KR19980025221A - Direct cooling fluid ice storage heat storage cooling system - Google Patents

Direct cooling fluid ice storage heat storage cooling system Download PDF

Info

Publication number
KR19980025221A
KR19980025221A KR1019980011389A KR19980011389A KR19980025221A KR 19980025221 A KR19980025221 A KR 19980025221A KR 1019980011389 A KR1019980011389 A KR 1019980011389A KR 19980011389 A KR19980011389 A KR 19980011389A KR 19980025221 A KR19980025221 A KR 19980025221A
Authority
KR
South Korea
Prior art keywords
heat storage
ice
cooling
refrigerant
heat
Prior art date
Application number
KR1019980011389A
Other languages
Korean (ko)
Other versions
KR100290258B1 (en
Inventor
이승기
Original Assignee
이승기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이승기 filed Critical 이승기
Priority to KR1019980011389A priority Critical patent/KR100290258B1/en
Publication of KR19980025221A publication Critical patent/KR19980025221A/en
Application granted granted Critical
Publication of KR100290258B1 publication Critical patent/KR100290258B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

본 발명은 방축열 냉방시스템의 제빙 축열 냉방에 관한 것으로 냉동기에 의하여 형성된 냉열을 제빙시 열교환기나 제빙기 2차냉매를 통하여 발생하는 열전도 손실을 제거하고 축열조의 축열밀도를 높이고 냉방시의 부하 추종성을 향상시키도록 하면서 설치공간의 제약 및 기계 구동부를 없앤 빙축열 냉방시스템이다.The present invention relates to ice storage heat storage cooling of a heat storage cooling system, to remove heat conduction generated through heat exchanger or ice maker secondary refrigerant during ice making formed by the freezer, to increase the heat storage density of the heat storage tank and to improve the load followability during cooling. It is an ice heat storage cooling system that eliminates the constraints of installation space and the mechanical drive.

이를 위하여 본 발명은 냉동시스템에 의하여 저온이 된 냉매를 냉매펄프로 가압하여 축열조 내에 설치된 Ejector로 고압 분사시켜 축열수가 진공이 형성된 Ejector의 흡인관을 통하여 흡입되어 동시에 분무되면서 냉매의 증발잠열로 축열수를 과냉각시켜 제빙하여 축열하였다가 냉방시에는 냉수순환펌프로 제빙된 축열수를 열교환기로 순환시켜 냉방 부하측과 열교환하며 이때 냉동효과를 향상시키기 위하여 냉방 후 고온이 된 축열수는 냉수순환펌프와 연동되는 장치내 밸브이 자동제어에 의하여 Ejector로 직접 압입되어 제빙 되도록 하는 높은 제빙율 및 축열밀도를 가지도록 고안된 빙축열 냉방시스템이다.To this end, the present invention is to pressurize the refrigerant at a low temperature by the refrigeration system with the refrigerant pulp to high-pressure injection into the Ejector installed in the heat storage tank so that the heat storage water is sucked through the suction tube of the ejector vacuum is formed and sprayed at the same time while the heat storage water by the latent heat of evaporation of the refrigerant When the ice is supercooled and regenerated and regenerated, the regenerated water defrosted by the cold water circulation pump is circulated by a heat exchanger to exchange heat with the cooling load side. At this time, the regenerated water that has become hot after cooling is interlocked with the cold water circulation pump to improve the freezing effect. It is an ice heat storage cooling system designed to have high ice making rate and heat storage density so that the inner valve is directly pressed into the ejector by automatic control.

