KR102687133B1 - Waterproof coating composition with improving anti-contamination and adhesion strength, and Method for Waterproof and Coating Using the Same - Google Patents
Waterproof coating composition with improving anti-contamination and adhesion strength, and Method for Waterproof and Coating Using the Same Download PDFInfo
- Publication number
- KR102687133B1 KR102687133B1 KR1020240031607A KR20240031607A KR102687133B1 KR 102687133 B1 KR102687133 B1 KR 102687133B1 KR 1020240031607 A KR1020240031607 A KR 1020240031607A KR 20240031607 A KR20240031607 A KR 20240031607A KR 102687133 B1 KR102687133 B1 KR 102687133B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- composition
- nano
- coating composition
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 86
- 239000008199 coating composition Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 21
- 239000011248 coating agent Substances 0.000 title description 59
- 238000011109 contamination Methods 0.000 title description 10
- 239000000203 mixture Substances 0.000 claims abstract description 104
- 229920005989 resin Polymers 0.000 claims abstract description 70
- 239000011347 resin Substances 0.000 claims abstract description 70
- 239000000919 ceramic Substances 0.000 claims abstract description 59
- 239000003054 catalyst Substances 0.000 claims abstract description 35
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 28
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 28
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000002131 composite material Substances 0.000 claims abstract description 27
- 229910000077 silane Inorganic materials 0.000 claims abstract description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 22
- 238000004078 waterproofing Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 17
- 239000001023 inorganic pigment Substances 0.000 claims description 12
- -1 polytetrafluoroethylene Polymers 0.000 claims description 12
- 239000004576 sand Substances 0.000 claims description 12
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- 239000000654 additive Substances 0.000 claims description 11
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 10
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 claims description 9
- 239000002518 antifoaming agent Substances 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 239000002270 dispersing agent Substances 0.000 claims description 8
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 claims description 8
- 239000011398 Portland cement Substances 0.000 claims description 7
- XPBBUZJBQWWFFJ-UHFFFAOYSA-N fluorosilane Chemical compound [SiH3]F XPBBUZJBQWWFFJ-UHFFFAOYSA-N 0.000 claims description 7
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000010422 painting Methods 0.000 claims description 7
- 239000000454 talc Substances 0.000 claims description 7
- 229910052623 talc Inorganic materials 0.000 claims description 7
- 239000004813 Perfluoroalkoxy alkane Substances 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 claims description 6
- 239000004408 titanium dioxide Substances 0.000 claims description 6
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 5
- BDKLKNJTMLIAFE-UHFFFAOYSA-N 2-(3-fluorophenyl)-1,3-oxazole-4-carbaldehyde Chemical compound FC1=CC=CC(C=2OC=C(C=O)N=2)=C1 BDKLKNJTMLIAFE-UHFFFAOYSA-N 0.000 claims description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 5
- 230000000996 additive effect Effects 0.000 claims description 5
- XQKKWWCELHKGKB-UHFFFAOYSA-L calcium acetate monohydrate Chemical compound O.[Ca+2].CC([O-])=O.CC([O-])=O XQKKWWCELHKGKB-UHFFFAOYSA-L 0.000 claims description 5
- 229940067460 calcium acetate monohydrate Drugs 0.000 claims description 5
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 claims description 5
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 claims description 5
- 235000017281 sodium acetate Nutrition 0.000 claims description 5
- 229940087562 sodium acetate trihydrate Drugs 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- YZYKBQUWMPUVEN-UHFFFAOYSA-N zafuleptine Chemical compound OC(=O)CCCCCC(C(C)C)NCC1=CC=C(F)C=C1 YZYKBQUWMPUVEN-UHFFFAOYSA-N 0.000 claims description 5
- PGQKIBSRRZXSGW-UHFFFAOYSA-N FC(C(C(C(C(C(C(F)(F)[Si](OC)(OC)OC)(F)F)(F)F)(F)F)(F)F)(F)F)(CCCCCCC(F)(F)F)F Chemical compound FC(C(C(C(C(C(C(F)(F)[Si](OC)(OC)OC)(F)F)(F)F)(F)F)(F)F)(F)F)(CCCCCCC(F)(F)F)F PGQKIBSRRZXSGW-UHFFFAOYSA-N 0.000 claims description 4
- 239000002033 PVDF binder Substances 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- MLXDKRSDUJLNAB-UHFFFAOYSA-N triethoxy(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)silane Chemical compound CCO[Si](OCC)(OCC)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F MLXDKRSDUJLNAB-UHFFFAOYSA-N 0.000 claims 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 11
- 230000001976 improved effect Effects 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 81
- 238000010276 construction Methods 0.000 description 23
- 238000002360 preparation method Methods 0.000 description 16
- 230000007423 decrease Effects 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 239000004567 concrete Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 230000008901 benefit Effects 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- 239000010865 sewage Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003670 easy-to-clean Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- YOBOXHGSEJBUPB-MTOQALJVSA-N (z)-4-hydroxypent-3-en-2-one;zirconium Chemical compound [Zr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O YOBOXHGSEJBUPB-MTOQALJVSA-N 0.000 description 1
- KKYDYRWEUFJLER-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,10,10,10-heptadecafluorodecyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCC(F)(F)F KKYDYRWEUFJLER-UHFFFAOYSA-N 0.000 description 1
- XBIUWALDKXACEA-UHFFFAOYSA-N 3-[bis(2,4-dioxopentan-3-yl)alumanyl]pentane-2,4-dione Chemical compound CC(=O)C(C(C)=O)[Al](C(C(C)=O)C(C)=O)C(C(C)=O)C(C)=O XBIUWALDKXACEA-UHFFFAOYSA-N 0.000 description 1
- DUFCMRCMPHIFTR-UHFFFAOYSA-N 5-(dimethylsulfamoyl)-2-methylfuran-3-carboxylic acid Chemical compound CN(C)S(=O)(=O)C1=CC(C(O)=O)=C(C)O1 DUFCMRCMPHIFTR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- PDTOCHVWGSIHQX-UHFFFAOYSA-K aluminum triacetate tetrahydrate Chemical compound O.O.O.O.C(C)(=O)[O-].[Al+3].C(C)(=O)[O-].C(C)(=O)[O-] PDTOCHVWGSIHQX-UHFFFAOYSA-K 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/45—Anti-settling agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/47—Levelling agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/64—Insulation or other protection; Elements or use of specified material therefor for making damp-proof; Protection against corrosion
- E04B1/644—Damp-proof courses
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/66—Sealings
- E04B1/665—Sheets or foils impervious to water and water vapor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Architecture (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Paints Or Removers (AREA)
Abstract
본 발명은 복합실란과 금속산화물졸을 반응시 반응 온도 및 촉매량의 제어를 통해 분자량이 조절된 나노 세라믹 수지와 추가 조성을 한정함으로써 내오염성 및 부착강도가 향상된 방수도장 조성물 및 방수도장공법을 개시한다.The present invention discloses a nano-ceramic resin whose molecular weight is controlled through control of reaction temperature and catalyst amount when reacting a composite silane and a metal oxide sol, and a waterproof coating composition and waterproof coating method with improved stain resistance and adhesion strength by limiting the additional composition.
Description
본 발명은 내오염성 및 부착강도가 향상된 방수도장 조성물 및 방수도장공법에 관한 것이다. The present invention relates to a waterproof coating composition and a waterproof coating method with improved stain resistance and adhesion strength.
강구조물 및 콘크리트구조물로 이루어지는 대다수의 토목 구조물은 외부에 노출되어 태양광선, 눈, 비 등 자연환경으로부터 영향을 받게 된다. 또한 수처리 콘크리트구조물의 내부는 정기적으로 항을 비워 물청소 및 보수를 진행하게 된다. 이러한 구조물의 표면에 유기계 도장재를 사용 할 경우 도장표면이 오염되거나 탈락되고 구조물을 보호할 수 없게 되어 내구성이 저하되며, 이로 인해 지속적으로 재도장해야 하는 번거로움과 추가비용의 발생으로 인한 경제적인 손실이 유발되고 있다. The majority of civil engineering structures made of steel and concrete structures are exposed to the outside and are affected by the natural environment such as sunlight, snow, and rain. In addition, the interior of the water treatment concrete structure is regularly emptied for water cleaning and repair. When organic coating materials are used on the surface of such structures, the painted surface becomes contaminated or falls off and becomes unable to protect the structure, which reduces durability and causes economic losses due to the inconvenience of continuous recoating and additional costs. This is being triggered.
따라서 상기와 같은 문제점을 개선할 수 있는 새로운 기술 개발이 절실한 실정이다.Therefore, there is an urgent need to develop new technologies that can improve the above problems.
이에 본 출원인은 지속적인 연구를 수행하였고 특허문헌1을 통해 복합실란을 이용한 나노 세라믹 수지를 갖는 방수도장 조성물 및 이를 이용한 방수도장공법을 출원한 바 있다. 상기 방수도장 조성물은 내약품성이 개선되고 고경도 특성을 갖는 방수도장이 가능하다는 이점이 있다. 또한, 특허문헌2에서는 복합실란을 이용하여 건조속도 단축, 신축성 향상 및 도막의 균열 방지 특성을 갖는 나노 세라믹 수지를 갖는 방수도장 조성물을 개발하였으며, 이를 통해 방수도장 시공시 공사기간 단축, 내구성 향상에 의한 비용 절감 등의 효과를 확보할 수 있었다.Accordingly, the present applicant has conducted continuous research and has applied for a waterproof coating composition containing a nano-ceramic resin using composite silane and a waterproof coating method using the same through Patent Document 1. The waterproof coating composition has the advantage of improving chemical resistance and enabling waterproof coating with high hardness characteristics. In addition, in Patent Document 2, a waterproof coating composition was developed using composite silane to reduce drying speed, improve elasticity, and nano-ceramic resin that has crack-prevention properties in the coating film. Through this, it is possible to shorten the construction period and improve durability during waterproof coating construction. We were able to secure effects such as cost reduction.
이러한 장점에도 상기 특허에서 제시하는 방수도장 조성물은 내오염성이 만족스럽지 못해 각종 오염물질에 의한 오염이 쉽고, 구조물과의 부착강도 또한 충분치 않다는 문제가 있다. 이에 부착강도 및 내오염성의 개선을 위한 새로운 조성 설계가 요구된다.Despite these advantages, the waterproof coating composition proposed in the above patent has unsatisfactory contamination resistance, so it is easily contaminated by various contaminants, and has a problem of insufficient adhesion strength to structures. Accordingly, a new composition design is required to improve adhesion strength and stain resistance.
나노 세라믹 수지의 분자량과 함께 각 층에 사용되는 조성을 조절할 경우 도막의 내오염성 및 부착강도가 개선될 수 있다는 점에 착안하여, 본 발명을 완성하였다. The present invention was completed by focusing on the fact that the fouling resistance and adhesion strength of the coating film can be improved by adjusting the composition used in each layer along with the molecular weight of the nanoceramic resin.
본 발명의 목적은 내오염성 및 부착강도가 향상된 방수도장 조성물 및 이를 이용한 방수도장공법을 제공하는데 있다.The purpose of the present invention is to provide a waterproof coating composition with improved stain resistance and adhesion strength and a waterproof coating method using the same.
본 발명의 목적은 하도층, 중도층, 상도층 및 추가로 바탕조정재층으로 사용할 수 있는 나노 세라믹 수지를 포함하는 방수도장 조성물 및 이를 이용한 방수도장공법을 제공한다.The object of the present invention is to provide a waterproof coating composition containing a nano-ceramic resin that can be used as an undercoat layer, a middle layer, a top coat layer, and an additional base control material layer, and a waterproofing coating method using the same.
본 발명에 따른 나노 세라믹 수지는 다양한 구조물의 방수도장에 사용된다. The nanoceramic resin according to the present invention is used for waterproofing coating of various structures.
본 발명의 나노 세라믹 수지는 구조물의 재질에 관계없이 침투력을 높여 부착강도를 향상시키고, 방수도장 후 도막 표면의 접촉각을 높여 내오염성을 개선할 수 있어 시공 후 도막의 오염물 청소가 용이하다.The nano ceramic resin of the present invention improves adhesion strength by increasing penetration regardless of the material of the structure, and can improve contamination resistance by increasing the contact angle of the surface of the coating film after waterproofing, making it easy to clean contaminants from the coating film after construction.
또한, 상기 나노 세라믹 수지는 도막을 형성하는 하도층, 중도층, 상도층 및 바탕조정재층에 대한 층간 부착력이 높을뿐만 아니라 이들 간의 호환성이 우수하고, 구조물과 도막과의 높은 부착강도로 상기 구조물과 도막의 일체화가 가능하다. In addition, the nano-ceramic resin not only has high interlayer adhesion to the base layer, middle layer, top layer, and base conditioner layer that forms the coating film, but also has excellent compatibility between them, and has a high adhesion strength between the structure and the coating film, so that it adheres to the structure and the coating film. Integration of the coating film is possible.
이에 따라 본 발명의 방수도장공법은 구조물의 내구성을 향상시켜 장기유지보수가 용이하므로 비용 절감 등의 장점이 있다.Accordingly, the waterproof coating method of the present invention improves the durability of the structure and facilitates long-term maintenance, thereby providing advantages such as cost reduction.
도 1은 일 구현예에 따른 방수도장공법의 시공 절차를 보여주는 순서도이고, 도 2는 시공 후 적층 구조를 보여준다.
도 3은 다른 구현예에 따른 방수도장공법의 시공 절차를 보여주는 순서도이고, 도 4는 시공 후 적층 구조를 보여준다.Figure 1 is a flowchart showing the construction procedure of the waterproof coating method according to one embodiment, and Figure 2 shows the laminated structure after construction.
Figure 3 is a flowchart showing the construction procedure of a waterproof coating method according to another embodiment, and Figure 4 shows the laminated structure after construction.
먼저, 본원에서 달리 정의하지 않는 한, 본 발명과 관련하여 사용된 과학 용어 및 기술 용어들은 통상의 기술자에 의해 일반적으로 이해되는 의미를 가질 것이다. 뿐만 아니라 문맥상 특별히 지정하지 않는 한, 단수 형태의 용어는 그것의 복수 형태도 포함하는 것이며, 복수 형태의 용어는 그것의 단수 형태도 포함할 것이다.First, unless otherwise defined herein, scientific and technical terms used in connection with the present invention will have meanings commonly understood by those skilled in the art. Furthermore, unless otherwise specified by context, singular terms shall include their plural forms and plural terms shall also include their singular forms.
이하 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명의 나노 세라믹 수지를 포함하는 방수도장 조성물은 각종 구조물의 표면에 방수도장 처리되어 내오염성 및 부착강도 개선 효과를 확보한다. The waterproof coating composition containing the nano-ceramic resin of the present invention is treated with a waterproof coating on the surface of various structures to ensure the effect of improving contamination resistance and adhesion strength.
본 발명에서 언급하는 구조물은 상하수도 수처리 구조물, 도로 및 강구조물, 해양 구조물, 일반건축 구조물, 산업용 구조물일 수 있다. Structures referred to in the present invention may be water supply and sewage water treatment structures, roads and steel structures, marine structures, general building structures, and industrial structures.
상하수도 수처리 구조물로는 상하수도 수처리 구조물로는 정수시설(정수장, 배수지, 침전지, 응집지, 펌프장, 배수관 등), 하수처리시설(하수처리장, 분뇨처리장, 하수관거 등)이 있으며, 도로 및 강구조물로는 교량, 육교, 교통시설물(표지판, 가로등, 신호등, 가드레일 등), 터널, 지하차도 등이 있다. 또한 해양 구조물로는 선박, 연육교, 배수관문, 수문, 항만시설(계류시설 등) 및 담수화시설, 해양 및 하천 레져시설 등이 있으며, 일반건축 구조물로는 옥상 바닥, 건물 내·외벽(중성화 방지 및 방수방식) 등이 있다. 산업용구조물로는 가스배관, 유류배관, 화학탱크 등), 전자제품 기능성 코팅제(지문인식 등), 판넬, 알루미늄, 스테인레스, 타일, 유리 등의 구조물, 자동차 탑코팅 등이 있다.Water supply and sewage water treatment structures include water purification facilities (purification plants, drainage ponds, sedimentation ponds, coagulation ponds, pumping stations, drain pipes, etc.) and sewage treatment facilities (sewage treatment plants, sewage treatment plants, sewage pipes, etc.), and road and steel structures include bridges. , overpasses, traffic facilities (signs, street lights, traffic lights, guardrails, etc.), tunnels, and underpasses. In addition, marine structures include ships, land bridges, drain gates, floodgates, port facilities (mooring facilities, etc.) and desalination facilities, and marine and river leisure facilities. General architectural structures include rooftop floors, building interior and exterior walls (neutralization prevention and waterproofing method), etc. Industrial structures include gas pipes, oil pipes, chemical tanks, etc.), functional coatings for electronic products (fingerprint recognition, etc.), structures such as panels, aluminum, stainless steel, tiles, and glass, and automobile top coatings.
상기 구조물은 강판, 스테인레스, 알루미늄, 아연도금 등의 금속 재질, 콘크리트 재질, 세라믹 재질, 벽돌 재질 등의 기재를 포함한다.The structure includes base materials such as metal materials such as steel plates, stainless steel, aluminum, and galvanized materials, concrete materials, ceramic materials, and brick materials.
본 발명에서 언급하는 나노 세라믹 수지는 복합실란, 금속촉매 및 금속산화물졸을 반응시켜 제조된 수지를 의미한다. 상기 나노 세라믹 수지는 기존 유기수지와 달리 주성분이 세라믹 수지로 구성되는 친환경적인 수지로, 우수한 침투력으로 다양한 소재에 대한 접착성이 우수하다. 또한 불연성을 가지고 변색이 거의 없어 내구성이 우수하고, 염소에 강하고 산, 알칼리 등의 가혹한 환경에서도 우수하여 내약품성 또한 우수한다. 또한, 기존 세라믹 수지의 단점인 낮은 유연성을 극복하여 우수한 내굴곡성을 가지며, 방오성 및 방수성이 탁월하다.The nano ceramic resin referred to in the present invention refers to a resin prepared by reacting composite silane, a metal catalyst, and a metal oxide sol. Unlike existing organic resins, the nano-ceramic resin is an eco-friendly resin whose main ingredient is ceramic resin, and has excellent adhesion to various materials with excellent penetration ability. In addition, it is non-flammable and has little discoloration, so it has excellent durability. It is also resistant to chlorine and is excellent in harsh environments such as acids and alkalis, so it also has excellent chemical resistance. In addition, it has excellent bending resistance by overcoming the low flexibility, which is a disadvantage of existing ceramic resins, and has excellent anti-fouling and waterproofing properties.
본 발명의 나노 세라믹 수지는 단순 도막을 형성하는 도막형 수지가 구조물의 표면에 침투하여 도막을 형성하는 침투 도막형 수지이다.The nano ceramic resin of the present invention is a penetrating film-type resin that forms a simple film-type resin by penetrating into the surface of a structure to form a film.
본 발명의 나노 세라믹 수지는 방수도장 조성물로 사용될 수 있으며, 구체적으로 방수도장의 하도층, 중도층, 상도층 및 추가로 바탕조정재층의 조성물로 적용되어 다층 구조의 방수도막으로 방수시공이 가능하다. 이때 각 층의 기능을 효과적으로 발휘할 수 있도록 나노 세라믹 수지의 분자량을 조절하고, 상기 나노 세라믹 수지와 함께 사용하는 조성을 선정함으로써 나노 세라믹 수지가 갖는 이점과 함께 방수도장 도막의 내오염성 및 부착강도를 향상시킨다.The nano-ceramic resin of the present invention can be used as a waterproof coating composition, and is specifically applied as a composition for the base layer, middle layer, top layer, and additional base adjustment layer of waterproof coating, enabling waterproofing construction with a multi-layer waterproof coating film. . At this time, the molecular weight of the nano-ceramic resin is adjusted to effectively exercise the function of each layer, and the composition used with the nano-ceramic resin is selected to improve the stain resistance and adhesion strength of the waterproof coating film along with the advantages of the nano-ceramic resin. .
구체적으로, 본 발명의 방수도장 조성물은 나노 세라믹 수지를 포함하고, 이를 이용하여 하도용 조성물, 중도용 조성물, 상도용 조성물 및 바탕조정재 조성물을 제조한다. Specifically, the waterproofing coating composition of the present invention contains a nano-ceramic resin, and a base coating composition, a middle coating composition, a top coating composition, and a background conditioner composition are manufactured using this.
이하 나노 세라믹 수지를 포함하는 각 조성물에 대해 상세히 설명한다.Hereinafter, each composition containing nanoceramic resin will be described in detail.
(A) 하도용 조성물(A) Composition for primer
하도용 조성물은 구조물의 표면 부위에 가장 먼저 적용하여 하도층을 형성하기 위한 것으로 복합실란, 금속촉매 및 금속산화물졸을 반응시켜 얻어진 나노 세라믹 수지를 포함한다.The undercoat composition is intended to be applied first to the surface of the structure to form an undercoat layer, and includes a nano-ceramic resin obtained by reacting composite silane, a metal catalyst, and a metal oxide sol.
복합실란은 도막을 이루는 주 성분으로, 금속산화물졸과 결합하여 구조물에 대한 도막의 부착강도를 높이고 상기 구조물의 재질에 대한 호환성을 높여 상기 도막이 금속 및 콘크리트 등 다양한 재질의 구조물에 적용될 수 있도록 한다. 상기 복합실란은 메틸트리메톡시실란, 메틸트리에톡시실란, 테트라에톡시실란, 디메틸디메톡시실란, 디페닐디메톡시실란, 글리시독시프로필 트리메톡시실란, 및 아미노프로필 트리에톡시실란으로 이루어진 군에서 선택된 1종 이상이 사용된다. 상기 복합실란은 20∼50중량부, 바람직하기로 20∼40중량부로 사용하며, 그 함량이 20중량부 미만이면 무기물 함량이 낮아 도막의 경도가 낮아지며, 50중량부를 초과하면 미반응물이 과다 존재하여 제품의 저장 안정성이 약화된다.Composite silane is the main component of the coating film, and when combined with a metal oxide sol, it increases the adhesion strength of the coating film to the structure and increases compatibility with the materials of the structure, allowing the coating film to be applied to structures made of various materials such as metal and concrete. The composite silane consists of methyltrimethoxysilane, methyltriethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, diphenyldimethoxysilane, glycidoxypropyl trimethoxysilane, and aminopropyl triethoxysilane. One or more types selected from the group are used. The composite silane is used in an amount of 20 to 50 parts by weight, preferably 20 to 40 parts by weight. If the content is less than 20 parts by weight, the hardness of the coating film is lowered due to the low inorganic content, and if it exceeds 50 parts by weight, unreacted products are excessively present. The storage stability of the product is weakened.
금속촉매는 반응속도를 제어하여 하도용 조성물의 분자량을 조절하는 역할을 한다. 상기 금속촉매는 징크아세테이트2수화물, 알루미늄아세트산베이직4수화물, 칼슘아세테이트1수화물 및 소듐아세테이트3수화물로 이루어진 군에서 선택된 1종 이상이 사용된다. 상기 금속촉매는 1∼5중량부, 바람직하기로 1∼3중량부로 사용한다. The metal catalyst plays a role in controlling the reaction rate and the molecular weight of the base coating composition. The metal catalyst is one or more selected from the group consisting of zinc acetate dihydrate, aluminum acetate basic tetrahydrate, calcium acetate monohydrate, and sodium acetate trihydrate. The metal catalyst is used in an amount of 1 to 5 parts by weight, preferably 1 to 3 parts by weight.
금속산화물졸은 다양한 구조물 표면(또는 구조물 기재)에 대한 호환성을 높일뿐만 아니라 나노사이즈의 크기로 인해 상기 구조물의 표면에 대한 침투력을 높여 구조물과 도막과의 일체화를 위해 사용하고, 세라믹수지를 형성하여 도막의 불연성을 높인다. 상기 금속산화물졸로는 실리카졸, 알루미나졸 및 티타니아졸로 이루어진 군에서 선택된 1종 이상을 포함한다. 상기 금속산화물졸은 평균 입자크기가 10∼30㎚이고, 고체 함량이 5∼30 중량%이다. 상기 금속산화물졸은 30∼60중량부, 바람직하기로 40∼60중량부로 사용하며, 그 함량이 30중량부 미만이면, 무기물 함량이 낮아 경도가 저하되고 60중량부를 초과하면 미반응물이 과다 존재하여 부착력이 저하된다.Metal oxide sol not only increases compatibility with various structural surfaces (or structural substrates), but also increases penetration into the surface of the structure due to its nano-sized size, so it is used to integrate the structure and the coating film, and forms a ceramic resin. Increases the incombustibility of the coating film. The metal oxide sol includes at least one selected from the group consisting of silica sol, alumina sol, and titania sol. The metal oxide sol has an average particle size of 10 to 30 nm and a solid content of 5 to 30% by weight. The metal oxide sol is used in an amount of 30 to 60 parts by weight, preferably 40 to 60 parts by weight. If the content is less than 30 parts by weight, the hardness decreases due to the low inorganic content, and if it exceeds 60 parts by weight, unreacted products are excessively present. Adhesion decreases.
본 발명의 하도용 조성물은 구조물의 표면 부위에 가장 먼저 적용한다. 이에 상기 구조물 대한 침투성 및 부착강도가 우수할수록 유리하고 보다 치밀한 도막을 형성하는 것이 좋으며, 특히 분자량은 낮은 것이 바람직하다. 구체적으로, 하도용 조성물에 사용하는 나노 세라믹 수지는 수평균분자량(Mn, g/mol)이 100 내지 300의 범위를 갖도록 한다. 만약 상기 분자량이 100 미만인 경우 구조물 표면에 대한 결합력이 약하며, 분자량이 300을 넘을 경우 하도용 조성물이 구조물 표면에 쉽게 침투하지 못하고 표면에 도막이 두껍게 형성되어 부착력이 저하된다. 이러한 분자량 범위는 기존 염기촉매로 제조된 하도용 조성물의 분자량 범위인 3000 수준 대비 매우 낮은 수치이다. The primer composition of the present invention is first applied to the surface area of the structure. Accordingly, the better the penetration and adhesion strength to the structure, the more advantageous it is to form a more dense coating film, and in particular, a low molecular weight is preferable. Specifically, the nano ceramic resin used in the base coating composition has a number average molecular weight (Mn, g/mol) in the range of 100 to 300. If the molecular weight is less than 100, the bonding force to the surface of the structure is weak, and if the molecular weight exceeds 300, the base coating composition cannot easily penetrate the surface of the structure, and a thick coating film is formed on the surface, thereby reducing adhesion. This molecular weight range is very low compared to the 3000 level, which is the molecular weight range of primer compositions manufactured with existing base catalysts.
본 발명의 하도용 조성물에 포함되는 나노 세라믹 수지는 복합실란, 금속촉매 및 금속산화물졸을 1,500∼2,000rpm의 회전속도로 상온에서 10∼18시간, 바람직하기로 12시간 교반 후 25∼50℃, 바람직하기로 40℃에서 3∼10시간, 바람직하기로 6시간 교반하여 제조한다. 상기 반응조건에서 수행할 때 상기 나노 세라믹 수지의 분자량 범위를 확보할 수 있다.The nano ceramic resin included in the base coating composition of the present invention is stirred at room temperature for 10 to 18 hours, preferably 12 hours, at a rotation speed of 1,500 to 2,000 rpm with composite silane, metal catalyst, and metal oxide sol, and then stirred at 25 to 50°C. Preferably, it is prepared by stirring at 40°C for 3 to 10 hours, preferably for 6 hours. When performed under the above reaction conditions, the molecular weight range of the nano ceramic resin can be secured.
(B) 중도용 조성물(B) Intermediate composition
중도용 조성물은 복합실란, 금속촉매, 및 금속산화물졸을 반응시켜 제조한 나노 세라믹 수지에 더해 중도층으로서의 은폐력 기능을 위해 무기안료 및 첨가제를 포함한다. 상기 중도용 조성물은 중도층을 형성하기 위한 것으로, 하도용 조성물과 동일한 재질의 나노 세라믹 수지를 사용하고, 이후 설명되는 상도용 조성물 또한 나노 세라믹 수지를 사용하여 각 층간의 높은 호환성으로 인해 하도층, 중도층 및 상도층 간의 부착력이 우수하다.The middle layer composition contains nano-ceramic resin prepared by reacting composite silane, metal catalyst, and metal oxide sol, as well as inorganic pigments and additives to function as a middle layer with hiding power. The middle coat composition is for forming a middle layer, and uses a nano-ceramic resin of the same material as the base coat composition. The top coat composition, which will be described later, also uses a nano-ceramic resin, and due to the high compatibility between each layer, the bottom coat, The adhesion between the middle layer and top layer is excellent.
중도용 조성물에 사용하는 나노 세라믹 수지는 상기 하도용 조성물에 사용하는 나노 세라믹 수지 대비 높은 분자량 범위를 가져, 보다 높은 강도의 도막을 형성한다.The nano-ceramic resin used in the middle-coat composition has a higher molecular weight range than the nano-ceramic resin used in the base-coat composition, forming a coating film with higher strength.
본 발명의 중도용 조성물은 내오염성 및 하도용 조성물과 상도용 조성물과의 부착력을 위해 나노 세라믹 수지의 분자량이 높은 것이 바람직하다. 구체적으로, 나노 세라믹 수지의 수평균분자량이 4,000 내지 6,000의 범위를 갖도록 한다. 만약 상기 분자량이 4,000 미만인 경우 내오염성이 저하되며, 분자량이 6,000을 초과하면 도막이 두껍게 형성되고 부착력이 저하된다.In the middle-coat composition of the present invention, it is preferable that the nano-ceramic resin has a high molecular weight for stain resistance and adhesion between the base-coat composition and the top-coat composition. Specifically, the number average molecular weight of the nano ceramic resin is in the range of 4,000 to 6,000. If the molecular weight is less than 4,000, the fouling resistance is reduced, and if the molecular weight is more than 6,000, the coating film is formed thick and the adhesion is reduced.
본 발명의 중도용 조성물에 포함되는 나노 세라믹 수지는 복합실란, 금속촉매 및 금속산화물졸을 1,500∼2,000rpm의 회전속도로 40∼80℃, 바람직하기로 60℃에서 10∼18시간, 바람직하기로 12시간 교반 후 80∼100℃, 바람직하기로 90℃에서 3∼10시간, 바람직하기로 6시간 교반하여 제조한다. 상기 반응 조건에서 수행할 때 나노 세라믹 수지의 분자량 범위를 확보할 수 있다. The nano-ceramic resin contained in the intermediate composition of the present invention is a composite silane, a metal catalyst, and a metal oxide sol at a rotation speed of 1,500 to 2,000 rpm at 40 to 80°C, preferably at 60°C for 10 to 18 hours. It is prepared by stirring for 12 hours and then stirring at 80 to 100°C, preferably 90°C for 3 to 10 hours, preferably 6 hours. When performed under the above reaction conditions, the molecular weight range of the nanoceramic resin can be secured.
이때 복합실란은 도막을 이루는 주 성분으로, 메틸트리메톡시실란, 메틸트리에톡시실란, 테트라에톡시실란, 디메틸디메톡시실란, 디페닐디메톡시실란, 글리시독시프로필 트리메톡시실란, 및 아미노프로필 트리에톡시실란으로 이루어진 군에서 선택된 1종 이상이 사용된다. 상기 복합실란은 20∼50중량부, 바람직하기로 20∼40중량부로 사용하며, 그 함량이 20중량부 미만이면 무기물 함량이 낮아 도막의 경도가 낮아지며, 50중량부를 초과하면 미반응물이 과다 존재하여 제품의 저장 안정성이 약화된다.At this time, composite silanes are the main components of the coating film, including methyltrimethoxysilane, methyltriethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, diphenyldimethoxysilane, glycidoxypropyl trimethoxysilane, and amino At least one selected from the group consisting of propyltriethoxysilane is used. The composite silane is used in an amount of 20 to 50 parts by weight, preferably 20 to 40 parts by weight. If the content is less than 20 parts by weight, the hardness of the coating film is lowered due to the low inorganic content, and if it exceeds 50 parts by weight, unreacted products are excessively present. The storage stability of the product is weakened.
금속촉매는 징크아세테이트2수화물, 알루미늄아세트산베이직4수화물, 칼슘아세테이트1수화물 및 소듐아세테이트3수화물로 이루어진 군에서 선택된 1종 이상이 사용된다. 상기 금속촉매는 1∼5중량부, 바람직하기로 1∼3중량부로 사용한다. The metal catalyst is one or more selected from the group consisting of zinc acetate dihydrate, aluminum acetate basic tetrahydrate, calcium acetate monohydrate, and sodium acetate trihydrate. The metal catalyst is used in an amount of 1 to 5 parts by weight, preferably 1 to 3 parts by weight.
금속산화물졸은 실리카졸, 알루미나졸 및 티타니아졸로 이루어진 군에서 선택된 1종 이상을 포함한다. 상기 금속산화물졸은 평균 입자크기가 10∼30㎚이고, 고체 함량이 5∼30 중량%이다. 상기 금속산화물졸은 30∼60중량부, 바람직하기로 30∼50중량부로 사용하며, 그 함량이 30중량부 미만이면, 무기물 함량이 낮아 경도가 저하되고, 60중량부를 초과하면 미반응물이 과다 존재하여 부착력이 저하된다.The metal oxide sol includes at least one member selected from the group consisting of silica sol, alumina sol, and titania sol. The metal oxide sol has an average particle size of 10 to 30 nm and a solid content of 5 to 30% by weight. The metal oxide sol is used in an amount of 30 to 60 parts by weight, preferably 30 to 50 parts by weight. If the content is less than 30 parts by weight, the hardness decreases due to the low inorganic content, and if it exceeds 60 parts by weight, unreacted products are excessive. As a result, adhesion decreases.
본 발명의 중도용 조성물은 상기 제조된 나노 세라믹 수지에 무기안료 및 첨가제를 첨가하여 제조한다. The intermediate-use composition of the present invention is prepared by adding inorganic pigments and additives to the nano-ceramic resin prepared above.
무기안료는 이산화티탄, 및 시안블루 중에서 선택된 1종 이상을 50∼80중량부로 사용하며, 그 함량이 50중량부 미만이면 은폐력이 불량하며, 80중량부를 초과하면 점도가 증가하여 도장의 작업성이 불량하다.The inorganic pigment is one or more selected from titanium dioxide and cyan blue in an amount of 50 to 80 parts by weight. If the content is less than 50 parts by weight, the hiding power is poor, and if it exceeds 80 parts by weight, the viscosity increases and the workability of painting is reduced. It's defective.
첨가제는 분산제, 소포제, 레벨링제를 모두 포함한다. 사용 가능한 분산제, 소포제, 레벨링제의 종류는 본 발명에서 한정하지 않으며, 공지된 바의 것 중에서 선택할 수 있다. 상기 첨가제는 1∼5중량부, 바람직하기로 2∼4중량부로 사용하며, 그 함량이 1중량부 미만이면 첨가제 사용 효과가 미비하고, 5중량부를 초과하더라도 큰 효과상의 이점이 없어 상기 범위 내에서 사용한다. Additives include dispersants, anti-foaming agents, and leveling agents. The types of dispersants, antifoaming agents, and leveling agents that can be used are not limited in the present invention and can be selected from known ones. The additive is used in an amount of 1 to 5 parts by weight, preferably 2 to 4 parts by weight. If the content is less than 1 part by weight, the effect of using the additive is minimal, and even if it exceeds 5 parts by weight, there is no significant effect benefit, so it is used within the above range. use.
(C) 상도용 조성물(C) Composition for top coat
상도용 조성물은 중도용 조성물에 불소실란 및 불소수지를 첨가하여 제조한다. The top coat composition is manufactured by adding fluorosilane and fluororesin to the middle coat composition.
중도용 조성물은 전술한 바와 같으며, 이는 160중량부로 사용한다. The composition for intermediate use is as described above, and is used in an amount of 160 parts by weight.
이에 상도용 조성물에 사용하는 나노 세라믹 수지는 중도용 조성물의 세라믹 수지와 동일하며, 수평균분자량이4,000 내지 6,000의 범위를 갖도록 한다. 상기 분자량이 4,000 미만인 경우 내오염성이 저하되며, 분자량이 6,000을 초과하면 도막이 두껍게 형성되고 부착력이 저하된다.Accordingly, the nano ceramic resin used in the top coat composition is the same as the ceramic resin in the middle coat composition, and has a number average molecular weight in the range of 4,000 to 6,000. If the molecular weight is less than 4,000, the fouling resistance is lowered, and if the molecular weight is more than 6,000, the coating film is formed thick and the adhesion is reduced.
상도용 조성물은 상도층을 형성하기 위한 것으로, 구조물의 최상층에 위치하며 햇빛, 자외선, 또는 외부 날씨, 화학약품 등의 외부적인 환경에 의해 도막 내 고분자의 열화가 발생하여 도막의 균열과 함께 내오염성이 저하되는 문제가 있다. 이에 본 발명에서는 중도용 조성물과 함께 불소실란과 불소수지를 함께 사용한다. 상기 불소실란과 불소수지는 조성 내 불소를 포함하고 있어 낮은 계면장력의 도막, 즉 접촉각이 높은 소수성 도막을 형성하여 구조물의 내오염성을 높일 수 있다. The top coating composition is intended to form a top coat layer, and is located on the top layer of the structure. External environments such as sunlight, ultraviolet rays, external weather, and chemicals cause deterioration of the polymer in the coating film, leading to cracks in the coating film and contamination resistance. There is a problem with this degradation. Accordingly, in the present invention, fluorosilane and fluororesin are used together with the intermediate composition. The fluorosilane and fluororesin contain fluorine in their composition, so they can form a coating film with low interfacial tension, that is, a hydrophobic coating film with a high contact angle, thereby increasing the fouling resistance of the structure.
불소실란은 헵타데카플루오로테트라데실트리메톡시실란 (Heptadecafluorodecyltrimethoxysilane), 및 1H,1H,2H,2H-퍼플루오로데실트리에톡시실란(1H,1H,2H,2H-Perfluorodecyltrimethoxysliane)으로 이루어진 군에서 선택된 1종 이상을 3∼8중량부, 바람직하기로 4∼6중량부로 사용한다. 상기 함량이 3중량부 미만이면 내약품성이 저하되고, 8중량부를 초과하면 불소실란이 고단가로 제품의 경제성이 떨어지게 된다.The fluorosilane is selected from the group consisting of heptadecafluorodecyltrimethoxysilane, and 1H,1H,2H,2H-perfluorodecyltriethoxysliane. One or more types are used in an amount of 3 to 8 parts by weight, preferably 4 to 6 parts by weight. If the content is less than 3 parts by weight, chemical resistance deteriorates, and if it exceeds 8 parts by weight, the economic feasibility of the product is reduced due to the high cost of fluorosilane.
불소수지는 폴리테트라플루오르에틸렌, 불화폴리비닐리덴, 및 PFA(Perfluoroalkoxy alkane)로 이루어진 군에서 선택된 1종 이상을 3∼10중량부, 바람직하기로 4∼8중량부로 사용한다. 상기 함량이 3중량부 미만이면 방수성능 및 내약품성이 저하되고, 10중량부를 초과하면 제품의 안정성이 떨어져 층 분리 현상이 일어난다.The fluororesin is used in an amount of 3 to 10 parts by weight, preferably 4 to 8 parts by weight, of at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride, and PFA (Perfluoroalkoxy alkane). If the content is less than 3 parts by weight, waterproofing performance and chemical resistance decrease, and if it exceeds 10 parts by weight, the stability of the product decreases and layer separation occurs.
상기한 하도용, 중도용 및 상도용 조성물에 의해 구조물 상에 하도층, 중도층 및 상도층이 형성할 수 있다. 추가로, 상기 하도층 및 중도층 사이에 바탕조정재층을 시공하여 하도층, 바탕조정재층, 중도층 및 상도층의 층 구성을 가질 수 있다. An undercoat layer, a middle coat layer, and a top coat layer can be formed on a structure using the above-mentioned compositions for undercoat, middle coat, and top coat. Additionally, a base control material layer may be constructed between the base layer and the middle layer to have a layer structure of a base layer, a base conditioner layer, a middle layer, and a top layer.
(D) 바탕조정재 조성물(D) Base conditioner composition
바탕조정재 조성물은 바탕조정재층을 형성하기 위한 것으로, 방수기능을 더욱 높이기 위해 복합실란, 금속촉매 및 금속산화물졸을 반응시켜 얻어진 나노 세라믹 수지에 규사, 포틀랜드시멘트 및 탈크를 포함한다. The background conditioner composition is intended to form a base conditioner layer, and contains silica sand, Portland cement, and talc in a nano-ceramic resin obtained by reacting composite silane, a metal catalyst, and a metal oxide sol to further increase the waterproof function.
본 발명의 바탕조정재 조성물에 사용하는 나노 세라믹 수지는 각 조성들의 결합력을 높이고 다른 층, 즉 하도층 및 중도층과의 부착력을 높이기 위해 분자량을 조절한다. 구체적으로, 수평균분자량이 2,000 내지 3,000의 범위를 갖도록 한다. 만약 상기 분자량이 2,000 미만인 경우 규사나 탈크 등의 분말들과의 결합력과 하도층과의 부착력이 저하되며, 분자량이 3,000을 초과하면 도막이 두껍게 형성되고 중도층과의 부착력이 저하된다.The molecular weight of the nanoceramic resin used in the base conditioner composition of the present invention is adjusted to increase the bonding strength of each composition and to increase adhesion to other layers, that is, the base layer and the middle layer. Specifically, the number average molecular weight is set to be in the range of 2,000 to 3,000. If the molecular weight is less than 2,000, the bonding strength with powders such as silica sand or talc and the adhesion to the base layer decrease, and if the molecular weight exceeds 3,000, the coating film is formed thick and the adhesion to the middle coat layer decreases.
본 발명의 바탕조정재 조성물에 사용하는 나노 세라믹 수지는 복합실란, 금속촉매 및 금속산화물졸을 1,500∼2,000rpm의 회전속도로 40∼80℃, 바람직하기로 60℃에서 10∼18시간, 바람직하기로 12시간 교반 후 80∼100℃, 바람직하기로 90℃에서 3∼10시간, 바람직하기로 6시간 교반하여 제조한다. 상기 반응조건에서 수행할 때 상기 나노 세라믹 수지의 분자량 범위를 확보할 수 있다. The nano-ceramic resin used in the background conditioner composition of the present invention is made by mixing composite silane, metal catalyst, and metal oxide sol at a rotation speed of 1,500 to 2,000 rpm at 40 to 80°C, preferably at 60°C for 10 to 18 hours. It is prepared by stirring for 12 hours and then stirring at 80 to 100°C, preferably 90°C for 3 to 10 hours, preferably 6 hours. When performed under the above reaction conditions, the molecular weight range of the nano ceramic resin can be secured.
이때 상기 복합실란은 메틸트리메톡시실란, 메틸트리에톡시실란, 테트라에톡시실란, 디메틸디메톡시실란, 디페닐디메톡시실란, 글리시독시프로필 트리메톡시실란, 및 아미노프로필 트리에톡시실란으로 이루어진 군에서 선택된 1종 이상일 수 있으며, 20∼50중량부, 바람직하기로 20∼40중량부로 사용한다. 상기 함량이 20중량부 미만이면 무기물 함량이 낮아 도막의 경도가 낮아지며, 50중량부를 초과하면 미반응물이 과다 존재하여 제품의 저장안정성이 약화된다.At this time, the composite silane is methyltrimethoxysilane, methyltriethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, diphenyldimethoxysilane, glycidoxypropyl trimethoxysilane, and aminopropyl triethoxysilane. It may be one or more types selected from the group consisting of 20 to 50 parts by weight, preferably 20 to 40 parts by weight. If the content is less than 20 parts by weight, the hardness of the coating film decreases due to the low inorganic content, and if it exceeds 50 parts by weight, the storage stability of the product is weakened due to the presence of excessive unreacted substances.
금속촉매는 징크아세테이트2수화물, 알루미늄아세트산베이직4수화물, 칼슘아세테이트1수화물 및 소듐아세테이트3수화물로 이루어진 군에서 선택된 1종 이상일 수 있으며, 1∼5중량부, 바람직하기로 1∼3중량부, 가장 바람직하기로 1.5중량부로 사용한다.The metal catalyst may be one or more selected from the group consisting of zinc acetate dihydrate, aluminum acetate basic tetrahydrate, calcium acetate monohydrate, and sodium acetate trihydrate, and may be used in an amount of 1 to 5 parts by weight, preferably 1 to 3 parts by weight, most preferably 1 to 5 parts by weight. Preferably, it is used at 1.5 parts by weight.
금속산화물졸은 실리카졸, 알루미나졸 및 티타니아졸로 이루어진 군에서 선택된 1종 이상을 포함하며, 평균 입자크기가 10∼30㎚이고, 고체 함량이 5∼30 중량%인 것을 30∼60중량부, 바람직하기로 30∼50중량부로 사용한다. 그 함량이 30중량부 미만이면, 무기물 함량이 낮아 경도가 저하되고 60중량부를 초과하면 미반응물이 과다 존재하여 부착력이 저하된다.The metal oxide sol contains at least one selected from the group consisting of silica sol, alumina sol, and titania sol, has an average particle size of 10 to 30 nm, and has a solid content of 5 to 30 wt%, preferably 30 to 60 parts by weight. It is used in the amount of 30 to 50 parts by weight as follows. If the content is less than 30 parts by weight, the hardness decreases due to the low inorganic content, and if it exceeds 60 parts by weight, the adhesion strength decreases due to the presence of excessive unreacted substances.
본 발명의 바탕조정재 조성물은 상기 나노 세라믹 수지에 더하여 규사, 포틀랜드시멘트, 및 탈크를 첨가하여 제조한다.The background conditioner composition of the present invention is prepared by adding silica sand, Portland cement, and talc in addition to the nano-ceramic resin.
규사는 5호∼7호를 120∼180중량부, 바람직하기로 130∼160중량부로 사용하며, 도막의 공극을 일정하게 유지시켜 투수성을 향상시킨다. 규사 5호보다 낮은 호의 규사를 사용하면 바탕조정재층 시공 후의 표면이 매끄럽지 못하며 규사 7호보다 높은 호의 규사를 사용하면 혼합 시 점도가 높아져서 작업성 불량의 원인이 된다. Silica sand No. 5 to No. 7 is used in an amount of 120 to 180 parts by weight, preferably 130 to 160 parts by weight, and the pores of the coating film are kept constant to improve water permeability. If silica sand of a size lower than silica sand No. 5 is used, the surface after the base conditioner layer is not smooth, and if silica sand of a size higher than silica sand No. 7 is used, the viscosity increases during mixing, causing poor workability.
포틀랜드시멘트는 방수성과 함께 도막의 강도를 높이고, 다른 도막과의 부착력을 높이는 역할을 한다. 이러한 목적으로 상기 포틀랜드시멘트는 30∼70중량부, 바람직하기로 40∼60중량부로 사용한다.Portland cement increases the strength of the coating film along with waterproofing properties and increases adhesion to other coating films. For this purpose, the Portland cement is used in an amount of 30 to 70 parts by weight, preferably 40 to 60 parts by weight.
탈크는 도막의 강도를 높이기 위한 충진제로서 사용하며 2∼10중량부, 바람직하기로 4∼8중량부로 사용한다. Talc is used as a filler to increase the strength of the coating film and is used in an amount of 2 to 10 parts by weight, preferably 4 to 8 parts by weight.
상기 언급한 바와 같이 방수도장 조성물은 각 층에 사용하는 나노 세라믹 수지의 분자량이 조절되며, 이때 하도용 조성물은 가장 적은 분자량을, 중도용 및 상도용 조성물은 가장 높은 분자량을, 바탕조정재 조성물은 이들 사이의 분자량 값을 갖는다. 이들은 복합실란, 금속촉매 및 금속산화물졸을 공통 성분으로 중합이 일어나며, 이때 사용하는 금속촉매의 함량과 반응 조건을 조절하여 상기 분자량을 조절한다. As mentioned above, the molecular weight of the nano-ceramic resin used in each layer of the waterproofing coating composition is adjusted. At this time, the base coat composition has the lowest molecular weight, the middle and top coat compositions have the highest molecular weight, and the background conditioner composition has these It has a molecular weight value in the range. These polymerizations occur using composite silane, a metal catalyst, and a metal oxide sol as common ingredients, and the molecular weight is controlled by adjusting the content of the metal catalyst used and the reaction conditions.
보다 구체적으로, 하도용 조성물은 금속촉매를 적은 함량으로 사용하거나 낮은 온도에서반응을 수행하여 분자량을 작게 형성하고, 중도용 및 상도용 조성물은 금속촉매를 높은 함량으로 사용하거나 높은 온도에서반응을 수행하여 분자량을 높인다. 또한, 바탕조정재 조성물은 금속촉매의 함량을 중간 수준으로 사용하고 높은 온도에서 반응을 수행하여 하도용 조성물 대비 높으며, 중도용 및 상도용 조성물 대비 낮은 분자량을 갖도록 한다.More specifically, compositions for undercoating use a small amount of a metal catalyst or carry out the reaction at a low temperature to form a small molecular weight, while compositions for middle and top coats use a high amount of a metal catalyst or carry out the reaction at a high temperature. This increases the molecular weight. In addition, the background conditioner composition uses a medium level of metal catalyst and performs the reaction at a high temperature, so that it has a higher molecular weight than the base coating composition and a lower molecular weight than the middle and top coating compositions.
이처럼 각 층 모두 공통적으로 나노 세라믹 수지를 포함함으로써 상기 나노 세라믹 수지로 인한 이점을 극대화할 수 있고, 각 층 간의 높은 호환성으로 인해 각층 간의 부착력이우수하도록 복수 개의 층들이 일체화된 거동을 이룰 수 있다.In this way, since each layer includes a nano-ceramic resin in common, the benefits of the nano-ceramic resin can be maximized, and due to the high compatibility between each layer, a plurality of layers can achieve integrated behavior so that the adhesion between each layer is excellent.
방수도장공법Waterproofing painting method
이하 상기 방수도장 조성물을 사용하는 방수도장공법을 도면을 참조하여 설명한다. Hereinafter, a waterproof coating method using the waterproof coating composition will be described with reference to the drawings.
도 1은 일 구현예에 따른 방수도장공법의 시공절차를 보여주는 순서도이고, 도 2는 시공 후 적층 구조를 보여준다. Figure 1 is a flowchart showing the construction procedure of the waterproof coating method according to one embodiment, and Figure 2 shows the laminated structure after construction.
먼저, 바탕면 처리 단계를 수행한다(S1). First, perform the background surface processing step (S1).
바탕면 처리 단계는 도장하고자 하는 구조물 바탕면의 표면 위에 존재하는 이물질을 제거하는 단계로서, 변형, 박리, 풍화된 부분 등의 이물질을 제거하는 바탕면 정리 및 청소작업을 실시한다. The base surface treatment step is a step of removing foreign substances present on the surface of the structure to be painted. The base surface preparation and cleaning work is performed to remove foreign substances such as deformation, peeling, and weathered parts.
다음으로, 상기 바탕면 상에 하도용 조성물을 도포하여 하도층을 시공한다(S2). Next, an undercoating composition is applied on the base surface to construct an undercoat layer (S2).
하도용 조성물은 바탕면 상에 0.10∼0.28㎏/㎡의 도포량으로 도포된다. 만약 그 도포량이 0.10㎏/㎡ 미만으로 도포하면 하도용 조성물과 구조물의 표면과의 충분한 접착이 일어나지 않아 부착성이 저하되며, 0.28㎏/㎡ 이상 도포 시 표면조도가 약해서 접착력이 떨어진다.The primer composition is applied on the base surface at an application rate of 0.10 to 0.28 kg/m2. If the application amount is less than 0.10 kg/m2, sufficient adhesion between the base coating composition and the surface of the structure does not occur, and the adhesion deteriorates. If the application amount is more than 0.28 kg/m2, the surface roughness is weak and the adhesion decreases.
도포 방식은 본 발명에서 특별히 한정하지 않으며, 공지된 바의 스프레이, 로울러, 또는 붓 등을 이용한 코팅 방식이 사용될 수 있다. 특히, 스프레이 코팅 방식을 사용하여 시공 대상의 형상이나 부위와 관계없이 시공할 수 있으며, 수직면, 경사면, 구면, 천정면 등에 사용할 경우, 흘러내림 현상이 발생하여 균일한 두께의 도막을 얻을 수 있다. 본 단계는 원하는 두께의 하도층을 형성하기 위해 1회 이상 수행할 수 있다. The application method is not particularly limited in the present invention, and a known coating method using a spray, roller, or brush may be used. In particular, the spray coating method allows construction regardless of the shape or area of the construction target, and when used on vertical surfaces, inclined surfaces, spherical surfaces, ceiling surfaces, etc., a dripping phenomenon occurs and a uniform thickness of the coating film can be obtained. This step can be performed one or more times to form an undercoat layer of the desired thickness.
다음으로, 상기 하도 상에 중도용 조성물을 도포하여 중도층을 시공한다(S3). Next, a middle coat composition is applied on the base coat to construct a middle coat (S3).
중도용 조성물은 하도층 상에 0.09∼0.30㎏/㎡의 도포량으로 도포된다. 만약 그 도포량이 0.09㎏/㎡ 미만이면 표면을 은폐하기 어려울 뿐만 아니라 층간 부착력도 저하되며, 0.30㎏/㎡ 이상 도포 시에는 도막이 흘러내려 주름 현상이 발생된다. 이때 도포 방식은 상기 하도용 조성물의 도포 방식과 동일하게 수행한다. The intermediate coating composition is applied on the undercoat layer at an application rate of 0.09 to 0.30 kg/m2. If the application amount is less than 0.09 kg/㎡, not only is it difficult to conceal the surface, but the adhesion between layers is also reduced, and if the application amount is more than 0.30 kg/㎡, the coating film flows down and wrinkles occur. At this time, the application method is the same as that of the base coating composition.
다음으로, 상기 중도층 상에 상도용 조성물을 도포하여 상도층을 시공한다(S4). Next, the top coat composition is applied on the middle coat layer to construct the top coat layer (S4).
상도용 조성물은 중도층 상에 0.10∼0.40㎏/㎡의 도포량으로 도포된다. 만약 그 도포량이 0.10㎏/㎡ 미만이면 중도층 표면을 은폐하기 어려울 뿐만 아니라 층간 부착력도 저하되며, 0.40㎏/㎡ 이상 도포시에는 도막이 흘러내려 주름 현상이 발생된다. 이때 코팅 방식은 상기 하도용 조성물의 도포 방식과 동일하게 수행한다. The top coat composition is applied on the middle layer at an application rate of 0.10 to 0.40 kg/m2. If the application amount is less than 0.10 kg/㎡, it is not only difficult to conceal the surface of the middle layer, but also the adhesion between layers is reduced, and when applied more than 0.40 kg/㎡, the coating film flows down and wrinkles occur. At this time, the coating method is performed in the same manner as the application method of the base coating composition.
다음으로, 완전 건조를 수행한다(S5).Next, complete drying is performed (S5).
건조 방식은 본 발명에서 특별히 한정하지 않으며, 상온 건조 또는 열풍 건조일 수 있다.The drying method is not particularly limited in the present invention and may be room temperature drying or hot air drying.
전술한 바의 방수도장공법으로 시공할 경우 도 2에서 도시한 바와 같이 구조물 상에 하도층, 중도층 및 상도층이 순차적으로 적층된 구조를 갖는다. When constructed using the waterproof coating method described above, as shown in FIG. 2, the structure has a structure in which an undercoat layer, a middle coat layer, and an upper coat layer are sequentially laminated on the structure.
필요한 경우 상기 하도처리와 중도처리 사이에 바탕조정단계를 더욱 수행할 수 있다. If necessary, a background adjustment step can be further performed between the basic treatment and the intermediate treatment.
도 3은 다른 구현예에 따른 방수도장공법의 시공절차를 보여주는 순서도이고, 도 4는 시공 후 적층 구조를 보여준다. Figure 3 is a flowchart showing the construction procedure of a waterproof coating method according to another embodiment, and Figure 4 shows the laminated structure after construction.
먼저, 바탕면 처리 단계를 수행한다(S1). First, perform the background surface processing step (S1).
다음으로, 상기 바탕면 상에 하도용 조성물을 도포하여 하도층을 시공한다(S2). Next, an undercoating composition is applied on the base surface to construct an undercoat layer (S2).
다음으로, 상기 하도층 상에 바탕조정재 조성물을 도포하여 바탕조정재층을 시공한다(S3). Next, the base control material layer is constructed by applying the base control material composition on the undercoat layer (S3).
바탕조정재 조성물은 하도층 상에 0.80∼2.50㎏/㎡의 도포량으로 도포된다. 만약 그 도포량이 0.80㎏/㎡ 미만으로 도포하면 하도용 조성물과 구조물의 표면과의 충분한 접착이 일어나지 않아 부착성이 저하되며, 2.50㎏/㎡ 이상 도포 시 표면조도가 약해서 접착력이 떨어진다.The base conditioner composition is applied on the undercoat layer at an application rate of 0.80 to 2.50 kg/m2. If the application amount is less than 0.80 kg/m2, sufficient adhesion between the base coating composition and the surface of the structure does not occur, and the adhesion deteriorates. If the application amount is more than 2.50 kg/m2, the surface roughness is weak and the adhesion decreases.
이때 도포 방식은 본 발명에서 특별히 한정하지 않으며, 공지된 바의 스프레이, 로울러, 또는 붓 등을 이용한 코팅 방식이 사용될 수 있다. 특히, 스프레이 코팅 방식을 사용하여 시공 대상의 형상이나 부위와 관계없이 시공할 수 있으며, 수직면, 경사면, 구면, 천정면 등에 사용할 경우, 흘러내림 현상이 발생하여 균일한 두께의 도막을 얻을 수 있다. 본 단계는 원하는 두께의 바탕조정재층을 형성하기 위해 1회 이상 수행할 수 있다. At this time, the application method is not particularly limited in the present invention, and a known coating method using a spray, roller, or brush may be used. In particular, the spray coating method allows construction regardless of the shape or area of the construction target, and when used on vertical surfaces, inclined surfaces, spherical surfaces, ceiling surfaces, etc., a dripping phenomenon occurs and a uniform thickness of the coating film can be obtained. This step can be performed one or more times to form a background control material layer of the desired thickness.
다음으로, 상기 바탕조정재층 상에 중도용 조성물을 도포하여 중도층을 시공한다(S4). Next, a middle coat composition is applied on the background conditioner layer to construct a middle coat (S4).
다음으로, 상기 중도층 상에 상도용 조성물을 도포하여 상도층을 시공한다(S5). Next, the top coat composition is applied on the middle coat layer to construct the top coat layer (S5).
다음으로, 완전 건조를 수행한다(S6).Next, complete drying is performed (S6).
상기 단계에서 S1, S2, S4 내지 S6의 구체적인 사항은 전술한 바를 따른다. In the above steps, specific details of S1, S2, S4 to S6 follow the above description.
상기 언급한 바의 방수도장공법으로 시공할 경우 도 4에서 도시한 바와 같이 구조물 상에 하도층, 바탕조정재층, 중도층 및 상도층이 순차적으로 적층된 구조를 갖는다. When constructed using the above-mentioned waterproof coating method, as shown in FIG. 4, the structure has a structure in which an undercoat layer, a base conditioner layer, a middle coat layer, and a top coat layer are sequentially laminated on the structure.
본 발명의 방수도장 조성물은 다양한 구조물에 적용될 수 있으며, 이 중에서도 강교량 구조물, 해양 강구조물, 상하수도관 및 배관구조물, 수처리 구조물, 터널, 교량, 콘크리트 바닥, 콘크리트 옥상 등의 방수도장에 적용될 수 있다. The waterproof coating composition of the present invention can be applied to various structures, and among these, it can be applied to waterproof coatings such as steel bridge structures, marine steel structures, water supply and sewage pipes and piping structures, water treatment structures, tunnels, bridges, concrete floors, and concrete rooftops.
특히 방수도장 조성물에 사용하는 나노 세라믹 수지의 분자량과 조성을 한정하여 구조물의 재질에 관계없이 침투력을 높여 부착강도를 향상시키고, 방수도장 후 도막 표면의 접촉각을 높여 내오염성을 개선할 수 있어 시공 후 도막의 오염물 청소가 용이하다.In particular, by limiting the molecular weight and composition of the nano-ceramic resin used in the waterproof coating composition, the penetration power is increased regardless of the material of the structure, thereby improving the adhesion strength, and the contact angle of the surface of the coating film after waterproofing coating can be increased to improve contamination resistance, so that the coating film after construction can be improved. It is easy to clean contaminants.
또한, 도막을 형성하는 층간 부착력이 높일 뿐만 아니라 이들 간의 호환성이 우수하고, 구조물과 도막과의 높은 부착강도로 상기 구조물과 도막의 일체화가 가능하다. 이에 따라 본 발명의 방수도장공법은 구조물의 내구성을 향상시켜 장기유지보수가 용이하므로 비용 절감 등의 장점이 있다. In addition, not only does the adhesion between the layers forming the coating film increase, but the compatibility between them is excellent, and the high adhesion strength between the structure and the coating film makes it possible to integrate the structure and the coating film. Accordingly, the waterproof coating method of the present invention improves the durability of the structure and facilitates long-term maintenance, thereby providing advantages such as cost reduction.
더불어, 본 발명의 방수도장 조성물은 각 층의 분자량 조절로 인해 유연성이 확보되어 내굴곡성이 우수하고, 이는 구조물의 굴곡진 형상에 따라 균일한 도막 시공이 가능하여 시공성이 우수하고, 시공 후 외부 환경이나 외력 등에 의해 도막 깨짐 등이 발생하지 않는다. In addition, the waterproof coating composition of the present invention has excellent bending resistance by securing flexibility by controlling the molecular weight of each layer, which enables uniform coating construction according to the curved shape of the structure, thus providing excellent workability, and is resistant to the external environment after construction. There is no cracking of the coating film due to external forces or other factors.
추가로, 본 발명의 방수도장 조성물의 나노 세라믹 수지는 에폭시나 우레탄 등의 유기도막 대비 불연성을 확보할 수 있다.Additionally, the nano-ceramic resin of the waterproof coating composition of the present invention can secure incombustibility compared to organic coatings such as epoxy or urethane.
[실시예][Example]
이하, 상기한 바와 같이 이루어지는 본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 실시예는 본 발명의 예시 목적을 위한 것일 뿐 본 발명이 이들 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention made as described above can be better understood by the following examples, and the examples are only for the purpose of illustrating the present invention and the present invention is not limited by these examples.
<실시예 1><Example 1>
(1) 방수도장 조성물제조(1) Manufacturing of waterproof coating composition
(1-1) 하도용 조성물의 제조(1-1) Preparation of primer composition
반응기에 메틸트리에톡시실란 30중량부와 글리시독시프로필 트리메톡시실란 10중량부에 입자크기가 10∼30㎚인 실리카졸 25중량부, 티타니아졸 15중량부를 각각 서서히 적하시켰다. 모두 적하시킨 후에 금속촉매로서 알루미늄아세트산베이직4수화물 1중량부를 투입하여 1,500∼2,000rpm의 회전속도로 상온에서 12시간 교반 후 40℃에서 6시간 교반하여 나노 세라믹 수지 (수평균분자량: 200)를 제조하였다. 이때 수평균분자량은 GPC(Gel permeation chromatography)를 이용하여 측정하였다. 상기 제조된 나노 세라믹 수지를 하도용 조성물로 사용하였다.25 parts by weight of silica sol and 15 parts by weight of titaniazole with a particle size of 10 to 30 nm were slowly added dropwise to 30 parts by weight of methyltriethoxysilane and 10 parts by weight of glycidoxypropyl trimethoxysilane in the reactor. After all the ingredients were added dropwise, 1 part by weight of aluminum acetate basic tetrahydrate was added as a metal catalyst and stirred at room temperature for 12 hours at a rotation speed of 1,500 to 2,000 rpm, followed by stirring at 40°C for 6 hours to prepare nano ceramic resin (number average molecular weight: 200). did. At this time, the number average molecular weight was measured using GPC (Gel permeation chromatography). The nano-ceramic resin prepared above was used as a base coating composition.
(1-2) 중도용 조성물의 제조(1-2) Preparation of composition for intermediate use
반응기에 메틸트리에톡시실란 30중량부와 글리시독시프로필 트리메톡시실란 10중량부에 입자크기가 10∼30㎚인 실리카졸 25중량부, 티타니아졸 15중량부를 각각 서서히 적하시켰다. 모두 적하시킨 후에 금속촉매로서 알루미늄아세트산베이직4수화물 2중량부를 투입하여 1,500∼2,000rpm의 회전속도로 60℃에서 12시간 교반 후 90℃에서 6시간 교반하여 나노 세라믹 수지(수평균분자량: 5,000)를 제조하였다. 여기에 무기안료인 이산화티탄 45중량부, 시안블루 15중량부, 분산제인 SYNTHRO PON S 602 1.0중량부, 소포제인 MOUSSEX K-348 SL 0.5중량부, 레벨링제인 MODAREZ K-SL 107 0.5중량부를 각각 투입하여 중도용 조성물을 제조하였다.25 parts by weight of silica sol and 15 parts by weight of titaniazole with a particle size of 10 to 30 nm were slowly added dropwise to 30 parts by weight of methyltriethoxysilane and 10 parts by weight of glycidoxypropyl trimethoxysilane in the reactor. After all the ingredients were added dropwise, 2 parts by weight of aluminum acetate basic tetrahydrate were added as a metal catalyst and stirred at 60°C for 12 hours at a rotation speed of 1,500 to 2,000 rpm and then stirred at 90°C for 6 hours to produce a nano ceramic resin (number average molecular weight: 5,000). Manufactured. Here, 45 parts by weight of inorganic pigment titanium dioxide, 15 parts by weight of cyan blue, 1.0 parts by weight of SYNTHRO PON S 602 as a dispersant, 0.5 parts by weight of MOUSSEX K-348 SL as an antifoaming agent, and 0.5 parts by weight of MODAREZ K-SL 107 as a leveling agent were added. A composition for intermediate use was prepared.
(1-3) 상도용 조성물의 제조(1-3) Preparation of composition for top coat
(1-2)에서 제조한 중도용 조성물 160중량부에 불소실란으로 헵타데카플루오르테트라데실트리메톡시실란 4중량부, 불소수지로서 폴리테트라플루오르에틸렌 8중량부를 첨가시키고 상도용 조성물을 제조하였다.To 160 parts by weight of the middle coat composition prepared in (1-2), 4 parts by weight of heptadecafluorotetradecyltrimethoxysilane as a fluorosilane and 8 parts by weight of polytetrafluoroethylene as a fluororesin were added to prepare a top coat composition.
(2) 방수도장 시공(2) Waterproofing painting construction
콘크리트 표면 위에 이물질을 제거하는 바탕면 정리 및 청소를 실시한 후에 상기 (1-1)에서 제조한 하도용 조성물을 0.18㎏/㎡의 도포량으로 도포하였다. 다음으로, 상기 (1-2)에서 제조한 중도용 조성물을 0.26㎏/㎡의 도포량으로 도포하였다. 다음으로, 상기 (1-3)에서 제조한 상도용 조성물을 0.26㎏/㎡의 도포량으로 도포한 후, 상온에서 완전 건조를 수행하였다.After preparing and cleaning the base surface to remove foreign substances on the concrete surface, the primer composition prepared in (1-1) above was applied at an application rate of 0.18 kg/m2. Next, the intermediate coating composition prepared in (1-2) above was applied at an application rate of 0.26 kg/m2. Next, the top coating composition prepared in (1-3) above was applied at an application rate of 0.26 kg/m2, and then completely dried at room temperature.
<실시예 2><Example 2>
구조물로 콘크리트 대신 강판(강구조물)을 사용한 것을 제외하고, 실시예 1과 동일하게 수행하였다. The same procedure as Example 1 was performed, except that steel plates (steel structures) were used instead of concrete as the structure.
<실시예 3><Example 3>
실시예 1의 (1-1), (1-2) 및 (1-3)에서 메틸트리에톡시실란 30중량부 대신에 10중량부를 사용하여 하도용, 중도용 및 상도용 조성물을 제조하였다. 이를 이용하여 동일한 방식으로 방수도장을 수행하였다.In Example 1 (1-1), (1-2), and (1-3), 10 parts by weight of methyltriethoxysilane was used instead of 30 parts by weight to prepare compositions for base, middle, and top coats. Using this, waterproofing was performed in the same manner.
<실시예 4><Example 4>
실시예 1의 (1-1)의 하도용 조성물 제조시 금속촉매로써 알루미늄아세트산베이직4수화물 1중량부 대신 5중량부를 사용한 것을 제외하고, 실시예 1과 동일하게 수행하였다. When preparing the primer composition of Example 1 (1-1), the same procedure as Example 1 was performed, except that 5 parts by weight of basic aluminum acetate tetrahydrate was used as a metal catalyst instead of 1 part by weight.
<실시예 5><Example 5>
실시예 1의 (1-1)의 하도용 조성물 제조시 실리카졸 25중량부 대신 40중량부, 티타니아졸 10중량부 대신 20중량부로 사용한 것을 제외하고, 실시예 1과 동일하게 수행하였다. When preparing the primer composition of Example 1 (1-1), the same procedure as Example 1 was performed, except that 40 parts by weight of silica sol was used instead of 25 parts by weight, and 20 parts by weight of titaniazole was used instead of 10 parts by weight.
<실시예 6><Example 6>
실시예 1의 (1-2)의 중도용 조성물 제조시 분산제로 SYNTHRO PON S 602 1.0중량부 대신 1.5중량부를 사용하고, 소포제인 MOUSSEX K-348 SL 0.5중량부 대신 1중량부로 사용하고, 레벨링제인 MODAREZ K-SL 107 0.5중량부 대신 1중량부로 사용한 것을 제외하고, 실시예 1과 동일하게 수행하였다. When preparing the intermediate composition of Example 1 (1-2), 1.5 parts by weight of SYNTHRO PON S 602 was used instead of 1.0 parts by weight as a dispersant, 1 part by weight of MOUSSEX K-348 SL, an antifoaming agent, was used instead of 0.5 parts by weight, and a leveling agent was used instead of 0.5 parts by weight. The same procedure as Example 1 was performed, except that 1 part by weight of MODAREZ K-SL 107 was used instead of 0.5 part by weight.
<실시예 7><Example 7>
상기 실시예 1에서 하도용 조성물을 0.18㎏/㎡ 도포하는 대신에 0.1㎏/㎡ 도포하는 것으로 제외하고, 실시예 1과 동일하게 수행하였다. The same procedure as Example 1 was performed, except that instead of applying 0.18 kg/m2 of the undercoat composition in Example 1, 0.1 kg/m2 was applied.
<실시예 8><Example 8>
상기 실시예 1에서 중도용 조성물을 0.26㎏/㎡ 도포하는 대신에 0.1㎏/㎡ 도포하는 것으로 제외하고, 실시예 1과 동일하게 수행하였다. The same procedure as Example 1 was performed, except that instead of applying 0.26 kg/m 2 of the intermediate composition in Example 1, 0.1 kg/m 2 was applied.
<실시예 9><Example 9>
(1) 방수도장 조성물 제조(1) Manufacturing of waterproof coating composition
(1-1) 하도용 조성물의 제조(1-1) Preparation of primer composition
실시예 1의 (1-1)과 동일한 방식으로 수행하여 하도용 조성물을 제조하였다.A primer composition was prepared in the same manner as (1-1) of Example 1.
(1-2) 중도용 조성물의 제조(1-2) Preparation of composition for intermediate use
실시예 1의 (1-2)와 동일한 방식으로 수행하여 중도용 조성물을 제조하였다.A composition for intermediate use was prepared in the same manner as (1-2) of Example 1.
(1-3) 상도용 조성물의 제조(1-3) Preparation of composition for top coat
실시예 1의 (1-3)과 동일한 방식으로 수행하여 상도용 조성물을 제조하였다.A topcoat composition was prepared in the same manner as (1-3) of Example 1.
(1-4) 바탕조정재 조성물의 제조(1-4) Preparation of background conditioner composition
반응기에 메틸트리에톡시실란 30중량부와 글리시독시프로필 트리메톡시실란 10중량부에 입자크기가 10∼30㎚인 실리카졸 25중량부, 티타니아졸 15중량부를 각각 서서히 적하시켰다. 모두 적하시킨 후에 금속촉매로서 알루미늄아세트산베이직4수화물 1.5중량부를 투입하여 1,500∼2,000rpm의 회전속도로 60℃에서 12시간 교반 후 90℃에서 6시간 교반하여 나노 세라믹 수지 (수평균분자량: 2,500)를 제조하였다.25 parts by weight of silica sol and 15 parts by weight of titaniazole with a particle size of 10 to 30 nm were slowly added dropwise to 30 parts by weight of methyltriethoxysilane and 10 parts by weight of glycidoxypropyl trimethoxysilane in the reactor. After all were added dropwise, 1.5 parts by weight of aluminum acetate basic tetrahydrate was added as a metal catalyst and stirred at 60°C for 12 hours at a rotation speed of 1,500 to 2,000 rpm and then stirred at 90°C for 6 hours to form a nano ceramic resin (number average molecular weight: 2,500). Manufactured.
여기에 규사 7호 150중량부, 포틀랜드시멘트 50중량부, 탈크 6중량부를 투입하여 서로 뭉치지 않도록 충분히 교반하여 바탕조정재 조성물을 제조하였다.Here, 150 parts by weight of silica sand No. 7, 50 parts by weight of Portland cement, and 6 parts by weight of talc were added and stirred sufficiently to prevent agglomeration to prepare a base conditioner composition.
(2) 방수도장 시공(2) Waterproofing painting construction
콘크리트 표면 위에 이물질을 제거하는 바탕면 정리 및 청소를 실시한 후에 상기 (1-1)에서 제조한 하도용 조성물을 0.18㎏/㎡의 도포량으로 도포하였다. 다음으로, 상기 (1-4)에서 제조한 바탕조정재 조성물을 1.50㎏/㎡의 도포량으로 도포하였다. 다음으로, 상기 (1-2)에서 제조한 중도용 조성물을 0.26㎏/㎡의 도포량으로 도포하였다. 다음으로, 상기 (1-3)에서 제조한 상도용 조성물을 0.26㎏/㎡의 도포량으로 도포한 후, 상온에서 완전 건조를 수행하였다.After preparing and cleaning the base surface to remove foreign substances on the concrete surface, the primer composition prepared in (1-1) above was applied at an application rate of 0.18 kg/m2. Next, the base conditioner composition prepared in (1-4) above was applied at an application rate of 1.50 kg/m2. Next, the intermediate coating composition prepared in (1-2) above was applied at an application rate of 0.26 kg/m2. Next, the top coating composition prepared in (1-3) above was applied at an application rate of 0.26 kg/m2, and then completely dried at room temperature.
<실시예 10><Example 10>
상기 실시예 9에서 바탕조정재 조성물을 1.50㎏/㎡ 도포하는 대신에 1.75㎏/㎡ 도포하는 것으로 제외하고, 실시예 9와 동일하게 수행하였다. The same procedure as Example 9 was performed, except that instead of applying 1.50 kg/m2 of the background conditioner composition in Example 9, 1.75 kg/m2 was applied.
<비교예 1> <Comparative Example 1>
특허등록 10-2184866호의 실시예 1과 동일하게 수행하였다.It was performed in the same manner as Example 1 of Patent Registration No. 10-2184866.
(1) 방수도막 조성물 제조(1) Preparation of waterproof coating composition
(1-1) 하도용 조성물의 제조(1-1) Preparation of primer composition
반응기에 메틸트리메톡시실란 300중량부에 입자크기가 10∼30nm인 실리카졸 150중량부, 티타니아졸 220중량부를 각각 서서히 적하시켰다. 모두 적하시킨 후에 촉매로서 트리에탄올아민 20중량부를 투입하여 12시간 동안 계속 반응시켜 나노 세라믹 수지(수평균분자량: 3,000)를 제조하였다. 상기 제조된 나노 세라믹 수지를 하도용 조성물로 사용하였다.150 parts by weight of silica sol with a particle size of 10 to 30 nm and 220 parts by weight of titaniazole were slowly added dropwise to 300 parts by weight of methyltrimethoxysilane in the reactor. After all was added dropwise, 20 parts by weight of triethanolamine was added as a catalyst and the reaction was continued for 12 hours to prepare nano ceramic resin (number average molecular weight: 3,000). The nano-ceramic resin prepared above was used as a base coating composition.
(1-2) 중도용 조성물의 제조(1-2) Preparation of composition for intermediate use
상기 하도용 조성물 95중량부에 무기안료인 이산화티탄 60중량부, 분산제인 DISPERBYK-110 10중량부, 소포제인 BYK-066N 0.5중량부, 레벨링제인 BYK-333 0.5중량부를 각각 투입하여 중도용 조성물을 제조하였다.To 95 parts by weight of the base coating composition, 60 parts by weight of titanium dioxide as an inorganic pigment, 10 parts by weight of DISPERBYK-110 as a dispersant, 0.5 parts by weight of BYK-066N as an antifoaming agent, and 0.5 parts by weight of BYK-333 as a leveling agent were added to prepare a composition for a middle coat. Manufactured.
(1-3) 상도용 조성물의 제조(1-3) Preparation of composition for top coat
상기 중도용 조성물 157중량부에 헵타데카플루오르테트라데실트리메톡시실란 4중량부, 불소수지로서 불화폴리비닐리덴 7중량부를 첨가시키고 80℃에서 24시간 숙성하여 상도용 조성물을 제조하였다.To 157 parts by weight of the middle coat composition, 4 parts by weight of heptadecafluorotetradecyltrimethoxysilane and 7 parts by weight of polyvinylidene fluoride as a fluororesin were added and aged at 80°C for 24 hours to prepare a top coat composition.
(2) 방수도장 시공(2) Waterproofing painting construction
콘크리트 표면 위에 이물질을 제거하는 바탕면 정리 및 청소를 실시한 후에 상기 (1-1)에서 제조한 하도용 조성물을 0.14㎏/㎡의 도포량으로 도포하였다. 다음으로, 상기 (1-2)에서 제조한 중도용 조성물을 0.25㎏/㎡의 도포량으로 도포하였다. 다음으로, 상기 (1-3)에서 제조한 상도용 조성물을 0.25㎏/㎡의 도포량으로 도포한 후, 상온에서 완전 건조를 수행하였다.After preparing and cleaning the base surface to remove foreign substances on the concrete surface, the primer composition prepared in (1-1) above was applied at an application rate of 0.14 kg/m2. Next, the intermediate coating composition prepared in (1-2) above was applied at an application rate of 0.25 kg/m2. Next, the top coating composition prepared in (1-3) above was applied at an application rate of 0.25 kg/m2, and then completely dried at room temperature.
<비교예 2> <Comparative Example 2>
특허등록 10-1892899호의 실시예 1과 동일하게 수행하였다. It was performed in the same manner as Example 1 of Patent Registration No. 10-1892899.
(1) 방수도장 조성물 제조(1) Manufacturing of waterproof coating composition
(1-1) 하도용 조성물의 제조(1-1) Preparation of primer composition
반응기에 메틸트리메톡시실란 150중량부, γ-아미노프로필 트리에톡시실란 30중량부를 혼합한 다음 입자크기가 10∼20nm인 실리카졸 60중량부, 티타니아졸 60중량부, 알루미나졸 50중량부를 각각 서서히 적하시켰다. 모두 적하시킨 후에 지르코늄아세틸아세토네이트 10중량부, 지르코늄 아세테이트 5중량부, 알루미늄 아세테이트 10중량부, 알루미늄 아세틸아세토네이트 5중량부를 투입하여 12시간 동안 계속 반응시켜 나노 세라믹 수지(수평균분자량: 3,000)를 제조하였다. 상기 제조된 나노 세라믹 수지를 하도용 조성물로 사용하였다.150 parts by weight of methyltrimethoxysilane and 30 parts by weight of γ-aminopropyl triethoxysilane were mixed in a reactor, and then 60 parts by weight of silica sol with a particle size of 10 to 20 nm, 60 parts by weight of titaniazole, and 50 parts by weight of alumina sol were added, respectively. It was added dropwise gradually. After all were added dropwise, 10 parts by weight of zirconium acetylacetonate, 5 parts by weight of zirconium acetate, 10 parts by weight of aluminum acetate, and 5 parts by weight of aluminum acetylacetonate were added and the reaction was continued for 12 hours to produce a nano ceramic resin (number average molecular weight: 3,000). Manufactured. The nano-ceramic resin prepared above was used as a base coating composition.
(1-2) 중도용 조성물의 제조(1-2) Preparation of composition for intermediate use
상기 하도용 조성물 380중량부에 무기안료인 이산화티탄 180중량부, 시안블루 50중량부, 분산제인 BYK-110 2.5중량부, 소포제인 BYK-066N 2.0중량부, 레벨링제인 BYK-333 1.5중량부를 각각 투입하여 중도용 조성물을 제조하였다.To 380 parts by weight of the base coating composition, 180 parts by weight of inorganic pigment titanium dioxide, 50 parts by weight of cyan blue, 2.5 parts by weight of BYK-110 as a dispersant, 2.0 parts by weight of BYK-066N as an antifoaming agent, and 1.5 parts by weight of BYK-333 as a leveling agent. was added to prepare a composition for intermediate use.
(1-3) 상도용 조성물의 제조(1-3) Preparation of composition for top coat
상기 중도용 조성물 616중량부에 Heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane 5중량부, Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane 5중량부의 불소실란을 첨가시키고 80℃에서 24시간 숙성하여 상도용 조성물을 제조하였다.To 616 parts by weight of the intermediate composition, 5 parts by weight of Heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane and 5 parts by weight of Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane were added and aged at 80°C for 24 hours. A do-it-yourself composition was prepared.
(1-4) 바탕조정재 조성물 제조(1-4) Preparation of background conditioner composition
바탕조정재 조성물은 상기 (1-1)의 하도용 조성물 380중량부에 시멘트 342중량부, 규사8호(80mesh 이상, 0.2㎜ 이하) 342중량부, 플라이애시 76중량부를 투입하여 서로 뭉치지 않도록 충분히 교반하여 제조하였다.For the background conditioner composition, add 342 parts by weight of cement, 342 parts by weight of silica sand No. 8 (80 mesh or more, 0.2 mm or less), and 76 parts by weight of fly ash to 380 parts by weight of the base coating composition of (1-1) above and stir sufficiently to prevent agglomeration. It was manufactured.
(2) 방수도장 시공(2) Waterproofing painting construction
콘크리트 콘크리트 표면 위에 이물질을 제거하는 바탕면 정리 및 청소를 실시한 후에 상기 (1-1)에서 제조한 하도용 조성물을 0.14㎏/㎡의 도포량으로 도포하였다. 다음으로, 상기 (1-4)에서 제조한 바탕조정재 조성물을 1.50㎏/㎡의 도포량으로 도포하였다. 다음으로, 상기 (1-2)에서 제조한 중도용 조성물을 0.25㎏/㎡의 도포량으로 도포하였다. 다음으로, 상기 (1-3)에서 제조한 상도용 조성물을 0.25㎏/㎡의 도포량으로 도포한 후, 상온에서 완전 건조를 수행하였다.Concrete After preparing and cleaning the base surface to remove foreign substances on the concrete surface, the primer composition prepared in (1-1) above was applied at an application rate of 0.14 kg/m2. Next, the base conditioner composition prepared in (1-4) above was applied at an application rate of 1.50 kg/m2. Next, the intermediate coating composition prepared in (1-2) above was applied at an application rate of 0.25 kg/m2. Next, the top coating composition prepared in (1-3) above was applied at an application rate of 0.25 kg/m2, and then completely dried at room temperature.
<시험예 1><Test Example 1>
실시예 및 비교예의 방수도장공법을 평가하였다. 이때 실시예 2는 강판에 코팅되어 침투성 실험에서는 제외하였다.The waterproofing coating methods of Examples and Comparative Examples were evaluated. At this time, Example 2 was coated on a steel plate and was excluded from the permeability test.
[평가 항목][Evaluation items]
1) 내오염성: KS M 3802에 준하는 방법으로 평가하였다. 1) Contamination resistance: Evaluated using a method based on KS M 3802.
2) 부착강도: 내오염성 후 부착강도는 KS F 4716에 의거 평가하였다.2) Adhesion strength: Adhesion strength after contamination resistance was evaluated according to KS F 4716.
3) 침투깊이: KS F 4930에 준하는 방법으로 평가하였다.3) Penetration depth: Evaluated using a method based on KS F 4930.
4) 접촉각: 접촉각은 물을 이용하여 접촉각 측정기로 평가하였다.4) Contact angle: The contact angle was evaluated with a contact angle meter using water.
[평가 결과][Evaluation results]
(△L)Staining resistance
(△L)
(MPa)Adhesion strength after staining resistance
(MPa)
상기 표에서 접촉각의 수치가 높을수록 도막의 소수성 경향이 증가함을 의미하며, 상기 소수성으로 인해 다양한 무기 및 유기 오염 물질에 대한 내오염성이 증가한다. 내오염성의 증가할수록 △L로 표시되는 색상 변화 수치가 작아진다. 또한, 침투깊이의 수치가 증가하는 것은 구조물에 대한 부착강도가 증가하는 것을 의미한다. In the table above, a higher contact angle value means an increase in the hydrophobicity of the coating film, and the hydrophobicity increases the contamination resistance to various inorganic and organic contaminants. As contamination resistance increases, the color change value indicated by △L decreases. Additionally, an increase in the penetration depth value means an increase in the adhesion strength to the structure.
하도층/중도층/상도층으로 구성되는 실시예 1 내지 실시예 8의 도막은 적어도 110도 이상의 접촉각을 가지며, △L로 표시되는 색상 변화가 0.1 수준으로 비교예 1과 비교하여 내오염성의 수치가 크게 개선되었다. 이와 더불어 실시예 1 내지 8의 도막은 침투성이 높아 부착강도 또한 비교예 1의 도막 대비 우수한 결과를 나타내었다.The coating films of Examples 1 to 8, which are composed of a base layer/middle layer/top layer, have a contact angle of at least 110 degrees, and the color change indicated by △L is at the level of 0.1, which is a value of stain resistance compared to Comparative Example 1. has been greatly improved. In addition, the coating films of Examples 1 to 8 had high permeability and showed excellent adhesion strength compared to the coating film of Comparative Example 1.
또한, 하도층/바탕조정재층/중도층/상도층으로 구성되는 실시예 9 및 실시예 10 및 비교예 2의 도막을 비교하면, 분자량이 조절된 나노 세라믹 수지의 사용으로 실시예 9 및 실시예 10의 도막이 내오염성 및 부착강도 면에서 비교예 2의 도막 대비 월등히 개선된 효과를 나타내었다.In addition, when comparing the coating films of Examples 9 and 10 and Comparative Example 2, which are composed of the base layer/base conditioner layer/middle layer/top coat layer, the use of nano-ceramic resin with an adjusted molecular weight shows that Examples 9 and Examples The coating film of No. 10 showed significantly improved effects compared to the coating film of Comparative Example 2 in terms of stain resistance and adhesion strength.
Claims (25)
복합실란 20∼50중량부, 금속촉매 1∼5중량부, 및 금속산화물졸 30∼60중량부로 반응시켜 제조된 수평균분자량이 4,000 내지 6,000인 나노 세라믹 수지에 무기안료 50∼80중량부, 및 첨가제 1∼5중량부를 포함하는 중도용 조성물, 및
복합실란 20∼50중량부, 금속촉매 1∼5중량부, 및 금속산화물졸 30∼60중량부로 반응시켜 제조된 수평균분자량이 4,000 내지 6,000인 나노 세라믹 수지에 무기안료 50∼80중량부 및 첨가제 1∼5중량부를 포함하는 조성물 160중량부에 대해 헵타데카플루오로테트라데실트리메톡시실란, 및 1H,1H,2H,2H-퍼플루오로데실트리에톡시실란으로 이루어진 군에서 선택된 1종 이상의 불소실란 3∼8중량부, 및 폴리테트라플루오르에틸렌, 불화폴리비닐리덴, 및 PFA(Perfluoroalkoxy alkane)로 이루어진 군에서 선택된 1종 이상의 불소수지 3∼10중량부를 포함하는 상도용 조성물을 포함하고,
상기 복합실란은 메틸트리메톡시실란, 메틸트리에톡시실란, 테트라에톡시실란, 디메틸디메톡시실란, 디페닐디메톡시실란, 글리시독시프로필 트리메톡시실란, 및 아미노프로필 트리에톡시실란으로 이루어진 군에서 선택된 1종 이상이고,
상기 금속산화물졸은 실리카졸, 알루미나졸 및 티타니아졸로 이루어진 군에서 선택된 1종 이상이고, 평균 입자크기가 10∼30㎚이고, 고체 함량이 5∼30 중량%이며,
상기 금속촉매는 징크아세테이트2수화물, 알루미늄아세트산베이직4수화물, 칼슘아세테이트1수화물 및 소듐아세테이트3수화물로 이루어진 군에서 선택된 1종 이상인, 방수도장 조성물.
A primer composition comprising a nano-ceramic resin having a number average molecular weight of 100 to 300 prepared by reacting 20 to 50 parts by weight of composite silane, 1 to 5 parts by weight of metal catalyst, and 30 to 60 parts by weight of metal oxide sol,
50 to 80 parts by weight of an inorganic pigment in a nano-ceramic resin with a number average molecular weight of 4,000 to 6,000 prepared by reacting 20 to 50 parts by weight of composite silane, 1 to 5 parts by weight of a metal catalyst, and 30 to 60 parts by weight of a metal oxide sol, and A composition for intermediate use containing 1 to 5 parts by weight of additives, and
Nanoceramic resin with a number average molecular weight of 4,000 to 6,000 prepared by reacting 20 to 50 parts by weight of composite silane, 1 to 5 parts by weight of metal catalyst, and 30 to 60 parts by weight of metal oxide sol, 50 to 80 parts by weight of inorganic pigment and additives At least one fluorine selected from the group consisting of heptadecafluorotetradecyltrimethoxysilane and 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane for 160 parts by weight of a composition containing 1 to 5 parts by weight. A top coating composition comprising 3 to 8 parts by weight of silane and 3 to 10 parts by weight of at least one fluororesin selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride, and PFA (perfluoroalkoxy alkane),
The composite silane consists of methyltrimethoxysilane, methyltriethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, diphenyldimethoxysilane, glycidoxypropyl trimethoxysilane, and aminopropyl triethoxysilane. It is one or more types selected from the group,
The metal oxide sol is at least one selected from the group consisting of silica sol, alumina sol, and titania sol, has an average particle size of 10 to 30 nm, and a solid content of 5 to 30% by weight,
A waterproof coating composition wherein the metal catalyst is at least one selected from the group consisting of zinc acetate dihydrate, aluminum acetate basic tetrahydrate, calcium acetate monohydrate, and sodium acetate trihydrate.
추가로 복합실란 20∼50중량부, 금속촉매 1∼5중량부, 및 금속산화물졸 30∼60중량부로 반응시켜 제조된 나노 세라믹 수지에 규사 5∼7호 120∼180중량부, 포틀랜드시멘트 30∼70중량부, 및 탈크 3∼10중량부를 포함하는 바탕조정재 조성물을 포함하는, 방수도장 조성물.
According to paragraph 1,
In addition, 120 to 180 parts by weight of silica sand No. 5 to 7 and 30 to 180 parts by weight of Portland cement are added to the nano ceramic resin prepared by reacting 20 to 50 parts by weight of composite silane, 1 to 5 parts by weight of metal catalyst, and 30 to 60 parts by weight of metal oxide sol. A waterproof coating composition comprising a base conditioner composition containing 70 parts by weight and 3 to 10 parts by weight of talc.
상기 바탕조정재 조성물에 포함되는 나노 세라믹 수지는 수평균분자량이 2,000 내지 3,000인, 방수도장 조성물.
According to paragraph 4,
The nano-ceramic resin included in the background control material composition is a waterproof coating composition having a number average molecular weight of 2,000 to 3,000.
상기 무기안료는 이산화티탄, 및 시안블루 중에서 선택된 1종 이상인, 방수도장 조성물.
According to paragraph 1,
A waterproof coating composition wherein the inorganic pigment is at least one selected from titanium dioxide and cyan blue.
상기 첨가제는 분산제, 소포제, 및 레벨링제를 포함하는, 방수도장 조성물.
According to paragraph 1,
A waterproof coating composition wherein the additive includes a dispersant, an antifoaming agent, and a leveling agent.
S2) 상기 바탕면에 복합실란 20∼50중량부, 금속촉매 1∼5중량부, 및 금속산화물졸 30∼60중량부로 반응시켜 제조된 수평균분자량이 100 내지 300인 나노 세라믹 수지를 포함하는 하도용 조성물을 도포하여 하도층을 시공하는 단계;
S3) 상기 하도층 상에 복합실란 20∼50중량부, 금속촉매 1∼5중량부, 및 금속산화물졸 30∼60중량부로 반응시켜 제조된 수평균분자량이 4,000 내지 6,000인 나노 세라믹 수지에 무기안료 50∼80중량부, 및 첨가제 1∼5중량부를 포함하는 중도용 조 성물을 도포하여 중도층을 시공하는 단계; 및
S4) 상기 중도층 상에 복합실란 20∼50중량부, 금속촉매 1∼5중량부, 및 금속산화물졸 30∼60중량부로 반응시켜 제조된 수평균분자량이 4,000 내지 6,000인 나노 세라믹 수지에 무기안료 50∼80중량부 및 첨가제 1∼5중량부를 첨가하여 얻어지는 조성물 160중량부에 대해 헵타데카플루오로테트라데실트리메톡시실란, 및 1H,1H,2H,2H-퍼플루오로데실트리에톡시실란으로 이루어진 군에서 선택된 1종 이상의 불소실란 3∼8중량부, 및 폴리테트라플루오르에틸렌, 불화폴리비닐리덴, 및 PFA(Perfluoroalkoxy alkane)로 이루어진 군에서 선택된 1종 이상의 불소수지 3∼10중량부를 포함하는 상도용 조성물을 도포하여 상도층을 시공하는 단계;를 포함하고,
상기 복합실란은 메틸트리메톡시실란, 메틸트리에톡시실란, 테트라에톡시실란, 디메틸디메톡시실란, 디페닐디메톡시실란, 글리시독시프로필 트리메톡시실란, 및 아미노프로필 트리에톡시실란으로 이루어진 군에서 선택된 1종 이상이고,
상기 금속산화물졸은 실리카졸, 알루미나졸 및 티타니아졸로 이루어진 군에서 선택된 1종 이상이고, 평균 입자크기가 10∼30㎚이고, 고체 함량이 5∼30 중량%이며,
상기 금속촉매는 징크아세테이트2수화물, 알루미늄아세트산베이직4수화물, 칼슘아세테이트1수화물 및 소듐아세테이트3수화물로 이루어진 군에서 선택된 1종 이상인, 방수도장공법.
S1) Base surface processing step of the structure;
S2) a nano-ceramic resin having a number average molecular weight of 100 to 300 prepared by reacting the base surface with 20 to 50 parts by weight of composite silane, 1 to 5 parts by weight of metal catalyst, and 30 to 60 parts by weight of metal oxide sol; Constructing an undercoat layer by applying a coating composition;
S3) Inorganic pigment in nano-ceramic resin with a number average molecular weight of 4,000 to 6,000 prepared by reacting 20 to 50 parts by weight of composite silane, 1 to 5 parts by weight of metal catalyst, and 30 to 60 parts by weight of metal oxide sol on the undercoating layer. Constructing a middle layer by applying a middle coat composition containing 50 to 80 parts by weight and 1 to 5 parts by weight of an additive; and
S4) Inorganic pigment in nano-ceramic resin with a number average molecular weight of 4,000 to 6,000 prepared by reacting 20 to 50 parts by weight of composite silane, 1 to 5 parts by weight of metal catalyst, and 30 to 60 parts by weight of metal oxide sol on the intermediate layer. Heptadecafluorotetradecyltrimethoxysilane and 1H,1H,2H,2H-perfluorodecyltriethoxysilane for 160 parts by weight of the composition obtained by adding 50 to 80 parts by weight and 1 to 5 parts by weight of additives. A phase containing 3 to 8 parts by weight of at least one fluorosilane selected from the group consisting of, and 3 to 10 parts by weight of at least one fluororesin selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride, and PFA (Perfluoroalkoxy alkane). Comprising: applying a coating composition to construct a top coat layer;
The composite silane consists of methyltrimethoxysilane, methyltriethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, diphenyldimethoxysilane, glycidoxypropyl trimethoxysilane, and aminopropyl triethoxysilane. It is one or more types selected from the group,
The metal oxide sol is at least one selected from the group consisting of silica sol, alumina sol, and titania sol, has an average particle size of 10 to 30 nm, and a solid content of 5 to 30% by weight,
The metal catalyst is one or more selected from the group consisting of zinc acetate dihydrate, aluminum acetate basic tetrahydrate, calcium acetate monohydrate, and sodium acetate trihydrate.
상기 하도용 조성물은 0.10∼0.28㎏/㎡의 도포량으로 도포하는, 방수도장공법.
According to clause 13,
A waterproof coating method in which the base coating composition is applied at an application rate of 0.10 to 0.28 kg/m2.
상기 중도용 조성물은 0.09∼0.30㎏/㎡의 도포량으로 도포하는, 방수도장공법.
According to clause 13,
A waterproof coating method in which the intermediate coating composition is applied at an application rate of 0.09 to 0.30 kg/m2.
상기 상도용 조성물은 0.10∼0.40㎏/㎡의 도포량으로 도포하는, 방수도장공법.
According to clause 13,
A waterproof coating method in which the top coating composition is applied at an application rate of 0.10 to 0.40 kg/m2.
추가로 상기 S2) 이후 S3) 전에 복합실란 20∼50중량부, 금속촉매 1∼5중량부, 및 금속산화물졸 30∼60중량부로 반응시켜 제조된 나노 세라믹 수지에 규사 5∼7호 120∼180중량부, 포틀랜드시멘트 30∼70중량부, 및 탈크 3∼10중량부를 포함하는 바탕조정재 조성물을 도포하여 하도층 및 중도층 사이에 바탕조정재층을 시공하는. 방수도장공법.
According to clause 13,
Additionally, after S2) and before S3), silica sand No. 5-7 120-180 is added to the nano-ceramic resin prepared by reacting 20 to 50 parts by weight of composite silane, 1 to 5 parts by weight of metal catalyst, and 30 to 60 parts by weight of metal oxide sol. Parts by weight, 30 to 70 parts by weight of Portland cement, and 3 to 10 parts by weight of talc are applied to construct a base conditioner layer between the base layer and the middle layer. Waterproofing painting method.
상기 바탕조정재 조성물은 0.80∼2.50㎏/㎡의 도포량으로 도포하는, 방수도장공법.
According to clause 17,
A waterproof coating method in which the background conditioner composition is applied at an application rate of 0.80 to 2.50 kg/m2.
상기 무기안료는 이산화티탄, 및 시안블루 중에서 선택된 1종 이상인, 방수도장공법.
According to clause 13,
A waterproof coating method wherein the inorganic pigment is at least one selected from titanium dioxide and cyan blue.
상기 첨가제는 분산제, 소포제, 및 레벨링제를 포함하는, 방수도장공법.
According to clause 13,
The additive includes a dispersing agent, an antifoaming agent, and a leveling agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020240031607A KR102687133B1 (en) | 2024-03-05 | 2024-03-05 | Waterproof coating composition with improving anti-contamination and adhesion strength, and Method for Waterproof and Coating Using the Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020240031607A KR102687133B1 (en) | 2024-03-05 | 2024-03-05 | Waterproof coating composition with improving anti-contamination and adhesion strength, and Method for Waterproof and Coating Using the Same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102687133B1 true KR102687133B1 (en) | 2024-07-22 |
Family
ID=92172602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020240031607A KR102687133B1 (en) | 2024-03-05 | 2024-03-05 | Waterproof coating composition with improving anti-contamination and adhesion strength, and Method for Waterproof and Coating Using the Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102687133B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170044282A (en) * | 2015-10-15 | 2017-04-25 | 티오켐 주식회사 | Method for treating to protect an object including water proofing sheet and Silane coating agent for treating to protect an object |
KR20170044283A (en) * | 2015-10-15 | 2017-04-25 | 티오켐 주식회사 | Method for treating to protect an object including protecting layer and Silane coating agent for treating to protect an object |
KR101892899B1 (en) | 2018-04-11 | 2018-10-04 | 티오켐 주식회사 | Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance & Adhesion Strength and Method for Waterproof and Coating Thereof |
KR102184866B1 (en) | 2020-07-29 | 2020-12-02 | 티오켐 주식회사 | Ceramic Coating Agent Having Mixed Silane and Method for Waterproof and Coating Thereof |
-
2024
- 2024-03-05 KR KR1020240031607A patent/KR102687133B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170044282A (en) * | 2015-10-15 | 2017-04-25 | 티오켐 주식회사 | Method for treating to protect an object including water proofing sheet and Silane coating agent for treating to protect an object |
KR20170044283A (en) * | 2015-10-15 | 2017-04-25 | 티오켐 주식회사 | Method for treating to protect an object including protecting layer and Silane coating agent for treating to protect an object |
KR101892899B1 (en) | 2018-04-11 | 2018-10-04 | 티오켐 주식회사 | Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance & Adhesion Strength and Method for Waterproof and Coating Thereof |
KR102184866B1 (en) | 2020-07-29 | 2020-12-02 | 티오켐 주식회사 | Ceramic Coating Agent Having Mixed Silane and Method for Waterproof and Coating Thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100661494B1 (en) | Polymer coating composition for protecting neutralization and salt damage of concrete structures | |
KR100918085B1 (en) | Adiabatic paint composition for building structure and method for adiabatic construction by using the same | |
KR101740239B1 (en) | Coating material for protecting surface of concrete structure having improved preventing injury from salt and neutralization | |
KR101940995B1 (en) | Waterproof-anticorrosive composition for surface finishing and method for waterproofing concrete structure therewith | |
KR101371345B1 (en) | Waterproof and corrosion proof agent for enatured silane ceramic metallic resin and method for waterproof and corrosion using the same | |
KR101892899B1 (en) | Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance & Adhesion Strength and Method for Waterproof and Coating Thereof | |
EP2209626B1 (en) | High solar reflectivity, colored multi-layered composition | |
KR100873051B1 (en) | Finish composition of inorganic polymer resin mortar with eco-friendly and high-functionality and construction method using them | |
KR101062734B1 (en) | Penetraton & protection coat has water-proof & anti-corrosion function, when you apply to the concrete construction and that is application method | |
KR101212572B1 (en) | Method for surface coating of concrete structure with improving ozone resistance | |
CA2696569C (en) | Paint formulation for building material | |
NO313102B1 (en) | Polymer blend for dirt repellent coatings, and use thereof | |
KR101192384B1 (en) | Methylmethacrylate reactive resin composition for liquid applied membrane waterproofing liquid applied membrane waterproofing agent comprising the same and liquid applied membrane waterproofing method using the same | |
KR101766286B1 (en) | Method for Surface Coating of Concrete Structure with improving ozone resistance and Multi Coated Layers Obtained therefrom | |
KR20090039701A (en) | Ultra-weatherability antipollution process over ceramics of nonflammable materials and fluorine | |
KR102570896B1 (en) | Waterproofing coating method with energy-saving using eco-friendly acrylic emulsion | |
JP4711615B2 (en) | Water-based coating composition and method for coating inorganic substrate | |
KR102184866B1 (en) | Ceramic Coating Agent Having Mixed Silane and Method for Waterproof and Coating Thereof | |
KR101892898B1 (en) | Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance and Method for Waterproof and Coating Thereof | |
KR101557134B1 (en) | Penetraton amd protection coating and construction method thereof | |
KR102207899B1 (en) | Coating Composition for Wet Surface Adhesion and Construction Methods for Repairing and Reinforcing Crack of Concrete Structure Using Thereof | |
KR102687133B1 (en) | Waterproof coating composition with improving anti-contamination and adhesion strength, and Method for Waterproof and Coating Using the Same | |
KR102687134B1 (en) | Waterproof coating composition with improving anti-contamination and adhesion strength, and Method for Waterproof and Coating Using the Same | |
Ashcroft | Industrial polymer applications: Essential chemistry and technology | |
KR102225331B1 (en) | Method for coating structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |