KR19980020236A - Method of manufacturing thin film transistor - Google Patents

Method of manufacturing thin film transistor Download PDF

Info

Publication number
KR19980020236A
KR19980020236A KR1019960038657A KR19960038657A KR19980020236A KR 19980020236 A KR19980020236 A KR 19980020236A KR 1019960038657 A KR1019960038657 A KR 1019960038657A KR 19960038657 A KR19960038657 A KR 19960038657A KR 19980020236 A KR19980020236 A KR 19980020236A
Authority
KR
South Korea
Prior art keywords
semiconductor layer
electrode
thin film
film transistor
film
Prior art date
Application number
KR1019960038657A
Other languages
Korean (ko)
Other versions
KR100268298B1 (en
Inventor
김정현
이재균
Original Assignee
구자홍
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자 주식회사 filed Critical 구자홍
Priority to KR1019960038657A priority Critical patent/KR100268298B1/en
Publication of KR19980020236A publication Critical patent/KR19980020236A/en
Application granted granted Critical
Publication of KR100268298B1 publication Critical patent/KR100268298B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

차세대 표시장치로 각광받고 있는 액정표시장치를 제조할 때, 문제가 되는 것 중의 하나는 박막트랜지스터의 제조수율이 낮다는 것이다. 이러한 박막트랜지스터의 제조 수율이 낮은 이유는 박막트랜지스터를 제조할 때, 마스크 공정이 대단히 많다는 것에 있다. 그래서, 마스크공정이 적을수록 박막트랜지스터의 제조수율을 높일 수 있는 것이다.One of the problems in manufacturing a liquid crystal display device, which is in the spotlight as a next generation display device, is that the production yield of the thin film transistor is low. The reason why the manufacturing yield of the thin film transistor is low is that there are a lot of mask processes when manufacturing the thin film transistor. Therefore, the less the mask process, the higher the production yield of the thin film transistor.

본 발명은 액정표시장치에서 사용되는 상기 박막트랜지스터를 제조함에 있어서, 박막트랜지스터를 보호하는 차광막과 액정에 전압을 인가하는 화소전극을 동시에 패터닝하고, 반도체층을 식각하면서 불순물 반도체층을 동시에 형성하는 방법으로써 박막트랜지스터의 마스크 공정 수를 줄일 수 있는 제조방법을 나타내고, 그 제조방법에 의해 제조되는 박막트랜지스터의 구조를 나타낸 것이다.According to the present invention, in manufacturing the thin film transistor used in a liquid crystal display, a method of simultaneously patterning a light blocking film protecting a thin film transistor and a pixel electrode applying a voltage to the liquid crystal and etching the semiconductor layer to simultaneously form an impurity semiconductor layer As a result, a manufacturing method capable of reducing the number of mask processes of the thin film transistor is illustrated, and the structure of the thin film transistor manufactured by the manufacturing method is illustrated.

Description

박막트랜지스터의 제조방법Method of manufacturing thin film transistor

도 1은 액정표시장치의 박막트랜지스터 기판을 나타낸 평면도이다.1 is a plan view illustrating a thin film transistor substrate of a liquid crystal display device.

도 2은 액정표시장치의 화소부를 나타낸 단면도이다.2 is a cross-sectional view illustrating a pixel part of a liquid crystal display device.

도 3은 액정표시장치에서 사용되는 종래의 박막트랜지스터 기판을 제작하는 공정을 나타낸 단면도이다.3 is a cross-sectional view illustrating a process of fabricating a conventional thin film transistor substrate used in a liquid crystal display.

도 4는 액정표시장치에서 사용되는 본 발명의 박막트랜지스터 기판을 제작하는 공정을 나타낸 단면도이다.4 is a cross-sectional view illustrating a process of manufacturing a thin film transistor substrate of the present invention used in a liquid crystal display device.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

11 : 게이트주사선12 : 신호선11: gate scan line 12: signal line

13 : 화소전극14 : 박막트랜지스터13 pixel electrode 14 thin film transistor

21 : 공통전극22 : 액정21 common electrode 22 liquid crystal

31 : 기판32 : 차광막(금속)31 substrate 32 light shielding film (metal)

33 : 드레인전극34 : 소스전극33 drain electrode 34 source electrode

35 : 불순물반도체층36 : 저항감소용 금속층35 impurity semiconductor layer 36 metal layer for resistance reduction

37 : 제1절연막38 : 게이트전극(금속)37: first insulating film 38: gate electrode (metal)

39 : 반도체채널층40 : 게이트절연막39: semiconductor channel layer 40: gate insulating film

101 : 기판102 : ITO101: substrate 102: ITO

103 : 금속104 : 제1절연막103: metal 104: first insulating film

105 : 소스전극106 : 불순물반도체층105: source electrode 106: impurity semiconductor layer

107 : 반도체채널층108 : 제2절연막107: semiconductor channel layer 108: second insulating film

109 : 게이트전극110 : 드레인전극109: gate electrode 110: drain electrode

[발명의 상세한 설명]Detailed description of the invention

[발명의 목적][Purpose of invention]

본 발명의 목적은 액정표시장치에서 사용되는 박막트랜지스터기판을 제조하는 데 있어서, 종래보다 마스크 수를 증가시키지 않고 저(低)저항 배선의 기판을 제조하는 것이다.It is an object of the present invention to manufacture a thin film transistor substrate for use in a liquid crystal display device, and to manufacture a substrate of low resistance wiring without increasing the number of masks in the prior art.

[발명이 속하는 기술분야 및 그 분야의 종래기술][Technical Field to which the Invention belongs and Prior Art in the Field]

현재 표시장치로써 가장 많이 사용되고 있는 CRT 브라운관은 색상구현이 쉽고, 동작속도가 빨라 TV와 컴퓨터모니터를 비롯한 디스플레이 장치로서 각광을 받아 왔다. 그러나, CRT 브라운관은 전자총과 화면 사이의 거리를 어느정도 확보해야 하는 구조적 특성으로 인하여 두께가 두꺼울 뿐만 아니라, 전력소비가 크고, 게다가 무게도 상당히 무거워 휴대성이 떨어진다는 단점이 있다.CRT CRT, which is the most widely used display device, has been spotlighted as a display device including TV and computer monitor because of its easy color and fast operation speed. However, the CRT CRT has a disadvantage in that it is not only thick, due to the structural characteristics of securing a certain distance between the electron gun and the screen, but also has a large power consumption, and is also very heavy in weight, resulting in poor portability.

상술한 CRT 브라운관의 단점을 극복하고자 여러 가지 다양한 표시장치가 고안되고 있는데, 그 중 가장 실용화 되어 있는 장치가 바로 액정표시장치이다.In order to overcome the disadvantages of the CRT CRT described above, a variety of display devices have been devised, the most practical of which is a liquid crystal display device.

액정표시장치는 CRT 브라운관에 비해 화면이 어둡고 동작속도가 다소 느리지만, 전자총과 같은 장치를 갖추지 않아도 각각의 화소를 동일한 평면 상에서 주사되는 신호에 따라 동작시킬 수 있으므로, 얇은 두께로 제작될 수 있어 장차 벽걸이 TV와 같은 초박형 표시장치도 사용될 수 있다. 뿐만 아니라, 액정표시장치는 무게가 가볍고, 전력소비도 CRT 브라운관에 비해 상당히 적어 배터리로 동작하는 노트북 컴퓨터의 디스플레이로 사용되는 등, 휴대용 표시장치로서 가장 적합하다는 평도 받고 있다.LCD displays have a darker screen and somewhat slower operating speeds than CRT CRTs.However, even without a device such as an electron gun, each pixel can be operated according to the signal scanned on the same plane. Ultra-thin displays such as wall-mounted TVs can also be used. In addition, the liquid crystal display device has a reputation for being the most suitable as a portable display device, such as being used as a display of a battery-operated notebook computer because it is light in weight and consumes significantly less than a CRT CRT.

상술한 바와 같이 차세대 표시장치로서 각광받고 있는 액정표시장치는 도 1과 같이 기판에 복수개의 주사선(11)과 복수개의 신호선(12)이 매트릭스형태로 교차하여 설치되어 있고, 그 교차부에는 박막트랜지스터(14)(이하 TFT)와 화소가 설치된 구조로 되어 있다. 또, 그 화소는 도 2에 나타낸 바와 같이 TFT의 소스전극에서 연장된 화소전극(13)과 상기 화소전극과 대향하여 설치된 공통전극(21), 그리고, 상기 화소전극과 공통전극 사이에 액정(22)이 주입된 구조로 되어있다.As described above, the liquid crystal display device, which is in the spotlight as a next generation display device, is provided with a plurality of scan lines 11 and a plurality of signal lines 12 intersecting in a matrix form on a substrate, as shown in FIG. (14) (hereinafter TFT) and a pixel are provided. As shown in Fig. 2, the pixel includes a pixel electrode 13 extending from the source electrode of the TFT, a common electrode 21 provided to face the pixel electrode, and a liquid crystal 22 between the pixel electrode and the common electrode. ) Is injected structure.

그리고, 상기 TFT는 주사선에서 분기한 게이트전극(38)과 신호선에서 분기한 드레인전극(33) 및 화소전극과 연결된 소스전극(34) 그리고, 드레인전극과 소스전극 사이에 형성된 반도체층(39)이 구성된 구조로 되어있다. 이 TFT는 주사선을 통해 게이트전극에 전압이 가해지면, 신호선에 흐르는 데이터전압이 드레인전극과 소스전극 사이의 반도체층을 통하여 화소전극에 인가되는 원리로 동작한다.The TFT includes a gate electrode 38 branched from a scan line, a drain electrode 33 branched from a signal line, a source electrode 34 connected to a pixel electrode, and a semiconductor layer 39 formed between the drain electrode and the source electrode. It is composed of a structure. When the voltage is applied to the gate electrode through the scan line, the TFT operates on the principle that the data voltage flowing through the signal line is applied to the pixel electrode through the semiconductor layer between the drain electrode and the source electrode.

그런데, 상술한 TFT는 외부 빛에 의해 발생하는 광전자로 인해 화소의 오동작이 발생할 수도 있다. 그래서, TFT가 형성된 부분의 기판에는 외부 광원으로부터 TFT를 보호할 수 있도록 매트릭스 형태 등의 적당한 패턴으로 차광막(32)이 구성되는 경우가 많다.However, in the above-described TFT, malfunction of the pixel may occur due to photoelectrons generated by external light. Therefore, the light shielding film 32 is often formed in the board | substrate of the part in which TFT was formed in the suitable pattern, such as a matrix form, so that TFT may be protected from an external light source.

이러한 TFT를 제조하기 위하여 종래에는 다음과 같은 공정을 거쳤다.In order to manufacture such TFTs, the following processes have been conventionally performed.

먼저 기판(31)에 금속을 증착하고 마스크공정을 통해 차광막(32)을 형성한다. 이 차광막은 TFT기판을 완성한 후, 외부에서 흐르는 빛을 차단하여 광전류나 열전류가 흘러 발생하는 TFT의 오동작을 막는 역할을 한다(도 3a).First, a metal is deposited on the substrate 31 and a light shielding film 32 is formed through a mask process. After blocking the TFT substrate, the light shielding film blocks light flowing from the outside to prevent malfunction of the TFT generated by the flow of the photocurrent or the thermal current (FIG. 3A).

상기 공정에서 차광막을 형성한 후, 상기 차광막을 덮도록 기판 전면에 제1절연막(37)을 증착하고, 상기 제1절연막 위에 ITO(Indium Tin Oxide)를 증착한다. 상기 제1절연막 위에 증착된 ITO를 패터닝하여 소스(34)와 드레인전극(33)을 형성한다. 이때, 소스전극에 해당하는 ITO를 연장함으로써 소스전극과 화소전극(13)을 동시에 형성한다(도 3b).After the light shielding film is formed in the process, a first insulating film 37 is deposited on the entire surface of the substrate to cover the light blocking film, and ITO (Indium Tin Oxide) is deposited on the first insulating film. The source 34 and the drain electrode 33 are formed by patterning the ITO deposited on the first insulating layer. At this time, the source electrode and the pixel electrode 13 are simultaneously formed by extending ITO corresponding to the source electrode (FIG. 3B).

상기 공정 후, n+ 아몰퍼스실리콘(이하 n+ a-Si)을 증착하고, 상기 소스와 드레인전극의 형태와 동일한 마스크를 사용하여 불순물반도체층(35)을 형성한다(도 3c).After the above process, n + amorphous silicon (hereinafter n + a-Si) is deposited and an impurity semiconductor layer 35 is formed using the same mask as that of the source and drain electrodes (FIG. 3C).

상기 공정중, 드레인전극의 완성 후나 불순물반도체층 완성 후에 데이터배선의 저항 감소용 금속층을(36) 따로 패터닝한다(도 3d). 그 이유는 ITO가 금속보다 저항이 커 액정표시장치의 작동 시, 신호지연을 일으킬 수 있기 때문이다. ITO로 배선을 형성하는 이유는 액정표시장치의 광투과율을 향상시키기 위한 것이지만, 상술한 것처럼 ITO는 금속에 비해 저항이 크므로 대형패널을 제조할 때에는 드레인배선에 금속을 덧붙여 형성하는 것이 좋다.During the process, after the completion of the drain electrode or the completion of the impurity semiconductor layer, the metal layer 36 for reducing the resistance of the data wiring is separately patterned (FIG. 3D). This is because ITO has a higher resistance than metal and may cause signal delay when the LCD is operated. The reason for forming the wiring with ITO is to improve the light transmittance of the liquid crystal display device. However, as described above, since ITO has a higher resistance than metal, it is preferable to form a metal additional to the drain wiring when manufacturing a large panel.

불순물반도체층의 형성이 끝나면, 그 위에 a-Si를 증착하고 패터닝하여 반도체 패널층(39)을 형성한다(도 3e).After formation of the impurity semiconductor layer, a-Si is deposited and patterned thereon to form a semiconductor panel layer 39 (FIG. 3E).

상기 공정 후, SiNx 등의 게이트절연막(40)과 금속을 연속 증착하고 금속을 소정의 형상으로 패터닝하여 게이트전극(38)을 형성한다(도 3f). 그리고, 도면에는 도시되지 않았으나 상기 게이트절연막을 패터닝하여 드레인전극에서 연장된 패드부를 노출시켜 TFT 기판을 완성시킨다.After the above process, the gate insulating film 40 such as SiNx and the like are continuously deposited and the metal is patterned into a predetermined shape to form the gate electrode 38 (FIG. 3F). Although not shown in the drawing, the gate insulating film is patterned to expose the pad portion extending from the drain electrode, thereby completing the TFT substrate.

[발명이 이루고자 하는 기술적 과제][Technical problem to be achieved]

상기 TFT기판에서 데이터배선 및 드레인전극과 소스전극을 이루는 ITO는 금속에 비해 저항이 매우 높다. 그러므로, 상기 TFT로 제조된 액정패널은 구동될 때 데이터배선에 흐르는 신호전압이 지연(delay)될 가능성이 매우 높다. 그래서, 되도록 데이터배선 및 드레인전극과 소스전극에는 금속과 같은 低저항 물질을 채용하는 것이 좋다.In the TFT substrate, ITO, which forms the data wiring, the drain electrode, and the source electrode, has a much higher resistance than metal. Therefore, the liquid crystal panel made of the TFT is very likely to delay the signal voltage flowing to the data wiring when driven. Therefore, a resistive material such as metal is preferably used for the data wiring, the drain electrode, and the source electrode.

그러나, 저항성이 낮은 금속을 상기 TFT의 드레인전극과 소스전극 및 데이터배선 등에 채용하더라도 화소전극은 ITO로 형성해야 하므로, TFT 제조공정의 마스크 수가 증가한다는 단점이 있다.However, even if a low-resistance metal is employed in the drain electrode, the source electrode and the data wiring of the TFT, the pixel electrode must be formed of ITO, so that the number of masks in the TFT manufacturing process increases.

상기 TFT기판을 제조하는데 있어서, 필연적으로 수행되는 마스크공정 또는, 패터닝 공정은 다음과 같은 단계로 수행된다.In manufacturing the TFT substrate, a mask process or a patterning process, which is necessarily performed, is performed in the following steps.

우선 박막 물질을 증착하고, 포토레지스트를 상기 박막 물질의 전면에 도포한 다음, 원하는 패턴이 그려진 마스크로 덮는다. 그리고, 상기 마스크가 덮인 기판에 자외선을 노광하면 상기 마스크에 가려진 부분의 포토레지스트와 가려지지 않은 부분의 포토레제스트 사이에는 그 분자구조가 달라지게 된다.A thin film material is first deposited, a photoresist is applied to the entire surface of the thin film material, and then covered with a mask on which the desired pattern is drawn. When the ultraviolet ray is exposed to the mask-covered substrate, the molecular structure is changed between the photoresist of the portion covered by the mask and the photoresist of the portion not covered.

상기 노광 공정 후 현상 공정을 거칠 때, 도포된 포토레지스트의 종류에 따라 마스크에 가려진 부분의 포토레지스트가 제거되기도 하고, 마스크에 가려지지 않은 부분의 포토레지스트가 제거되기도 한다. 이 때, 마스크에 가려진 부분이 제거되는 포토레지스트를 네거티브(negative) 포토레지스트라고 하고, 마스크에 가려지지 않은 부분이 제거되는 포토레지스트를 포지티브(positive) 포토레지스트라고 한다.When the development step after the exposure step is performed, the photoresist of the part covered by the mask may be removed or the photoresist of the part not covered by the mask may be removed depending on the kind of the applied photoresist. At this time, the photoresist in which the part covered by the mask is removed is called a negative photoresist, and the photoresist in which the part not covered by the mask is removed is called a positive photoresist.

상기 형상공정 후, 에칭 단계를 거치면 상기 공정으로 인해 포토레지스트가 제거되어 노출된 부분의 박막 물질은 식각되므로, 박막물질로 구현하고자 했던 현상이 남게 된다. 그리고, 포토레지스트를 제거하는 공정을 거치게 되면, 하나의 마스크공정을 마치게 된다.After the shape process, after the etching step, the photoresist is removed due to the process, and thus the thin film material of the exposed portion is etched. When the photoresist is removed, one mask process is completed.

상술한 것처럼 마스크 공정은 상당한 복잡한 과정을 거치므로, 이 마스크 공정이 많을수록 TFT의 제조수율은 낮아지고, 마스크 공정이 적을수록 TFT의 제조수울은 상당히 높아지게 된다. 즉, 패터닝 공정은 TFT의 생산수율에 상당히 영향을 미치는 것이다.As described above, since the mask process undergoes a considerable complexity, the more the mask process, the lower the TFT manufacturing yield, and the lower the mask process, the higher the manufacturing yield of the TFT. In other words, the patterning process significantly affects the production yield of TFTs.

본 발명은 종래 공정의 마스크 공정 수를 늘리지 않으면서 배선에 금속을 사용하여 기판의 저항성이 낮은 기판을 제조하는 데에 그 목적이 있다.An object of the present invention is to manufacture a substrate having low resistivity of a substrate by using a metal for wiring without increasing the number of mask processes in the conventional process.

[발명의 구성 및 작용][Configuration and Function of Invention]

본 발명의 TFT제조방법은 도 4에 나타나 있다.The TFT manufacturing method of the present invention is shown in FIG.

[실시예 1]Example 1

기판(101) 위에 ITO(102)와 크롬(Cr) 등의 금속(103)을 차례로 증착한 후, 하나의 마스크로 차광막과 화소를 동시에 형성한다(도 4a). 또는 ITO을 증착하고 먼저 패터닝하여 차광막과 화소를 형성한 후, 금속을 증착하고 상기 먼저 패터닝된 ITO와 동일한 마스크로 패터닝하여 차광막과 화소를 2층으로 겹쳐 쌓아도 좋다.After depositing a metal 103 such as ITO 102 and chromium (Cr) on the substrate 101 in sequence, a light shielding film and a pixel are simultaneously formed with one mask (FIG. 4A). Alternatively, ITO may be deposited and patterned first to form a light shielding film and pixels, and then metal may be deposited and patterned with the same mask as the previously patterned ITO to stack the light shielding film and pixels in two layers.

상기 공정 후, 제1절연막(104)을 증착하고 상기 차광막을 도포하도록 패터닝하되 상기 화소는 덮지 않도록 패터닝한다. 이때, 상기 화소에 적층된 금속을 같이 에칭하여 화소에 해당하고 상기 기판 위에 증착된, ITO를 노출시킴으로써 화소전극을 형성한다(도 4b).After the process, the first insulating film 104 is deposited and patterned so as to apply the light shielding film, but not to cover the pixel. At this time, the metal stacked on the pixel is etched together to form a pixel electrode by exposing ITO, which corresponds to the pixel and is deposited on the substrate (FIG. 4B).

그리고, 금속과 n+ 아몰퍼스실리콘(이하 n+ a-Si)을 연속 증착하여 하나의 마스크로 소스전극(105)과 드레인전극(110) 및 불순물반도체층(106)을 동시에 형성한다(도 4c). 상기 소스전극과 드레인전극 및 불순물반도체층을 형성할 때, 금속을 먼저 증착하고 패터닝하여 소스전극과 드레인전극을 먼저 형성한 후, n+ a-Si을 증착하고 상기 소스전극 및 드레인전극과 동일한 마스크로 패터닝하여 불순물반도체층을 형성할 수 있다.Then, metal and n + amorphous silicon (hereinafter n + a-Si) are continuously deposited to form the source electrode 105, the drain electrode 110 and the impurity semiconductor layer 106 simultaneously with one mask (FIG. 4C). When forming the source electrode, the drain electrode and the impurity semiconductor layer, metal is first deposited and patterned to form a source electrode and a drain electrode first, and then n + a-Si is deposited and the same mask as the source electrode and the drain electrode is used. The impurity semiconductor layer may be formed by patterning.

상기 공정이 끝나면, 아몰퍼스실리콘(이하 a-Si)과 제2절연막 그리고, 게이트전극을 연속으로 증착하고 동일한 마스크로 에칭하여 반도체채널층(107)과 게이트절연막(108)과 게이트전극(109)을 형성한다(도 4d). 이 때, 소스, 드레인 상에 있는 불순물반도체층 반도체층과 같은 모양으로 애칭된다. 이 때, 때로는 상기 a-Si를 증착하고 소정의 형상으로 패터닝하여 a-Si와 불순물반도체층 일부를 식각하여 반도체채널층을 먼저 형성한 후, 상기 반도체채널층 위에 제2절연막을 증착하고, 상기 반도체채널층과 동일한 마스크로 패터닝하여 게이트절연막을 형성하고, 그 위에 금속을 증착하고 패터닝하여 게이트전극을 형성할 수도 있다.After the above process, the amorphous silicon (hereinafter referred to as a-Si), the second insulating film, and the gate electrode are successively deposited and etched with the same mask to form the semiconductor channel layer 107, the gate insulating film 108, and the gate electrode 109. To form (FIG. 4D). At this time, it is etched in the same shape as the impurity semiconductor layer semiconductor layer on a source and a drain. At this time, sometimes the a-Si is deposited and patterned into a predetermined shape to etch a-Si and a part of the impurity semiconductor layer to form a semiconductor channel layer first, and then a second insulating film is deposited on the semiconductor channel layer. The gate insulating layer may be formed by patterning the same mask as the semiconductor channel layer, and the gate electrode may be formed by depositing and patterning a metal thereon.

상기 공정이 모두 끝나면 액정표시장치에서 사용되는 TFT기판을 완성하게 된다.After the above steps, the TFT substrate used in the liquid crystal display device is completed.

[발명의 효과][Effects of the Invention]

본 발명은 차광막과 화소전극을 하나의 마스크로 형성하고, 불순물반도체층이 소스전극과 드레인전극의 패터닝 공정과 반도체채널층을 형성하는 공정에 형성되므로 적어도 마스크 공정 하나를 줄이는 효과가 있다.According to the present invention, since the light blocking film and the pixel electrode are formed in one mask, and the impurity semiconductor layer is formed in the process of patterning the source electrode and the drain electrode and in the process of forming the semiconductor channel layer, there is an effect of reducing at least one mask process.

뿐만 아니라 상기 본 발명의 TFT는 데이터배선과 드레인전극 및 소스전극이 금속으로 되어 있기 때문에 데이터배선과 드레인전극 및 소스전극에 ITO를 채용한 종래의 TFT보다 기판의 저항성이 낮다. 그러므로, TFT기판에서 나타나는 신호저압의 지연현상(delay)이 종래의 TFT기판에 비해 줄어든다. 또한, 데이터배선을 좁게하여 화소전극을 넓힘으로써 액정표시장치의 개구율이 높아지는 효과도 있다.In addition, the TFT of the present invention has a lower resistivity of the substrate than a conventional TFT employing ITO for the data wiring, the drain electrode, and the source electrode because the data wiring, the drain electrode, and the source electrode are made of metal. Therefore, the delay of signal low voltage appearing in the TFT substrate is reduced as compared with the conventional TFT substrate. In addition, the aperture ratio of the liquid crystal display device can be increased by narrowing the data wiring to widen the pixel electrode.

즉 본 발명의 제조방법에 의하면, 배선이 ITO로 되어있는 기판을 제조하는 것과 비교하여 低저항 TFT기판을 마스크공정 수를 늘리지 않고도 제조할 수 있다.In other words, according to the manufacturing method of the present invention, the resistive TFT substrate can be manufactured without increasing the number of mask steps as compared with manufacturing a substrate having wiring of ITO.

Claims (4)

기판과 ;Substrate; 상기 기판 위 일부에 투명도전막과 금속이 2겹으로 적층되어 형성된 차광막과 ;A light shielding film formed by stacking a transparent conductive film and a metal in two layers on a portion of the substrate; 상기 화소전극 위 상기 차광막과 같은 층에 형성된 화소전극과 ;A pixel electrode formed on the pixel electrode in the same layer as the light shielding film; 상기 화소전극 위 일부와 상기 차광막 위를 덮는 제1절연막과 ;A first insulating layer covering a portion of the pixel electrode and the light blocking layer; 상기 차광막 위를 덮는 상기 제1절연막의 한쪽 단차부 위에 소정의 형상으로 패터닝된 드레인전극과 ;A drain electrode patterned in a predetermined shape on one step portion of the first insulating film covering the light blocking film; 상기 드레인전극과 소정의 거리를 두고, 상기 차광막 위를 덮는 상기 제1절연막의 한쪽 단차부 위와 상기 투명도전막이 노출되어 있는 화소전극 위 일부에 걸쳐 형성된 소스전극과 ;A source electrode formed at a predetermined distance from the drain electrode and over a portion of one step of the first insulating film covering the light blocking film and a part of the pixel electrode where the transparent conductive film is exposed; 상기 소스전극과 드레인전극 위의 일부에 각각 형성된 불순물반도체층과 ;An impurity semiconductor layer formed on a portion of the source electrode and the drain electrode, respectively; 상기 차광막 중심부의 상기 제1절연막 위와 상기 불순물반도체층 위에 적층된 반도체층과 ;A semiconductor layer stacked on the first insulating film at the center of the light shielding film and on the impurity semiconductor layer; 상기 반도체층과 동일한 마스크로 상기 반도체층 위에 적층된 게이트절연막 및 게이트전극이 형성된 구조의 박막트랜지스터.A thin film transistor having a gate insulating layer and a gate electrode stacked on the semiconductor layer with the same mask as the semiconductor layer. 1항에 있어서 상기 투명도전막으로 ITO를 채용한 박박트랜지스터.The thin film transistor according to claim 1, wherein ITO is employed as the transparent conductive film. 기판 위에 제1금속과 투명도전막을 연속증착하여 동일한 마스크로 차광막과 화소전극을 형성한 단계와 ;Continuously depositing a first metal and a transparent conductive film on the substrate to form a light shielding film and a pixel electrode with the same mask; 제1절연막을 도포하고, 에칭하여 상기 화소전극위에 적층된 제1금속을 일부 제거하는 단계와 ;Applying and etching a first insulating film to remove a portion of the first metal deposited on the pixel electrode; 상기 제1절연막 위에 제2금속과 불순물반도체를 연속증착하여 동일한 마스크를 사용하여 소스전극과 드레인전극 및 불순물반도체층을 차례로 형성하는 단계와 ;Sequentially depositing a second metal and an impurity semiconductor on the first insulating film to sequentially form a source electrode, a drain electrode, and an impurity semiconductor layer using the same mask; 상기 불순물반도체층 위에 반도체와 제2절연막과 제3금속을 연속증착하는 단계와 ;Continuously depositing a semiconductor, a second insulating film, and a third metal on the impurity semiconductor layer; 상기 반도체와 상기 제2절연막과 상기 제3금속을 동일한 마스크로 애칭하여 반도체층과 게이트절연막과 게이트전극을 형성하는 단계로 된 박막트랜지스터의 제조방법.Forming a semiconductor layer, a gate insulating film, and a gate electrode by nicking the semiconductor, the second insulating film, and the third metal with the same mask. 3항에 있어서 상기 반도체층을 형성할 때, 소스전극과 드레인전극 위의 불순물반도체 일부가 동시에 애칭되는 박막트랜지스터의 제조방법.The method of claim 3, wherein a part of the impurity semiconductor on the source electrode and the drain electrode is simultaneously etched when the semiconductor layer is formed.
KR1019960038657A 1996-09-06 1996-09-06 Manufacturing method of thin-film transistor KR100268298B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960038657A KR100268298B1 (en) 1996-09-06 1996-09-06 Manufacturing method of thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960038657A KR100268298B1 (en) 1996-09-06 1996-09-06 Manufacturing method of thin-film transistor

Publications (2)

Publication Number Publication Date
KR19980020236A true KR19980020236A (en) 1998-06-25
KR100268298B1 KR100268298B1 (en) 2000-10-16

Family

ID=19472966

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960038657A KR100268298B1 (en) 1996-09-06 1996-09-06 Manufacturing method of thin-film transistor

Country Status (1)

Country Link
KR (1) KR100268298B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710142B1 (en) * 2000-08-30 2007-04-20 엘지.필립스 엘시디 주식회사 Liquid Crystal Device Display with the line of least resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285464A (en) * 1986-06-03 1987-12-11 Matsushita Electric Ind Co Ltd Thin-film transistor array substrate and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710142B1 (en) * 2000-08-30 2007-04-20 엘지.필립스 엘시디 주식회사 Liquid Crystal Device Display with the line of least resistance

Also Published As

Publication number Publication date
KR100268298B1 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
WO2017166341A1 (en) Method for manufacturing tft substrate and manufactured tft substrate
WO2017024640A1 (en) Array substrate and manufacturing method therefor
CN107768386B (en) TFT array substrate, manufacturing method thereof and liquid crystal display panel
KR102318054B1 (en) TFT substrate and manufacturing method thereof
US9281325B2 (en) Array substrate, manufacturing method thereof and display device
US6500702B2 (en) Method for manufacturing thin film transistor liquid crystal display
WO2021031532A1 (en) Touch array substrate and preparation method thereof
KR20040031370A (en) Liquid Crystal Display Panel And Fabricating Method Thereof
US20190333945A1 (en) Array substrate and manufacturing method thereof
US11894386B2 (en) Array substrate, manufacturing method thereof, and display panel
JP3706043B2 (en) Manufacturing method of matrix substrate for liquid crystal
CN113467145A (en) Array substrate, manufacturing method and display panel
KR100205869B1 (en) A stagged thin film transistor and a method of fabricating the same
KR20000003173A (en) Method of forming tft(thin film transistor) lcd(liquid crystal display)
KR100511353B1 (en) Fabrication method of liquid crystal display device and liquid crystal display device fabticated by the same
KR100190035B1 (en) Fabrication method of liquid crystal display device
KR100394028B1 (en) Liquid crystal display device and method for manufacturing the same
KR19980020236A (en) Method of manufacturing thin film transistor
CN106298808B (en) Array substrate, manufacturing method thereof and display device
KR100769185B1 (en) Liquid Crystal Display Device And Method For Fabricating The Same
JPH03132626A (en) Semiconductor device and production of semiconductor device
KR100268299B1 (en) Stagger type thin-film transistor with iop structure
KR100259284B1 (en) Data line structure of lcd
KR100640985B1 (en) Liquid crystal display and method for fabricating the same
US6842201B2 (en) Active matrix substrate for a liquid crystal display and method of forming the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130619

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20150629

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 17

EXPY Expiration of term