Description

직냉식 유동성빙 축열 냉방시스템Direct cooling fluid ice storage heat storage cooling system

빙축열 냉방시스템은 냉동설비의 초기투자비 절감 및 발전설비의 부하평준하로 인한 에너지절감 및 효율적 사용을 위한 심야전력을 이용하는 냉동 냉방기술의 응용분야 이며 물의 상변화에 의한 융해열(79.68㎉/㎏)을 이용하고자 제빙 축냉하였다가 해빙을 통해 냉열을 이용하는 냉방시스템으로 제빙기술에 따라 정적제빙방식(Static Ice Making) 동적제빙방식(Dynamic Ice Making)으로 대별되며 정적제빙방식은 강관이나 PE Pipe 내부에 2차 냉매(Brine)나 냉매를 직접 순환시켜 관외부에 얼음층을 형성시켜 냉열을 저장하는 관외빙착형(Ice On Coil Type)과 원형 또는 판형의 용기속에 물 이나 기타 상변화 물질을 채워 축열조에 적재 한 후 용기 사이를 2차 냉매가 흐르게 하여 용기내를 얼음화 하여 냉열을 저장하는 용기형(Ice Capsule Type)이 있다. 이러한 제빙방식은 제빙의 시작에서 종료까지 두꺼운 얼음층을 형성하므로 얼음에 의한 열전도 손실에 의해 제빙성능이 저하되며 정적제빙방식으로 인한 축열밀도의 한계로 축열공간이 커지고 설치공간 확보에 제약이 따르는 단점이 있었다. 동적제빙방식으로는 빙박리형(Harvest Ice Type)이 개발되어 주기적인 얼음층의 분리에 의해 기존 시스템의 열적성능은 개선 되었으나 제빙기가 축열조 상부에 설치 되어야 하고 축열조 높이가 일정공간을 필요로 하므로 공간이용 측면에서는 기존 시스템보다 더 큰 제약이 있으며 제빙시스템의 기기 및 제어가 복잡하고 제빙 및 탈빙이 반복되어 압축기의 부하변동이 크며 운전비용의 측면에서 불리한 단점이 있다. 따라서 기존 시스템의 단점을 보완하여 축열조와 제빙기를 분리하고 높은 증발온도를 유지 하면서 두꺼운 얼음층에서 발생하는 열전도 손실이 없이 제빙된 얼음을 30%의 농도를 유지하여 직접 반송 하므로 빠른 해빙속도에 다른 부하 순응력도 뛰어난 유동성빙 제빙방식(Slurry Ice Making System)이 증발판형 과냉각수형 진공챔버형 등으로 개발되어 상용화 단계 또는 실용화되어 보급중이나 제어가 복잡하고 가동부가 많아 동력 소요가 크며 고도의 기술력 및 유지보수 관리가 필요하다.Ice heat storage cooling system is an application field of refrigeration cooling technology that uses midnight power for energy saving and efficient use by reducing initial investment cost of refrigeration equipment and load leveling of power generation equipment, and uses heat of fusion (79.68㎉ / ㎏) by phase change of water. It is a cooling system that uses cold heat through ice storage after cooling. It is classified into static ice making and dynamic ice making according to the ice making technology. The static ice making method is the secondary refrigerant inside the steel pipe or PE pipe. Ice on the outside of the pipe by directly circulating (Brine) or refrigerant to form cold ice (Ice On Coil Type) and the container filled with water or other phase change material in a circular or plate-type container There is a container type (Ice Capsule Type) for storing cold heat by making the inside of the container ice by allowing the secondary refrigerant to flow therebetween. This ice making method forms a thick ice layer from the beginning to the end of ice making, so the ice making performance is deteriorated due to the loss of heat conduction caused by the ice, and the heat storage space is limited due to the limit of heat storage density due to the static ice making method, and the limitation of securing the installation space is disadvantageous. there was. As the dynamic ice making method, the Ice Ice Type was developed, and the thermal performance of the existing system was improved by the periodic separation of the ice layers, but the ice maker must be installed on the top of the heat storage tank, and the height of the heat storage tank requires a certain space. There are more restrictions than the existing system, and the equipment and control of the ice making system is complicated, and the ice load and defrosting are repeated so that the load change of the compressor is large and there are disadvantages in terms of operating cost. Therefore, to compensate for the shortcomings of the existing system, it separates the heat storage tank and the ice maker and maintains a high evaporation temperature and directly returns the iced ice at 30% concentration without the loss of heat conduction in the thick ice layer. Slurry Ice Making System with excellent stress is developed as evaporation plate type, supercooled water type vacuum chamber type, etc., and it is commercialized or practically used. need.

본 발명은 상기와 같은 문제점을 해소하기 위해 냉각체인 냉매가 피냉각체인 축열수와 직접 열교환 하여 제빙 하므로서 열전도 손실을 제거하고 어떤 구조의 건축물이라도 설치공간의 형태에 따라 제약을 받지 아니하고 축열시스템 설치가 가능하며 기계 구동부가 전혀없어 시스템 성적계수를 향상 시키고 유지보수 및 관리에 별동의 기술이 필요없고 수명이 영구적이며 높은 축열밀도(Ice Packing Factor)의 구현으로 시스템 소형화 및 부하 추종성이 뛰어난 유동성빙 축냉시스템을 제공하는데 그 목적이 있다.The present invention eliminates heat conduction loss by cooling the refrigerant as a cooling body directly by heat-exchanging with the regenerated water to be cooled, in order to solve the above problems, and the installation of the heat storage system is not restricted according to the shape of the installation space in any structure of the structure. It is possible to improve the system performance coefficient without any mechanical driving part, and it does not need any special technology for maintenance and management, and it has a long life and high ice packing factor. The purpose is to provide.

도1 - 본 발명에 따른 빙축열 냉방시스템 계통도1-Ice heat storage cooling system schematic diagram according to the present invention

도2 - 본 발명에 다른 Ejector 구조도2-Ejector structure diagram according to the present invention

첨부된 도면에 의해 시스템의 구성과 작용을 상세히 설명하면 다음과 같다. 도1의 (1)의 냉매압축기(Refrigerant Gas Compressor)가 냉매(상품명;R-22 화학식 ; CHCIF2)를 압축하여 생성된 고온(65~85℃) 고압(14~18㎏/㎠)의 냉매 가스를 (2) 수냉식 응축기(Water Cooled Condenser)로 압출하면 (3)이 냉각탑(Cooling Tower)에 의해 냉각된 냉각수(27~32℃)가 (4)의 냉각수 순환펌프(Cooling Circulation Pump)에 의해 응축기 내를 순환하면서 상온 (40~45℃)의 고압액으로 응축시켜서 Float Chamber로 호칭되는 (5)의 팽창밸브(Expansion Valve)를 통하여 단열팽창되어 저온 (-5~-7.5℃) 저압(2~3㎏/㎠)의 냉매액으로 (6)의 저압수액기(Accumulator)에 저장된다. 저장된 저온 저압의 냉매액은 (7)의 냉매펌프(Refrigerant Feed Pump)에 의하여 6~8㎏/㎠의 압력으로 가압되어 (8)의 축열조(Ice Storage Tank) 내부의 상부에 설치한 (9)의 Ejector 도2 상품명(Fu-Jet)로 압출된다. 압입된 냉매는 도2의 (1)Ejector Nozzle에 의하여 냉매를 축열조 내로 분출하며 이때의 분출압력 및 속도에 의하여 도1의 (10)흡입관(Solution Suction Pipe)은 고도의 진공이 되어 도1의 (11)축열수(Ethylele Glycol 7% Solution)를 흡입하여 냉매와 같이 혼합 분무된다. 이때 도2의 Ejector는 분출 냉매량과 흡입 축열수의 비율이 4~5.5가 되도록 필요 냉방능력 및 제빙 축열용량에 따라 Nozzle Dia 및 도2의 (2)분사관(Diffuser)를 선정한다. 도2의 (2)분사관을 통하여 혼합분무된 냉매와 축열수는 1~2㎜의 작은 액적의 미립자가 되며 이때 도2의 (1)Nozzle을 통과한 냉매는 교축현상에 의해 단열팽창 하므로 약 -7.5-15℃의 저온이 되어 혼합된 축열수를 -2.2~-3.3℃의 작은 얼음알갱이로 만들어 축열조로 낙하시켜 저장하게 하는 것이다. 이때 생선된 얼음에 유동성을 주고 장치내 부식방지 및 제빙효율을 향상시키며 축열수 수질관리를 위하여 축열수에 Ethylene Glycol 7%를 첨가시 부식억제제 박테리아 제거제 거품방지제 계면활성제 등을 적량 첨가한다. 열교환을 끝낸 냉매는 물에 용해되지 않으므로 증발하여 축열조 상부에 체공하게 되며 이때 압력차에 의하여 도1의 (6)저압수액기로 복귀하면서 복귀관에 설치된 도1의 (17)기수분리기(Water Seperater)와 (18)건조기(Firter Dryer)에서 수분을 제거한 후 저압수액기로 회수되다. 회수된 냉매가스는 도1의 (1)냉매압축기에 흡입되어 재압축 순환하는 완전 밀폐계의 냉동 제빙 축열시스템이다.Referring to the configuration and operation of the system by the accompanying drawings in detail as follows. Refrigerant gas compressor (Refrigerant Gas Compressor) of Figure 1 (1) is a high-temperature (65 ~ 85 ℃) high-pressure (14 ~ 18 kg / ㎠) refrigerant gas produced by compressing the refrigerant (trade name; R-22 chemical formula; CHCIF2) (2) Extruded into Water Cooled Condenser, (3) Cooled water (27 ~ 32 ℃) cooled by Cooling Tower is condenser by Cooling Circulation Pump of (4). Condensed into a high-pressure liquid at room temperature (40 ~ 45 ℃) while circulating inside, and is adiabaticly expanded through an expansion valve (5) called Float Chamber, and low temperature (-5 ~ -7.5 ℃) low pressure (2 ~ 3 kg / cm 2) of coolant liquid is stored in the low pressure accumulator (6). The stored low temperature low pressure refrigerant liquid is pressurized at a pressure of 6-8 kg / cm 2 by the refrigerant feed pump of (7) and installed on the upper part of the ice storage tank of (8) (9) Ejector of Figure 2 is extruded under the trade name (Fu-Jet). The pressurized refrigerant ejects the refrigerant into the heat storage tank by (1) the ejector nozzle of FIG. 2, and the suction suction pipe of FIG. 1 becomes a high vacuum by the ejection pressure and speed. 11) The regenerated water (Ethylele Glycol 7% Solution) is inhaled and mixed and sprayed together with the refrigerant. At this time, the ejector of FIG. 2 selects nozzle dia and (2) diffuser of FIG. 2 according to the required cooling capacity and the ice storage heat storage capacity so that the ratio of the ejection refrigerant amount and the suction regenerative water becomes 4 to 5.5. The refrigerant sprayed through the spray pipe (2) of FIG. 2 and the regenerated water become fine particles of small droplets of 1 to 2 mm. At this time, the refrigerant passing through the nozzle (1) of FIG. 2 is adiabaticly expanded due to the throttling phenomenon. It becomes the low temperature of -7.5-15 ℃, and the mixed heat storage water is made into small ice grains of -2.2 ~ -3.3 ℃ to be stored in the heat storage tank. At this time, it adds fluidity to fish ice, improves corrosion prevention and de-icing efficiency in the device, and adds an appropriate amount of corrosion inhibitor, bacteria remover, anti-foaming surfactant, etc. when Ethylene Glycol 7% is added to the regenerated water. After the heat exchanger is not dissolved in water, the refrigerant is evaporated and air flows to the top of the heat storage tank. At this time, the water separator returns to the low pressure receiver of FIG. 1 due to the pressure difference, and the water separator of FIG. And (18) Removed moisture from the Dryer Dryer and recovered with low pressure receiver. The recovered refrigerant gas is a completely sealed refrigeration ice storage system in which the refrigerant gas is sucked into the refrigerant compressor (1) of FIG.

상기와 같은 공정을 통하여 축열된 저온의 축열수는 도1의 (12)냉수 순환 펌프(Chilled Water Circulation Pump)에 의하여 도 1의 (1)열교환기(Thermal Exchanger)로 순환 하면서 냉방 부하측의 순환냉수를 냉각시키며 냉방 부하측과 열교환 후 온도가 상승한 축열수는 축열조로 바로 복귀하지 아니하고 도1의 (12)냉수 순환펌프와 연동되는 도1의 (14)전자변(Solenoid Valve)를 통하여 도1의 (9)Ejector를 거치면서 다시 저온의 유동성빙이 되어 축열조에 저장된다. 이때의 부하조절은 도1의 (15)온도감지기(Temperature Sanser)와 (16)의 온도조절변(3-Way Temperature Control Valve)이 연동 하면서 유량을 조절함으로 제어된다.The low temperature regenerated water regenerated through the above process is circulated in the cooling load side while circulating to the (1) Thermal Exchanger of FIG. 1 by the (12) Chilled Water Circulation Pump of FIG. After the heat exchange with the cooling load side, the regenerative water does not return immediately to the heat storage tank, but is connected to the cooling water circulation pump of FIG. 1 through (14) Solenoid Valve of FIG. After passing through the ejector, it becomes low-temperature fluid ice and is stored in the heat storage tank. At this time, the load control is controlled by adjusting the flow rate while the temperature sensor (15) and the temperature control valve (3-Way Temperature Control Valve) of FIG.

높은 효율과 구조적 안정성 단순성으로 건물냉방 및 산업용 냉각장치로 응용범위가 넓어 전기사업자에게는 설비투자 부담완화 및 효율적인 발전설비의 운용을 주며 전기사용자에게는 설비투자비 절감 및 심야전력을 이용한 전기료 부담완화로 에너지 이용 합리화게 큰 효과가 기대됨.High efficiency and structural stability Simplicity has wide range of application for building cooling and industrial cooling system, which allows electricity providers to alleviate the burden of facility investment and operate efficient power generation facilities. Great effect is expected.

Claims (2)

방축열 냉방시스템에 있어서 유동성빙을 생성 축열 하였다가 냉방에 사용하는 시스템에 있어서In a system that generates and accumulates fluid ice in a heat storage cooling system 제빙시 Ejector를 이용하여 냉매와 피냉각체(Ethylene Glycol 7% Solution)를 혼합 분무하여 유동성빙 제빙 후 냉매를 분리하여 재냉각에 사용하는 방법Method of separating and cooling refrigerant after ice-making by mixing and spraying refrigerant and Ethylene Glycol 7% Solution by using Ejector during ice making 냉방시 온도가 상승한 순환냉수를 축열조로 복귀시 Ejector를 통과시켜 냉매와 혼합 분무하여 직접 저온의 유동성빙을 만드는 냉수냉각 방법.A cold water cooling method that creates a low-temperature fluid ice by directly spraying the circulating cold water whose temperature rises during cooling to the heat storage tank by passing it through an ejector and mixing and spraying it with the refrigerant.
KR1019980011389A 1998-04-01 1998-04-01 Direct cooling type slurry ice storage cooling system KR100290258B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980011389A KR100290258B1 (en) 1998-04-01 1998-04-01 Direct cooling type slurry ice storage cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980011389A KR100290258B1 (en) 1998-04-01 1998-04-01 Direct cooling type slurry ice storage cooling system

Publications (2)

Publication Number Publication Date
KR19980025221A true KR19980025221A (en) 1998-07-06
KR100290258B1 KR100290258B1 (en) 2001-05-15

Family

ID=37517855

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980011389A KR100290258B1 (en) 1998-04-01 1998-04-01 Direct cooling type slurry ice storage cooling system

Country Status (1)

Country Link
KR (1) KR100290258B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046566A1 (en) * 2005-10-21 2007-04-26 T1 Engineering Co., Ltd. Ice making unit of thermal storage medium and thermal storage system equipped thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046566A1 (en) * 2005-10-21 2007-04-26 T1 Engineering Co., Ltd. Ice making unit of thermal storage medium and thermal storage system equipped thereof

Also Published As

Publication number Publication date
KR100290258B1 (en) 2001-05-15

Similar Documents

Publication Publication Date Title
CN100419349C (en) Refrigeration system
US8109107B2 (en) Mixed-phase regulator
CN100538221C (en) A kind of dynamic ice cold-storage method and equipment
EP0603182A1 (en) Liquid chiller
CN100547323C (en) Have thermal energy storage and cooling system that secondary refrigerant is isolated
CN107289655A (en) Cold chain and cold-storage coupled system
CN201569202U (en) Curtain falling type refrigeration controlling device for chiller
KR100881328B1 (en) Heat Pump apparatus
US4970869A (en) Tube type freezing unit and in-tube freezing method
KR19980025221A (en) Direct cooling fluid ice storage heat storage cooling system
CN102042728B (en) Method and device for preparing fluidized ice
CN110294505B (en) Freezing seawater desalination system based on solar energy and LNG cold energy
CN1044154C (en) Integral screw rod compression refrigerating ice making machine set
JP3126424B2 (en) Heat source equipment using a heating tower
CN202303719U (en) Supercooled water type direct-current frequency-conversion ice-storage multi-connected air-conditioner
JP3094781B2 (en) Vacuum ice making equipment
CN115371292B (en) Full-liquid refrigerating system for separating and purifying return gas oil and draining defrosting return liquid
CN201277771Y (en) System for vacuum producing binary ice by heat pump in energy saving manner
CN201181067Y (en) Dynamic ice cold accumulation equipment
Gladis et al. Ice crystal slurry TES system using the orbital rod evaporator
JP2709485B2 (en) Direct contact cooling system
CN215765904U (en) Novel high-efficient piece ice machine
WO2019070154A1 (en) Device for low-temperature cooling
JPH0359335A (en) Thermal accumulation system
CN210861865U (en) Refrigerating system of flooded direct-cooling ice maker

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040302

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee