds, it is difficult to lower the residual carbon content to below the allowable limit. If the temperature exceeds 903 占 폚 or the annealing time exceeds 10 minutes, The crystal grains are coarsened and the secondary recrystallization becomes unstable.

또한 중간 탈탄소둔시 분위기 가스의 이슬점이 30℃미만이면 탈탄이 불충분하게 되며, 70℃를 초과하는 경우는 치밀한 표면스케일이 형성되어 냉간압연성을 해치므로 좋지 않다.If the dew point of the atmospheric gas is less than 30 ° C during the intermediate decarburization annealing, the decarburization becomes insufficient, and if it exceeds 70 ° C, a dense surface scale is formed to deteriorate the cold rolling property.

최종냉연된 코일의 두께는 0.23㎜미만의 경우는 2차재결정이 잘 발달되지 않으며, 0.35㎜를 초과하는 경우는 우수한 철손 특성이 얻어지지 않으므로 바람직하지 않다.When the thickness of the final cold-rolled coil is less than 0.23 mm, the secondary recrystallization is not well developed, and when it exceeds 0.35 mm, excellent iron loss characteristics can not be obtained.

2차소둔의 온도가 450℃미만이거나 시간이 30초 미만이면 냉간압연 코일의 표면평탄도가 저하되어 마무리 고온소둔 후 코일의 판붙음 현상이 발생하게 되므로 좋지 않으며, 600℃를 초과하는 온도의 경우는 2차소둔후, 미세한 1차재결정이 발생되어 우수한 자속밀도를 얻을 수 없게 되고, 10분을 초과하는 소둔시간은 비경제적이므로 좋지 않다.If the temperature of the secondary annealing is less than 450 ° C or the time is less than 30 seconds, the surface flatness of the cold rolled coil is lowered, which is not preferable because the coil sticking phenomenon occurs after the finish annealing at a high temperature. After the secondary annealing, a fine primary recrystallization is generated and the excellent magnetic flux density can not be obtained, and the annealing time exceeding 10 minutes is not economical.

마무리 고온소둔시 승온율은 적절한 1차재결정 집합조직을 형성시키고 2차재결정을 완전히 일으키기 위해 10-50%/hr의 범위로 제어해야 한다. 고온소둔의 분위기가스로는 그래스 피막 형성과 N,S등 잔류불순물을 제거하기 위해 건조한 수소 또는 수소 및 질소의 혼합가스를 사용하는 것이 바람직하다.In the case of high-temperature annealing, the heating rate should be controlled within the range of 10-50% / hr in order to form a proper primary recrystallization texture and to completely induce secondary recrystallization. As the atmospheric gas for the high-temperature annealing, it is preferable to use dry hydrogen or a mixed gas of hydrogen and nitrogen to form a glass film and remove residual impurities such as N, S and the like.

고온균열을 1170℃미만의 온도에서 행하거나 10시간 미만으로 균열하는 경우는 양호한 그래스 피막 형성과 원활한 불순물제거가 어려워지며, 1230℃를 초과하는 온도나 30시간을 초과하여 균열하는 경우는 비경제적이므로 본 발명의 범위에서 제외하였다.When the high-temperature cracking is performed at a temperature lower than 1170 占 폚 or when it is cracked for less than 10 hours, it is difficult to form a satisfactory grating film and to remove a smooth impurity. When cracking occurs at a temperature exceeding 1230 占 폚 or over 30 hours, Are excluded from the scope of the present invention.

또한, 본 발명의 핵심인 상기 고온소둔 승온중 2회의 균열처리에 대한 수치한정 이유는 다음과 같다.The reason for limiting the numerical values for the two-time cracking treatment during the elevation of the high temperature annealing, which is the core of the present invention, is as follows.

1차균열온도가 400℃미만이거나 1차균열시간이 15시간만의 경우는 1차균열처리시 1차재결정조직이 미처 형성되지 않고 회복조직으로 남아있게 되어 이로 인해 2차균열직전 측정한 1차재결정조직이 매우 조대하게 형성되어 2차재결정 구동력(입계에너지)이 감소되는 결과 2차재결정이 불안정해지므로 바람직하지 않다.When the primary cracking temperature is less than 400 ° C or the primary cracking time is only 15 hours, the primary recrystallization structure is not formed in the primary cracking process and remains as a recovery structure. As a result, The recrystallized structure is formed very coarse and the secondary recrystallization driving force (grain boundary energy) is reduced, which results in unstable secondary recrystallization, which is not preferable.

650℃를 초과하는 경우는 1차재결정립 크기가 너무 작게 되어 2차재결정이 낮은 온도에서 일어나게 되는데, 이때 코일외권부 또는 중심부에 비해 온도가 낮은 코일 내권부는 2차재결정이 불안정해지므로 좋지 않다.If the temperature exceeds 650 ° C, the primary recrystallization size becomes too small and the secondary recrystallization occurs at a low temperature. At this time, the inner coil portion having a lower temperature than the coil outer portion or the central portion is unfavorable because the secondary recrystallization becomes unstable .

또 25시간을 초과하는 1차균열은 자속밀도의 저하 또는 코일내권부의 자성열화는 초래하지 않으나 비경제적이다.Also, the primary cracks exceeding 25 hours do not cause a decrease in magnetic flux density or magnetic deterioration of the inner coil portion, but are uneconomical.

2차균열은 방향성이 우수한 2차재결정조직의 핵생성을 위해 매우 중요하며, 본 발명자등은 수 많은 시험결과, 2차균열온도를 2차소둔온도에 따라 적절히 조정할 경우, 즉 T2=600+9×104/A+10(℃)[여기서, T2:적정 2차 균열온도(℃), A:2차 소둔 온도(℃)]을 만족하는 온도에서 2차소둔할 경우 2차재결정의 방향성이 개선되어 우수한 자속밀도가 얻어짐을 확인할 수 있었다.Secondary cracks are very important for the nucleation of the secondary recrystallized structure having excellent directionality. The inventors of the present invention have found that when the secondary cracking temperature is appropriately adjusted according to the secondary annealing temperature, that is, T 2 = 600 + The second annealing is carried out at a temperature that satisfies the following formula: 9 x 10 4 / A + 10 (° C) where T 2 is the appropriate secondary cracking temperature (° C) and A is the secondary annealing temperature It was confirmed that an excellent magnetic flux density was obtained by improving the directionality.

2차균열시간이 15시간 미만의 경우는 2차재결정의 방향성개선효과가 나타나지 않아 우수한 자속밀도를 얻을 수 없으며, 25시간을 초과하는 2차균열은 생산성이 저하되는 만큼 자속밀도 개선효과가 나타나지 않는다.When the secondary cracking time is less than 15 hours, the directionality improvement effect of the secondary recrystallization does not appear, so that the excellent magnetic flux density can not be obtained. Secondary cracks exceeding 25 hours do not show the improvement of the magnetic flux density .

상기 고온소둔에 의해 무기질의 그래스 피막이 형성된 코일 표면에는 절연성 향상과 자구미세화에 의한 철손개선의 목적으로 고온소둔 후, 장력부여 코팅을 하여도 좋다.The coil surface on which the inorganic glass coating is formed by the high-temperature annealing may be subjected to a tension-imparting coating after the high-temperature annealing for the purpose of improving the insulating property and improving the iron loss by micro-

이하, 본 발명을 실시예에 의하여 설명한다.Hereinafter, the present invention will be described by way of examples.

[실시예 1][Example 1]

중량%로, C:0.04%, Si:3.15%, Mn:0.25%, S:0.005%, 산가용성Al:0.017%, N:0.0095%, P:0.015%, Cu:0.50%, Cr:0.05% 및 잔부 Fe로 조성된 210㎜두께의 슬라브를 제조하였다.0.04% C, 0.05% Si, 0.005% Mn, 0.25% Mn, 0.005% S, 0.005% And the remainder Fe was prepared.

이것을 1300℃에서 5시간 슬라브 가열 후 열간압연을 하여 2.0㎜두께의 열연코일을 만들었다. 그 다음 930℃에서 2분간 예비소둔 및 산세하고 1차 냉간압연하여 0.6㎜두께로 조정한 후,이슬점이 50℃인 25%H2+75%N2분위기로 870℃에서 3분간 중간소둔을 하였으며, 이어서 0.285㎜두께로 최종냉간압연한 후;The slab was heated at 1300 占 폚 for 5 hours and then hot-rolled to obtain a hot-rolled coil having a thickness of 2.0 mm. Subsequently, preliminary annealing and pickling for 2 minutes at 930 ° C, primary cold-rolling were performed to adjust the thickness to 0.6 mm, and then intermediate annealing was performed at 870 ° C for 3 minutes in a 25% H 2 + 75% N 2 atmosphere having a dew point of 50 ° C , Followed by final cold rolling to a thickness of 0.285 mm;

하기 표 1에 나타낸 바와 같이 소둔온도 및 시간을 변화하여 2차소둔을 행하였다. 이때 분위기 가스로는 건조한 5%H2+95%N2혼합가스를 사용하였으며, 이어서 중량%로 1.5%TiO2 및 MgO로 구성된 소둔분리제를 강판 표면에 도포한 다음 마무리소둔하였다.Secondary annealing was performed by varying the annealing temperature and time as shown in Table 1 below. At this time, a dry 5% H 2 + 95% N 2 mixed gas was used as the atmosphere gas, and then an annealing separator composed of 1.5% TiO 2 and MgO by weight% was applied to the surface of the steel sheet and then subjected to finish annealing.

이때 상기 마무리소둔은 하기 표 1에 나타난 바와 같이 1차재결정 조직을 형성시키기 위한 1차균열과, 방향성이 우수한 2차재결정 핵생성을 위한 2차균열시의 온도 및 시간을 변화하여 행하였다.As shown in Table 1, the finish annealing was performed by varying the temperature and time at the time of secondary cracking for primary cracking to form a primary recrystallized structure and secondary recrystallization nucleation with excellent directionality.

이후 2차재결정을 일으키기 위해 25℃/hr의 승온율로 1200℃까지 승온하고 불순물 제거를 위해 상기 온도에서 10시간 균열후 냉각하는 열처리 사이클로 행하였으며, 승온중 분위기 가스로는 25%N2+75%H2를 사용하고, 1200℃ 균열구간에서는 순수소 가스를 사용하였다.Thereafter, the temperature was raised to 1200 ° C at a heating rate of 25 ° C / hr to cause secondary recrystallization, followed by a heat treatment cycle of cooling for 10 hours at the above temperature for cooling to remove impurities. As the atmospheric gas, 25% N 2 + 75% H 2 was used, and pure gas was used in the 1200 ° C cracking period.

상기와 같이 2차소둔온도 및 시간을 변화하고 마무리소둔중 1차 및 2차균열 시간 균열온도 및 시간을 변화한 코일들에 대하여 1차재결정 미세조직과 2차 재결정 발달율, 그리고 자기시효열처리 후 자기특성을 측정하여 하기 표 1에 나타내었다. 여기서 1차재결정 미세조직은 마무리 고온소둔의 승온 중 2차균열구간 개시 직전 추출한 시편의 단면 미세조직을 3% 나이탈(Nital) 에칭하여 광학현미경을 관찰하였으며, 2차재결정 발달율은 고온소둔 종료 후, 코일 부위별로 판표면을 약 80℃로 데운 20% 염산용액으로 부식하여 노출한 마이크로(Macro)조직을 관찰한 결과이며, 자속밀도는 자성열화 현상이 나타나지 않는 코일 외권부에 대하여 단판자성측정기로 B10(1000A/m의 여자력에서 유기되는 자속밀도)을 측정한 값이며, 코일 내권부의 자성열화 여부는 연속철손 측정기를 이용하여 코일 길이 방향의 철손값 변화를 관찰함으로 판단하였다.As described above, the primary recrystallization microstructure, the secondary recrystallization development rate, and the magnetic properties after the self-aging heat treatment were applied to the coils which changed the secondary annealing temperature and time and changed the primary and secondary crack time- The properties are shown in Table 1 below. The primary recrystallized microstructure was observed by optical microscopy at 3% of the cross-sectional microstructure of the specimen taken just before the initiation of the second-stage cracking during the temperature increase of the final high-temperature annealing. The secondary recrystallization development rate was , And the microstructure exposed by etching with a 20% hydrochloric acid solution heated to about 80 ° C by the coil portion was observed. The magnetic flux density was measured by a single-plate magnetometer for the coil outer portion where no magnetic deterioration occurred B 10 (magnetic flux density induced at 1000 A / m excitation force), and the magnetic deterioration of the inner coil portion was judged by observing the iron loss value change in the coil length direction using a continuous iron loss meter.

[표 1][Table 1]

고온소둔 승온중 1차균열을 400~650℃, 15~25시간 행하고, 2차균열을 2차소둔온도에 따라 T2=600+9×104/A+10(℃)[여기서, T2:적정 2차 균열온도(℃), A:2차 소둔 온도(℃)]을 만족하는 온도에서15~25기간 2차균열하는 경우(발명재1~ 발명재8)는 적절한 입도(약30~50㎛)를 갖는 1차재결정 조직이 얻어지고 방향성이 우수한 2차재결정이 핵형성되어 우수한 자속밀도(B10≤1.85Tesla)특성을 나타낼 뿐만 아니라, 코일 내권부의 자성열화 현상이 발생하지 않았다.A primary cracking of the high-temperature annealing temperature was raised 400 ~ 650 ℃, 15 ~ 25 sigan performed, along the secondary cracking in the second annealing temperature T 2 = 600 + 9 × 10 4 / A + 10 (℃) [ where, T 2 (About 30 to about 80%) of the second order cracks (Inventive Material 1 to Inventive Material 8) at a temperature that satisfies the following conditions: the optimum secondary cracking temperature (占 폚), A: the secondary annealing temperature (占 폚) (B 10 < / = 1.85 Tesla), and the magnetic deterioration phenomenon of the inner coil portion did not occur. The secondary recrystallization of the secondary recrystallization was excellent.

반면에 1차균열온도가 본 발명범위 미만인 380℃의 경우(비교재1)와 1차균열시간이 본 발명범위 미만인 10시간의 경우 (비교재 6)는 1차재결정 입도가 너무 크게되어 코일 전반에 걸쳐 2차재결정이 불안정해지는 결과 우수한 자속밀도가 얻어지지 않았으며, 1차균열온도가 본 발명범위를 초과하는 670℃의 경우(비교재2, 3)는 1차재결정 입도가 너무 적게되어 코일의 외권부 및 중심부에서는 2차재결정이 완전히 발달하였으나 코일 외권부에는 2차재결정이 불안정하게 일어나게 되어 자성열화 현상이 나타났다.On the other hand, in the case of 380 占 폚 (Comparative material 1) where the primary cracking temperature is lower than the range of the present invention and 10 hours in which the primary cracking time is less than the range of the present invention (Comparative material 6), the primary recrystallization grain size becomes too large, The secondary recrystallization was unstable. As a result, excellent magnetic flux density was not obtained. In the case of 670 캜 at which the primary crack temperature exceeded the range of the present invention (Comparative materials 2 and 3), the primary recrystallization grain size was too small, The secondary recrystallization was fully developed at the outer portion and the center portion of the coil, but the secondary recrystallization occurred unstably at the outer portion of the coil, resulting in magnetic deterioration.

1차균열조건이 본 발명범위내 일지라도 2차균열 온도가 적정치를 벗어나는 경우(비교재4, 5) 및 2차균열 시간이 너무 짧은(비교재8)경우는 우수한 방향성을 갖는 2차재결정핵이 생성되지 않아 비록 코일내권부의 자성열화현상은 나타나지 않았으나, 열등한 자속밀도를 보였다.Even when the primary cracking condition is within the scope of the present invention, when the secondary cracking temperature deviates from the desired value (comparative materials 4 and 5) and the secondary cracking time is too short (comparative material 8), the secondary recrystallization nuclei Was not generated, although the magnetic deterioration phenomenon of the inner coil portion did not appear, but the magnetic flux density was inferior.

이상과 같은 본 발명은 저온 슬라브 가열이 가능하도록 제어된 특정 성분을 첨가하고 이후 2차재결정의 안정화 및 방향성 향상 공정을 거쳐 자속 밀도특성이 우수한 방향성 전기강판을 얻게 되었다.The present invention has been accomplished by adding a specific component controlled to enable low-temperature slab heating and then stabilizing the secondary recrystallization and improving the directionality, thereby obtaining a directional electric steel sheet having excellent magnetic flux density characteristics.

Claims (1)

중량%로, C≤0.025~0.043%, Si:2.95~3.30, Mn:0.12~0.43% S≤0.007%, 산가용성Al:0.008~0.018%, N:0.0085~0.0110%, P≤0.015%, Cu:0.4~0.55%, Cr:0.03~0.06% 및 잔부 Fe로 조성된 150~350㎜ 두께의 규소강 슬라브를 제조하고;0.005 to 0.0110%, P: 0.015%, Cu: 0.005 to 0.03%, C: 0.025 to 0.043%, Si: 2.95 to 3.30, Mn: 0.12 to 0.43% : 0.4 to 0.55%, Cr: 0.03 to 0.06%, and the remainder Fe, to prepare a silicon steel slab having a thickness of 150 to 350 mm; 상기 열간압코일을 600~950℃에서 30초~10분간 예비소둔 및 산세후, 830~930℃에서 30초~10분간, 이슬점이 30~70℃인 습윤 질소 및 수소의 혼합가스 분위기중에서 행해지는 중간소둔을 포함하는 2회냉간압연을 하여 0.23~0.35㎜ 두께의 최종냉간압연 코일로 만든 후;The hot-dip coil is subjected to pre-annealing and pickling at 600 to 950 ° C for 30 seconds to 10 minutes and then at 830 to 930 ° C for 30 seconds to 10 minutes in a mixed gas atmosphere of wet nitrogen and hydrogen having a dew point of 30 to 70 ° C Followed by cold rolling twice, including intermediate annealing, to a final cold rolled coil having a thickness of 0.23 to 0.35 mm; 상기 2차냉열간압연코일을 450~600℃의 온도에서 30초~10분간 회복조직을 형성시키기 위해 2차소둔하고, 이어서 2차소둔 코일에 중량%로, TiO2:1~5% 및 나머지 MgO로 구성된 소둔분리제를 도포한 후;The secondary cold coercive rolling coils are subjected to secondary annealing at a temperature of 450 to 600 ° C for 30 seconds to 10 minutes to form a recovered structure. Subsequently, in the secondary annealing coil, TiO 2 is added in an amount of 1 to 5% After applying an annealing separator composed of MgO; 이어서 상기 소둔분리제 도포코일을 2차재결정 조직의 형성을 위해 10~50℃/hr의 승온으로 건조한 수소 또는 수소 및 질소의 혼합가스 분위기 중에서 1170~1230℃까지 가열한 후;Heating the annealing separator coating coil to 1170 to 1230 캜 in a mixed gas atmosphere of hydrogen or hydrogen and nitrogen at an elevated temperature of 10 to 50 캜 / hr to form a secondary recrystallized structure; 이어서 상기 온도, 1170~1230℃에서 유리질 피막의 형성 및 불순물 제거를 위해 10~30 시간 균열하는 열 사이클로 마무리 고온소둔하되.Subsequently, at a temperature of 1170 to 1230 ° C, a high temperature annealing is performed to form a glassy coating film and finish with a thermal cycle for 10 to 30 hours to remove impurities. 상기 고온소둔 승온중 1차재결정조식 형성을 위해 400~650℃의 온도에서 15~25시간 1차 균열하고, 방향성이 우수한 2차재결정조직의 핵생성을 위해 T2=600+9×104/A+10(℃)을 만족하는 온도에서 15~25시간 2차균열하는 것을 특징으로 하는, 저온 슬라브 가열방식의 방향성 전기강판 제조방법.In order to form primary recrystallization buffers during the high-temperature annealing, primary cracking is performed at a temperature of 400 to 650 ° C for 15 to 25 hours and T 2 = 600 + 9 × 10 4 / A + 10 (占 폚) for 15 to 25 hours at a temperature that satisfies A + 10 (占 폚).
KR1019960063077A 1996-12-09 1996-12-09 The manufacturing method of oriented electric steelsheet with low temperature slab heating KR100273095B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960063077A KR100273095B1 (en) 1996-12-09 1996-12-09 The manufacturing method of oriented electric steelsheet with low temperature slab heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960063077A KR100273095B1 (en) 1996-12-09 1996-12-09 The manufacturing method of oriented electric steelsheet with low temperature slab heating

Publications (2)

Publication Number Publication Date
KR19980044924A true KR19980044924A (en) 1998-09-15
KR100273095B1 KR100273095B1 (en) 2000-12-01

Family

ID=19486565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960063077A KR100273095B1 (en) 1996-12-09 1996-12-09 The manufacturing method of oriented electric steelsheet with low temperature slab heating

Country Status (1)

Country Link
KR (1) KR100273095B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514790B1 (en) * 2000-12-19 2005-09-14 주식회사 포스코 A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748029B2 (en) * 2012-07-26 2017-08-29 Ginza Maronie P.C. Method of producing grain-oriented electrical steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970007333B1 (en) * 1994-12-14 1997-05-07 포항종합제철 주식회사 Method for manufacturing oriented electrical steel sheet having high magnetic density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514790B1 (en) * 2000-12-19 2005-09-14 주식회사 포스코 A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method

Also Published As

Publication number Publication date
KR100273095B1 (en) 2000-12-01

Similar Documents

Publication Publication Date Title
EP0539858B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
KR20140084893A (en) Oriented electrical steel steet and method for the same
KR100359239B1 (en) Method for producing a directional electric steel plate having a high flux density
KR100285344B1 (en) Process for preparing high magnetic flux density directional electric steel sheet by low temperature slab heating way
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
KR100273095B1 (en) The manufacturing method of oriented electric steelsheet with low temperature slab heating
KR970007030B1 (en) Method of manufacturing preparation of electrical steel sheet having higt flux density
KR100479996B1 (en) The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same
KR19990051483A (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by low temperature slab heating method
KR100514790B1 (en) A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
JP4268277B2 (en) Manufacturing method of unidirectional electrical steel sheet
KR100406420B1 (en) A method for manufacturing grain oriented electrical steel sheet with high permeability
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
KR102438480B1 (en) Manufacturing method of grain oriented electrical steel sheet
KR100435479B1 (en) A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property
KR102538120B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR102177044B1 (en) Grain oriented electrical steel sheet and manufacturing method of the same
KR100345696B1 (en) A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures
KR101263841B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
KR102020276B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
KR100237158B1 (en) The manufacturing method for oriented electric steel sheet with excellent magnetic property
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
KR100501004B1 (en) A method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
KR101110250B1 (en) Method for grain-oriented electrical steel sheet with a short hot band annealing time
KR100345705B1 (en) A method of manufacturing grain oriented electrical steels having stable magnetic properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030829

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee