KR101892898B1 - Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance and Method for Waterproof and Coating Thereof - Google Patents

Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance and Method for Waterproof and Coating Thereof Download PDF

Info

Publication number
KR101892898B1
KR101892898B1 KR1020180042070A KR20180042070A KR101892898B1 KR 101892898 B1 KR101892898 B1 KR 101892898B1 KR 1020180042070 A KR1020180042070 A KR 1020180042070A KR 20180042070 A KR20180042070 A KR 20180042070A KR 101892898 B1 KR101892898 B1 KR 101892898B1
Authority
KR
South Korea
Prior art keywords
weight
parts
ceramic coating
chemical resistance
coating agent
Prior art date
Application number
KR1020180042070A
Other languages
Korean (ko)
Inventor
노창섭
장선웅
Original Assignee
티오켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티오켐 주식회사 filed Critical 티오켐 주식회사
Priority to KR1020180042070A priority Critical patent/KR101892898B1/en
Application granted granted Critical
Publication of KR101892898B1 publication Critical patent/KR101892898B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/64Insulation or other protection; Elements or use of specified material therefor for making damp-proof; Protection against corrosion
    • E04B1/644Damp-proof courses
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/30Change of the surface
    • B05D2350/50Smoothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention relates to a ceramic coating agent to which a zirconium compound and an aluminum compound are added to enhance permeable inorganic nanomaterials and adhesion force during the coating of concrete structure and steel structure, and a permeable waterproof coating method having an excellent chemical resistance in which a nano-sized inorganic material penetrates into voids of the structure by using fluorosilane having a chemical resistance function to form a dense coating film and have enhanced adhesion force. The present invention has an advantage of increasing the durability by increasing the chemical resistance and adhesion force of the structure by sequentially performing lower, middle and upper treatment steps after the surface treatment of the concrete structure and the steel structure.

Description

내약품성이 우수한 침투성 세라믹코팅제 및 방수도장공법{Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance and Method for Waterproof and Coating Thereof}TECHNICAL FIELD [0001] The present invention relates to a porous ceramic coating material having excellent chemical resistance,

본 발명은 내약품성이 우수한 침투성 방수도장공법에 관한 것으로서, 더욱 상세하게는 콘크리트구조물 및 강(鋼)구조물의 방수도장 시에 침투성 무기나노소재, 부착성능을 강화하기 위하여 지르코늄화합물 및 알루미늄화합물이 첨가된 세라믹코팅제와 내약품성 기능이 있는 불소실란을 사용함으로써 나노크기의 무기소재가 상기 구조물의 공극에 침투하여 도막이 치밀하고, 부착력이 강화될 뿐만 아니라 내약품성이 우수한 침투성 방수도장공법에 관한 것이다. The present invention relates to a water permeable waterproof coating method having excellent chemical resistance, and more particularly, to a water permeable inorganic nano material in waterproof coating of a concrete structure and a steel structure, in which a zirconium compound and an aluminum compound are added The present invention relates to a water permeable waterproof coating method which is capable of penetrating a nano-sized inorganic material into the voids of the structure to thereby enhance the adhesion of the coating film and the chemical resistance by using a ceramic coating agent and a fluorosilane having a chemical resistance function.

콘크리트구조물 및 강구조물의 방수도장 시에 외부 수위(水位)의 증가, 건조 수축 및 온도변화에 따른 구조물의 신축팽창 작용과, 타설 불량 및 양생관리의 부족에 따른 결함 발생 등 다수의 균열 유발 요인 및 누수 요인이 상존하고 있으므로, 콘크리트 구조물 및 강구조물의 완전한 방식(防蝕)을 기대하기는 어렵다. 또한, 콘크리트구조물 및 강구조물은 물리적이고 화학적인 열화요인에 따라 구조물 부식에 영향을 크게 주고 있으며 콘크리트구조물 및 강구조물의 재료적인 특성의 강화 또는 철저한 시공관리에 의한 수밀성의 확보는 구조물 방식을 위한 필수조건일 뿐이고, 근본적인 방식대책으로는 미흡하다. Many cracks and leaks such as expansion and contraction of the structure due to increase of external water level, drying shrinkage and temperature change, defects due to insufficient casting and lack of curing management during waterproof painting of concrete structures and steel structures It is difficult to expect a complete method (corrosion protection) of concrete structures and steel structures. In addition, concrete structures and steel structures have a great influence on corrosion of structures due to physical and chemical deterioration factors. Reinforcing the material characteristics of concrete structures and steel structures or ensuring watertightness through thorough construction management is a necessary condition for the structure method But it is not enough for the fundamental method.

한편, 콘크리트구조물 및 강구조물은 대부분 시공시부터 물리적, 화학적으로 열악한 환경조건에 노출되며, 이러한 환경은 점차적으로 콘크리트구조물 및 강구조물의 성능을 저하시킨다. 상기 구조물은 공기 중의 산소와 수분에 의해서 부식되는 특성을 가지고 있어 부식에 의한 재료의 성능저하는 이를 사용하는 구조물의 내용연수를 급격하게 저하시키고 구조물의 안전성에 부정적인 영향을 미치게 됨으로써 이에 따르는 막대한 경제적 손실이 발생되고 있다.On the other hand, most concrete structures and steel structures are exposed to poor physical and chemical environmental conditions from the time of construction, and this environment gradually degrades the performance of concrete structures and steel structures. Since the structure has a characteristic of being corroded by oxygen and moisture in the air, degradation of the material due to corrosion drastically lowers the service life of the structure to be used and negatively affects the safety of the structure, .

콘크리트구조물 및 강구조물로 이루어지는 대다수의 토목 구조물은 외부에 노출되어 태양광선, 눈, 비 등 자연환경으로부터 영향을 받게 된다. 유기계 도장재의 경우 자외선으로 인해 도장표면이 황변(黃變)현상으로 미관을 저해하거나, 취성화(표면이 딱딱해짐)현상으로 인해 도막이 갈라지고 박리, 탈색, 탈락되어 구조물을 보호할 수 없게 되어 내구성이 저하되며, 이로 인해 지속적으로 재도장해야 하는 번거로움과 추가비용의 발생으로 인한 경제적인 손실이 유발되고 있다.Most of the civil engineering structures made of concrete structures and steel structures are exposed to the outside and are affected by the natural environment such as sunlight, snow, and rain. In the case of organic coating materials, due to ultraviolet rays, the coating surface is deteriorated due to the yellowing phenomenon, or the coating film is split due to the brittleness (hardness of the surface), and the structure can not be protected due to peeling, Which leads to an economic loss due to the inconvenience of continual repainting and the additional costs incurred.

이와 관련한 종래기술로서, 하기 특허문헌 0001에는 “강도, 접착력, 내약품성, 내열성, 내오존성, UV 저항성 및 내구성이 우수한 기능성 세라믹계 방수·방식제 조성물 및 이를 이용한 콘크리트 구조물의 친환경 방수·방식공법”이 알려져 있으나, 이는 PVC 등을 혼합한 일액형의 수용성 조성물을 사용하므로 내약품성 및 부착강도가 만족스럽지 못하다. As a conventional technique related thereto, Patent Document 0001 discloses a functional ceramic waterproofing / anticorrosion composition excellent in strength, adhesive strength, chemical resistance, heat resistance, ozone resistance, UV resistance and durability, and an environmentally friendly waterproofing / But it is not satisfactory in terms of chemical resistance and adhesion strength since a one-pack type water-soluble composition containing PVC or the like is used.

또한 하기 특허문헌 0002에는 “콘크리트, 시멘트용 침투성 도장공법”이 개시되어 있으나, 이는 나노크기의 실리카가 첨가된 세라믹코팅제 등을 시멘트 구조물에 침투시킨 것일 뿐 내약품성 및 부착력과의 연관성은 언급하지 않았다.In addition, the following Patent Document 0002 discloses a " permeable coating method for concrete and cement ", but it does not mention the relationship between the chemical resistance and the adhesion force, as it is a penetration coating method for concrete and cement, .

그리고 하기 특허문헌 0003에는 “금속산화물졸을 이용한 해상풍력강관의 부식방지 도장공법”에는 불소실란이 함유된 상도용 세라믹 방식재를 포함하고 있으나, 해상풍력발전용 강관이 해수에 노출 시 변색이 안 되고 내부식성이 강해 풍력발전기의 유지보수비를 절감할 뿐 내약품성 및 부착력과의 관련성은 없다.In the following Patent Document, "Corrosion prevention coating method of offshore wind power steel pipe using metal oxide sol" includes a ceramic corrosion resistant material containing fluorine silane, but the steel pipe for offshore wind power generation is not discolored when exposed to seawater. And the corrosion resistance is strong, so that the maintenance cost of the wind power generator is reduced, but it is not related to chemical resistance and adhesion force.

따라서 구조물의 내구연한을 증가시키기 위한 내약품성이 우수한 방수·방식재의 적용이 절실히 필요한 실정이다.Therefore, it is necessary to apply waterproof and corrosion resistant materials with excellent chemical resistance in order to increase the durability of the structure.

대한민국 등록특허 제10-1793194호(2017. 10. 27.)Korean Patent No. 10-1793194 (Oct. 27, 2017) 대한민국 등록특허 제10-0943158호(2010. 02. 10.)Korean Patent No. 10-0943158 (2010. 02. 10.) 대한민국 등록특허 제10-1556842호(2015. 9. 23.)Korean Registered Patent No. 10-1556842 (September 23, 2015)

본 발명은 상기와 같은 문제점을 개선하기 위하여 안출된 것으로서, 콘크리트구조물 및 강구조물의 표면처리 후에 하도, 중도, 상도처리단계를 순차적으로 수행함으로써 상기 구조물의 내약품성을 향상시켜 내구연한을 크게 증가시킬 수 있는 방수도장공법을 제공하는 데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been conceived to solve the above-mentioned problems, and it is an object of the present invention to improve the chemical resistance of the structure by increasing the durability of the concrete structure and the steel structure The purpose of the waterproof coating method is to provide.

본 발명은 1) 콘크리트구조물 및 강구조물의 표면 위에 존재하는 이물질을 제거하기 위하여, 변형, 박리, 풍화된 부분의 이물질을 제거하는 바탕면 정리 및 청소작업을 하는 바탕만들기단계; 2) 상기 바탕만들기단계에서 상기구조물 표면에 알콕시실란 150중량부와 실란커플링제 30중량부를 혼합한 용액에 10~20㎚의 금속산화물졸 170중량부를 첨가한 후에 지르코늄 화합물 10~20중량부와 알루미늄 화합물 10~20중량부를 투입하여 12시간 동안 반응시켜 제조되는 하도용 세라믹코팅제를 0.10~0.30㎏/㎡ 도포하는 하도 처리단계; 3) 상기 하도 처리단계 후에 상기 하도용 세라믹코팅제 380중량부에 각종 색상의 무기안료 230중량부 및 첨가제 6중량부가 첨가된 중도용 세라믹코팅제를 0.15~0.40㎏/㎡ 도포하는 중도처리단계, 4) 상기 중도 처리단계 후 상기 중도용 세라믹코팅제 616중량부에 불소실란 10~20중량부가 함유된 상도용 세라믹코팅제를 0.10~0.45㎏/㎡ 도포하는 상도처리단계를 포함하는 것을 특징으로 하는 내약품성이 우수한 침투성 방수도장공법을 제공한다.The present invention relates to a method of manufacturing a concrete structure, comprising the steps of: (1) forming a base for performing deformation, peeling, removal of foreign matter from a weathered part, and cleaning of a concrete structure and a steel structure; 2) 170 parts by weight of a metal oxide sol of 10 to 20 nm was added to a solution prepared by mixing 150 parts by weight of alkoxysilane and 30 parts by weight of a silane coupling agent on the surface of the structure, 10 to 20 parts by weight of a zirconium compound, 10 to 20 parts by weight of a compound is added and the mixture is allowed to react for 12 hours, thereby applying a low-temperature ceramic coating agent in an amount of 0.10 to 0.30 kg / m 2; 3) After the above-mentioned sub-treatment step, a middle treatment step of applying 0.15 to 0.40 kg / m 2 of a medium ceramic coating agent to which 230 parts by weight of inorganic pigments of various colors and 6 parts by weight of additives are added to 380 parts by weight of the undercoat coating, And a top treatment step of applying 0.10 to 0.45 kg / m < 2 > of an in-phase ceramic coating agent containing 10 to 20 parts by weight of fluorosilane to 616 parts by weight of the above-mentioned intermediate ceramic coating agent after the above-mentioned intermediate treatment step Provides permeable waterproof coating method.

한편, 본 발명에 의한 그 밖의 구체적인 과제의 해결수단은 발명의 상세한 설명에 기재되어 있다.Means for solving the other specific problems according to the present invention are described in the detailed description of the invention.

본 발명에 따른 내약품성이 우수한 세라믹 방수도장공법은 콘크리트구조물 및 강구조물의 도장 시에 침투성 무기나노소재, 부착성능을 강화하기 위하여 지르코늄화합물 및 알루미늄화합물이 첨가된 세라믹코팅제와 내약품성 의 불소실란을 사용함으로써 나노크기의 무기소재가 상기 구조물의 공극에 침투하여 도막이 치밀하고, 부착력이 강화될 뿐만 아니라 내약품성이 뛰어나다. The ceramic waterproof coating method with excellent chemical resistance according to the present invention uses a ceramic coating agent containing a zirconium compound and an aluminum compound and a chemical resistant fluorosilane in order to enhance permeability inorganic nano material and adhesion performance in coating concrete structures and steel structures The nano-sized inorganic material penetrates into the voids of the structure, and thus the coating film is dense, the adhesion is enhanced, and the chemical resistance is excellent.

또한 콘크리트구조물 및 강구조물의 부위를 표면처리 후에 하도, 중도 및 상도 처리단계를 순차적으로 수행함으로써 상기 구조물의 내약품성 및 부착강도를 향상시켜 내구연한을 현저히 증가시킬 수 있는 장점이 있다.In addition, after the surface treatment of the concrete structure and the steel structure is performed, the chemical resistance and the adhesion strength of the structure are improved by sequentially performing the lower, middle, and upper treatment steps, thereby remarkably increasing the durability.

도 1은 본 발명에 의한 불소실란이 함유된 세라믹코팅제의 망상구조를 나타내는 것이다.
도 2는 종래기술에 의한 불소수지가 함유된 세라믹코팅제의 망상구조를 나타내는 것이다.
도 3은 종래기술에 의한 불소수지가 함유되지 않은 세라믹코팅제의 망상구조를 나타내는 것이다.
Fig. 1 shows the network structure of a ceramic coating agent containing fluorosilane according to the present invention.
2 shows the network structure of a ceramic coating agent containing fluororesin according to the prior art.
Fig. 3 shows the network structure of a ceramic coating agent containing no fluorine resin according to the prior art.

상기의 내약품성이 우수한 침투성 방수도장공법을 별지 [도 1] 내지 [도 3]을 참고하여 이하에서 상세히 설명하기로 한다. The water permeable waterproof coating method having excellent chemical resistance will be described in detail below with reference to the accompanying drawings (FIG. 1 to FIG. 3).

본 발명에 의한 내약품성이 우수한 침투성 방수도장공법은 1) 콘크리트구조물 및 강구조물의 표면 위에 존재하는 이물질을 제거하기 위하여, 변형, 박리, 풍화된 부분의 이물질을 제거하는 바탕면 정리 및 청소작업을 하는 바탕만들기단계; 2) 상기 바탕만들기단계에서 피처리물 표면부위에 알콕시실란 150중량부와 실란커플링제 30중량부를 혼합한 용액에 10~20㎚의 금속산화물졸 170중량부를 첨가한 후에 지르코늄 화합물 10~20중량부와 알루미늄 화합물 10~20중량부를 투입하여 12시간 동안 반응시켜 제조되는 하도용 세라믹코팅제를 0.10~0.30㎏/㎡ 도포하는 하도처리단계; 3) 상기 하도처리단계 후에 상기 하도용 세라믹코팅제 380중량부에 무기안료 230중량부 및 첨가제 6중량부가 첨가된 중도용 세라믹코팅제를 0.15~0.40㎏/㎡ 도포하는 중도처리단계; 4) 상기 중도처리단계 후 상기 중도용 세라믹코팅제 616중량부에 불소실란 10~20중량부가 함유된 상도용 세라믹코팅제를 0.10~0.45㎏/㎡ 도포하는 상도처리단계로 이루어지는 것을 특징으로 한다. The permeable waterproof coating method having excellent chemical resistance according to the present invention comprises: 1) performing a surface cleaning and cleaning operation for removing debris from deformation, peeling, and weathered parts in order to remove foreign substances existing on the surfaces of concrete structures and steel structures A background creating step; 2) 170 parts by weight of a metal oxide sol having a particle diameter of 10 to 20 nm was added to a solution prepared by mixing 150 parts by weight of alkoxysilane and 30 parts by weight of a silane coupling agent, And 10 to 20 parts by weight of an aluminum compound are added to the mixture, and the mixture is allowed to react for 12 hours. The undercoating ceramic coating agent is applied at 0.10 to 0.30 kg / m < 2 > 3) After the sublimation treatment step, the intermediate coating step is applied with 0.15 to 0.40 kg / m 2 of a medium ceramic coating agent to which 230 parts by weight of inorganic pigments and 6 parts by weight of additives are added to 380 parts by weight of the undercoat ceramic coating agent. 4) a top treatment step of applying 0.10 to 0.45 kg / m 2 of a ceramic coating agent for phase-in-phase containing 61 to 6 parts by weight of the intermediate ceramic coating agent and 10 to 20 parts by weight of fluorosilane after the intermediate treatment step.

본 발명에 따른 내약품성이 우수한 침투성 방수도장공법은 바탕만들기단계, 하도처리단계, 중도처리단계 및 상도처리단계를 순차적으로 수행하여 콘크리트구조물 및 강구조물의 표면을 상기 세라믹코팅제로 코팅하는 공법이다. 이하, 상기한 바와 같은 여러 단계로 이루어지는 본 발명을 각 단계별로 나누어 상세히 설명한다.The permeable waterproof coating method having excellent chemical resistance according to the present invention is a method for coating the surfaces of concrete structures and steel structures with the ceramic coating agent by sequentially performing the base forming step, the under treatment step, the intermediate treatment step and the top treatment step. Hereinafter, the present invention will be described in detail.

1) 바탕만들기단계1) Steps to create a desktop

바탕만들기단계는 콘크리트구조물 및 강구조물의 표면 위에 존재하는 이물질을 제거하는 단계로서, 상기 구조물의 변형, 박리, 풍화된 부분 등의 이물질을 제거하는 바탕면 정리 및 청소작업을 실시한다.    The base forming step is a step of removing foreign substances existing on the surfaces of the concrete structure and the steel structure, and performs a surface cleaning and cleaning work for removing debris such as deformation, peeling and weathered parts of the structure.

2) 하도처리단계2) Substrate treatment stage

하도처리단계는 상기 바탕만들기단계의 피처리물 표면부위에 알콕시실란 150중량부와 실란커플링제 30중량부를 혼합한 용액에 10~20㎚의 금속산화물졸 170중량부를 첨가한 후에 지르코늄 화합물 10~20중량부와 알루미늄 화합물 10~20중량부를 투입하여 12시간 동안 반응시켜 제조되는 하도용 세라믹코팅제를 0.10~0.30㎏/㎡ 도포하는 단계이다.    In the priming step, 170 parts by weight of a metal oxide sol of 10 to 20 nm was added to a solution of 150 parts by weight of alkoxysilane and 30 parts by weight of a silane coupling agent, And 10 to 20 parts by weight of an aluminum compound are added and reacted for 12 hours. This is a step of applying 0.10 to 0.30 kg / m 2 of a ceramic coating agent for undercoating.

상기 바탕만들기단계의 피처리물 표면부위에 알콕시실란과 실란커플링제를 혼합한 용액에 나노미터 크기의 금속산화물졸을 투입하여 반응시킨 후에 도막이 치밀하고 부착성 및 내약품성을 강화하기 위해 지르코늄화합물 및 알루미늄화합물을 투입하여 생성된 반응물의 분자량이 3,000을 넘지 않도록 하는 것이 바람직하다. 이때 생성된 반응물의 분자량이 3,000을 넘을 경우 하도용 세라믹코팅제가 기재에 침투하지 못하고 표면에 도막이 두껍게 형성되어 부착력이 저하된다. 또한 지르코늄 화합물로서는 지르코늄아세틸아세토네이트, 지르코늄아세테이트, 알루미늄화합물로서는 알루미늄아세테이트, 알루미늄아세틸아세토네이트가 열거될 수 있는데, 단일 화합물을 사용하는 것보다 혼합 사용하는 것이 성능의 향상을 위하여 바람직하다.   A nanometer-sized metal oxide sol is added to a solution prepared by mixing alkoxysilane and a silane coupling agent on the surface of the object to be processed in the base forming step, and then a zirconium compound and / It is preferable that the molecular weight of the reactant produced by charging the aluminum compound does not exceed 3,000. When the molecular weight of the reactant is more than 3,000, the ceramic coating agent for the substrate can not penetrate the substrate, and the coating film is formed thick on the surface, which lowers the adhesion. As the zirconium compound, zirconium acetylacetonate, zirconium acetate, aluminum compounds such as aluminum acetate and aluminum acetylacetonate may be exemplified. It is preferable to use mixed compounds rather than a single compound in order to improve performance.

또한 그 투입량은 지르코늄 화합물 10~20중량부, 알루미늄화합물 10~20중량부가 적당하고, 각각 10중량부 미만이면 세라믹코팅제의 강도가 저하되기 때문에 내약품성 및 부착성능이 저하되고, 20중량부 이상이면 분자량이 증가하여 부착성능이 저하된다.   10 to 20 parts by weight of the zirconium compound and 10 to 20 parts by weight of the aluminum compound are suitably used, and when the amount is less than 10 parts by weight, the strength of the ceramic coating agent is lowered and the chemical resistance and adhesion performance are lowered. The molecular weight is increased and the adhesion performance is lowered.

한편, 내약품성이 강한 분자구조는 알콕시실란, 실란커플링제, 나노 크기의 금속산화물졸, 지르코늄, 알루미늄, 불소 등이 결합된 망상구조로서, [도 1]과 같이 이루어진 것을 특징으로 한다.    On the other hand, the molecular structure having strong chemical resistance is a network structure in which alkoxysilane, silane coupling agent, nano-sized metal oxide sol, zirconium, aluminum, fluorine and the like are bonded to each other as shown in FIG.

특히, 상기 불소실란은 구조물의 표면과 화학반응을 하여 내약품성 및 내구성이 강한 도막을 형성할 수 있게 된다. 또한 불소실란은 모든 화합물 중에서 분자간 인력이 가장 작고, 표면장력이 작으므로 용매에 대해 젖기 어렵기 때문에 화학약품에 대한 저항성이 강해져서 내약품성이 향상될 수 있는 것이다.   In particular, the fluorosilane chemically reacts with the surface of the structure to form a coating film having high chemical resistance and durability. In addition, fluorine silane has the smallest intermolecular attraction among all the compounds, and since the surface tension is small, it is difficult to wet the solvent, so the resistance to the chemical is strengthened and the chemical resistance can be improved.

이때 상기 알콕시실란은 메틸트리에톡시실란(MTES), 테트라메톡시실란(TMOS), 테트라에톡시실란(TEOS), 디페닐디에톡시실란(DPDES), 디페닐디메톡시실란(DPDMS) 중에서 선택되는 1종 이상일 수 있다. 또한 상기 실란커플링제인 아미노실란은 N-(β-아미노에틸)-γ-아미노프로필메틸디메톡시실란, 3-아미노프로필트리에톡시실란, 비스-(γ-트리메톡시실리프로필)아민 중에서 선택되는 1종 이상일 수 있다.   Wherein the alkoxysilane is selected from methyltriethoxysilane (MTES), tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), diphenyldiethoxysilane (DPDES), diphenyldimethoxysilane It may be more than one kind. The aminosilane, which is the silane coupling agent, is preferably selected from the group consisting of N- (? -Aminoethyl) -? - aminopropylmethyldimethoxysilane, 3-aminopropyltriethoxysilane and bis -? - trimethoxysilylpropylamine It may be more than one kind.

상기 알콕시실란과 실란커플링제의 혼합 시에는 그 비율을 5 : 1의 중량비로 하는 것이 바람직한데, 5 : 1의 비율을 초과하면, 혼합액의 상태가 겔형태로 변형되어 코팅제로써 사용할 수 없으므로 저장안정성의 문제가 발생하고, 5 : 1의 비율보다 미만일 경우에는 다양한 기재와의 부착력이 저하될 뿐만 아니라 나트륨이온에 대한 침투저항성이 떨어지는 문제가 발생한다.    When the alkoxysilane is mixed with the silane coupling agent, the weight ratio of the alkoxysilane to the silane coupling agent is preferably 5: 1. When the ratio of the alkoxysilane to the silane coupling agent exceeds 5: 1, If the ratio is less than 5: 1, not only the adhesion to various substrates is reduced but also the penetration resistance to sodium ions is lowered.

또한 하도용 세라믹코팅제를 0.10~0.30㎏/㎡ 도포하는 것이 바람직하다. 이때 그 도포량이 0.10㎏/㎡ 미만으로 도포하면, 하도용 세라믹코팅제와 구조물의 표면과의 충분한 접착이 일어나지 않아 부착성이 저하되며, 0.30㎏/㎡ 이상 도포 시 표면조도가 약해서 접착력이 떨어진다.   It is also preferable to apply a ceramic coating agent for a low temperature of 0.10 to 0.30 kg / m 2. If the coating amount is less than 0.10 kg / m 2, sufficient adhesion is not achieved between the undercoat ceramic coating agent and the surface of the structure, resulting in deterioration of the adhesion. When the coating amount is over 0.30 kg / m 2, the surface roughness is weak.

- 하도용 세라믹코팅제의 제조- Manufacture of Ceramic Coatings for Undercoats

세라믹코팅제 제조용 반응기에 메틸트리메톡시실란 150중량부, γ-아미노프로필 트리에톡시실란 30중량부를 혼합한 다음 입자크기가 10~20nm인 실리카졸 60중량부, 티타니아졸 60중량부, 알루미나졸 50중량부를 각각 서서히 적하시켰다. 모두 적하시킨 후에 지르코늄아세틸아세토네이트 10중량부, 지르코늄 아세테이트 5중량부, 알루미늄 아세테이트 10중량부, 알루미늄 아세틸아세토네이트 5중량부를 투입하여 12시간 동안 계속 반응시켜 하도용 세라믹코팅제를 얻는다.  150 parts by weight of methyltrimethoxysilane and 30 parts by weight of? -Aminopropyltriethoxysilane were mixed in a reactor for producing a ceramic coating agent. Then, 60 parts by weight of silica sol having a particle size of 10 to 20 nm, 60 parts by weight of titania sol, Were gradually added dropwise. 10 parts by weight of zirconium acetylacetonate, 5 parts by weight of zirconium acetate, 10 parts by weight of aluminum acetate and 5 parts by weight of aluminum acetylacetonate are continuously added for 12 hours to obtain a low-temperature ceramic coating agent.

3) 중도처리단계3)

중도처리단계는 상기 하도용 세라믹코팅제 380중량부에 무기안료 230중량부 및 첨가제 6중량부가 첨가된 중도용 세라믹코팅제를 도포하는 단계이다. 구체적으로 무기안료로서는 이산화티탄(TiO2) 180중량부, 시안블루(Cyan Blue) 50중량부, 첨가제로서 분산제, 소포제, 레벨링제를 각각 투입하여 중도용 세라믹코팅제를 제조한 후에 이를 0.15~0.40㎏/㎡의 두께로 도포할 수 있다. 이때 그 도포량이 0.15㎏/㎡ 미만이면 표면을 은폐하기 어려울뿐만 아니라 층간 부착력도 저하되며, 0.40㎏/㎡ 이상 도포 시에는 도막이 흘러내려 주름 현상이 발생된다. The intermediate treatment step is a step of applying a moderate ceramic coating agent to which 380 parts by weight of the undercoat ceramic coating agent is added with 230 parts by weight of an inorganic pigment and 6 parts by weight of an additive. Specifically, 180 parts by weight of titanium dioxide (TiO 2 ), 50 parts by weight of cyan blue, and a dispersant, a defoaming agent and a leveling agent were added as an additive, respectively, to prepare an intermediate ceramic coating agent. / M < 2 >. If the coating amount is less than 0.15 kg / m 2, it is difficult to conceal the surface, and the interlayer adhesion is decreased. When the coating amount is more than 0.40 kg / m 2, the coating film flows down and wrinkles occur.

- 중도용 세라믹코팅제의 제조 - Preparation of medium-sized ceramic coating agent

중도용 세라믹코팅제는 상기 하도용 세라믹코팅제 380중량부에 무기안료인 이산화티탄 180중량부, 시안블루 50중량부, 분산제인 BYK-110 2.5중량부, 소포제인 BYK-066N 2.0중량부, 레벨링제인 BYK-333 1.5중량부를 각각 투입하여 제조한다.  In the ceramic coating material for intermediate use, 180 parts by weight of titanium dioxide, which is an inorganic pigment, 50 parts by weight of cyan blue, 2.5 parts by weight of BYK-110 as a dispersant, 2.0 parts by weight of BYK-066N as a defoaming agent, BYK And 1.5 parts by weight of -333, respectively.

4) 상도처리단계4) Phase treatment process

상도처리단계는 상기 중도용 세라믹코팅제 616중량부에 불소실란 10~20중량부가 함유된 상도 세라믹코팅제를 0.10~0.45㎏/㎡ 도포하는 단계이다. 상기 불소실란으로서 Heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane, Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane을 첨가시키고 80℃에서 24시간 숙성하여 상도용 세라믹코팅제를 제조할 수 있다.   The upper phase treatment step is a step of applying 0.10 to 0.45 kg / m < 2 > of an upper ceramic coating agent containing 61 to 6 parts by weight of the above-mentioned medium-range ceramic coating agent and 10 to 20 parts by weight of fluorosilane. Heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane and Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane are added as the fluorine silane and aged at 80 ° C for 24 hours to prepare a ceramic coating for topical use.

이때 상기 불소실란의 첨가량이 10중량부 미만이면, 내약품성 기능이 저하되며, 20중량부를 초과하면 세라믹코팅제와의 혼용성이 나오지 않아 층간 분리되는 현상이 발생한다. 또한 상기 상도용 세라믹코팅제의 도포량이 0.10㎏/㎡ 미만이면 중도 표면을 은폐하기 어려울 뿐만 아니라 층간 부착력도 저하되며, 0.45㎏/㎡ 이상 도포 시에는 도막이 흘러내려 주름 현상이 발생된다.    If the amount of the fluorosilane added is less than 10 parts by weight, the chemical resistance is deteriorated. If the amount of the fluorosilane is more than 20 parts by weight, the fluorosilane is not mixed with the ceramic coating agent. If the application amount of the above-mentioned ceramic coating agent for phase-in is less than 0.10 kg / m 2, it is difficult to conceal the intermediate surface and the interlayer adhesion force is also lowered, and when the coating is applied above 0.45 kg / m 2, the coating film flows down and wrinkles occur.

- 상도용 세라믹코팅제의 제조- Preparation of Ceramic Coating Agent for Phase Coating

상도용 세라믹코팅제는 상기 중도용 세라믹코팅제 616중량부에 Heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane 5~10중량부, Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane 5~10중량부의 불소실란을 첨가시키고 80℃에서 24시간 숙성하여 상도용 세라믹코팅제를 제조한다. 5 parts by weight of heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane and 5 to 10 parts by weight of tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane were added to 616 parts by weight of the above-mentioned ceramic coating agent for medium- And aged at 80 ° C for 24 hours to prepare a ceramic coating for topical use.

한편, 수처리 콘크리트구조물의 경우 일반적인 콘크리트구조물이나 강구조물보다 표면의 조도(粗度)가 매끄럽지 않으므로 상기 하도처리단계 후에 바탕조정단계를 추가한 다음 중도, 상도 처리단계를 차례로 수행하여 방수 도장할 수 있다.   On the other hand, in the case of the water-treated concrete structure, the roughness of the surface is not smooth than the general concrete structure or the steel structure. Therefore, after the above-mentioned ground treatment step, the background adjustment step is added and then the water-

이때 상기 바탕조정단계는 상기 하도처리단계 후에 상기 하도용 세라믹코팅제 380중량부에 시멘트 342중량부, 규사8호 342중량부, 플라이애시 76중량부를 혼합하여 제조된 바탕조정재를 0.50~2.30㎏/㎡ 도포하는 단계이다. 또한 상기 하도처리단계 후에 세라믹계 바탕조정재를 0.50~2.30㎏/㎡의 두께로 도포하는 것이 바람직하다. 이때 그 도포량이 0.50㎏/㎡ 미만으로 도포하면, 기공을 통해 기포가 발생하고 후속 공정시에도 연속적으로 기포가 발생하며, 2.30㎏/㎡ 이상 도포 시에는 너무 두꺼워 추후에 도막이 갈라지는 문제가 발생한다.   The base adjusting step may include adjusting the base adjusting material prepared by mixing 342 parts by weight of cement, 342 parts by weight of silica sand No. 8 and 76 parts by weight of fly ash to 380 parts by weight of the undercoat ceramic coating agent after the undercoating treatment step is performed at 0.50 to 2.30 kg / . In addition, it is preferable to coat the ceramic-based desk adjusting material with a thickness of 0.50 to 2.30 kg / m 2 after the above-mentioned sub-treatment step. When the coating amount is less than 0.50 kg / m 2, bubbles are generated through the pores, and bubbles are continuously generated in the subsequent process. When the coating amount is 2.30 kg / m 2 or more, the coating is too thick.

- 바탕조정재의 제조- Manufacture of backing materials

바탕조정재는 하도용 세라믹코팅제 380중량부에 시멘트 342중량부, 규사8호(80mesh 이상, 0.2㎜ 이하) 342중량부, 플라이애시 76중량부를 투입하여 서로 뭉치지 않도록 충분히 교반하여 제조한다. 343 parts by weight of cement, 342 parts by weight of silicate No. 8 (not less than 80 mesh and not more than 0.2 mm) and 76 parts by weight of fly ash were added to 380 parts by weight of a ceramic coating material for undercoating, and sufficiently stirred so as not to be aggregated with each other.

이하, 상기한 바와 같은 단계로 이루어지는 본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 실시예는 본 발명의 예시 목적을 위한 것일 뿐 본 발명이 이들 실시예에 의해 한정되는 것은 아니다.  Hereinafter, the present invention will be described in greater detail with reference to the following examples. It is to be understood that the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention .

1) 바탕만들기단계에서 콘크리트 피처리물의 표면 위에 이물질을 제거하는 바탕면 정리 및 청소를 실시한 후에 하도처리단계에서 붓, 롤러를 사용하여 상기에서 제조된 하도용 세라믹코팅제를 0.14㎏/㎡가 되도록 도포하였다.1) After the surface preparation and cleaning to remove the foreign material on the surface of the concrete object in the base making step, the ceramic coating material for undercoat prepared above was applied to be 0.14 kg / m 2 by using a brush and roller in the lower treatment step Respectively.

2) 이어서 상기에서 제조된 중도용 세라믹코팅제를 붓, 롤러, 스프레이를 사용하여 0.25㎏/㎡가 되도록 도장하였다. 2) Then, the above-prepared medium ceramic coating agent was coated at 0.25 kg / m 2 using a brush, roller, and spray.

3) 마지막으로 상기에서 제조된 상도용 세라믹코팅제(불소실란으로서 Heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane 5g, Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane 5g 첨가)를 붓, 롤러, 스프레이를 사용하여 0.25㎏/㎡가 되도록 도장하였다. 3) Finally, the above-prepared ceramic coating agent (5 g of Heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane and 5 g of tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane as a fluorine silane) To 0.25 kg / m 2.

상기 실시예 1과 비교하여 상도용 세라믹코팅제 중 불소실란으로서 Heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane, Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane을 각각 5g씩 첨가하는 대신에 각각 10g씩 첨가하는 점만 다를 뿐 나머지 공정을 동일하게 하여 도장하였다.10 g of heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane and 1 g of Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane were added as fluorosilanes in the ceramic coating for phase inks, respectively, in comparison with Example 1 And the remaining processes were the same.

상기 실시예 2와 비교하여 피처리물이 콘크리트 대신에 철재인 점만 다를 뿐 나머지 공정을 동일하게 하여 도장하였다.Compared with the above-mentioned Example 2, the remaining process was the same except that the material to be treated was steel instead of concrete.

상기 실시예 1과 비교하여 상도용 세라믹코팅제 중 불소실란으로서 Heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane, Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane을 각각 5g씩 첨가하는 대신에 각각 4g씩 첨가하는 점만 다를 뿐 나머지 공정을 동일하게 하여 도장하였다.As compared with Example 1, 4 g of heptadecafluoro-1,1,2,2-tetradecyltrimethoxysilane and 1 g of Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane were added as fluorosilanes, And the remaining processes were the same.

상기 실시예 1과 비교하여 하도용 세라믹코팅제의 제조 시에 지르코늄아세틸아세토네이트 10g, 지르코늄아세테이트 5g, 알루미늄아세테이트 10g, 알루미늄아세틸아세토네이트 5g을 투입하는 대신에, 지르코늄아세틸아세토네이트 25g, 알루미늄아세테이트 25g을 투입하는 점만 다를 뿐 나머지 공정을 동일하게 하여 도장하였다.In place of 10 g of zirconium acetylacetonate, 5 g of zirconium acetate, 10 g of aluminum acetate and 5 g of aluminum acetylacetonate, 25 g of zirconium acetylacetonate and 25 g of aluminum acetate were added in the preparation of the ceramic coating agent for lowering, The remaining steps were the same except that the injection point was the same.

상기 실시예 1과 비교하여 하도용 세라믹코팅제를 0.14㎏/㎡ 도포하는 대신에 0.09㎏/㎡ 도포하는 점만 다를 뿐 나머지 공정을 동일하게 하여 도장하였다.Compared with the above-mentioned Example 1, the remaining steps were the same except that 0.09 kg / m < 2 > was applied instead of 0.14 kg / m < 2 >

상기 실시예 1과 비교하여 중도용 세라믹코팅제를 0.25㎏/㎡ 도포하는 대신에 0.45㎏/㎡ 도포하는 점만 다를 뿐 나머지 공정을 동일하게 하여 도장하였다.Compared with the above-mentioned Example 1, the remaining steps were the same except that 0.45 kg / m < 2 > was applied instead of 0.25 kg / m < 2 >

상기 실시예 1과 비교하여 상도용 세라믹코팅제를 0.25㎏/㎡ 도포하는 대신에 0.09㎏/㎡ 도포하는 점만 다를 뿐 나머지 공정을 동일하게 하여 도장하였다.Compared with the above-mentioned Example 1, the other steps were the same except that 0.09 kg / m < 2 > was applied instead of 0.25 kg / m < 2 >

[비교예 1][Comparative Example 1]

1) 실시예 1과 비교하여 하도용 세라믹코팅제(냉각기 및 교반기가 부착된 5L 반응기에 메틸트리에톡시실란 280g, 3-아미노프로필트리에톡시실란 40g을 혼합한 다음 이소프로판올 160g을 넣고 80℃에서 1시간 동안 가열 교반시키면서 평균입자크기가 12㎚인 실리카졸(30wt% SiO2) 50g, 평균입자크기가 10㎚인 티타늄졸 60g과 알루미나졸 40g을 각각 서서히 적하시켰다. 모두 적하시킨 후 초산을 적당량 투입하여 pH를 4로 조정하고 24시간 동안 계속 반응시킨 다음 5일간 반응시켜 하도용 세라믹코팅제를 얻었다(상기 특허문헌 0003의 실시예 1과 동일)를 도포하였다.1) In comparison with Example 1, 280 g of methyltriethoxysilane and 40 g of 3-aminopropyltriethoxysilane were mixed in a 5 L reactor equipped with a cooler and a stirrer, followed by the addition of 160 g of isopropanol, 50 g of silica sol (30 wt% SiO 2 ) having an average particle size of 12 nm, 60 g of a titanium sol having an average particle size of 10 nm, and 40 g of alumina sol were gradually added dropwise under heating and stirring for a period of time. , The pH was adjusted to 4, the reaction was continued for 24 hours, and the reaction was carried out for 5 days to obtain a ceramic coating agent for lowering (same as in Example 1 of Patent Document 3).

2) 상기 하도용 세라믹 코팅제에 다양한 색상의 무기안료를 첨가하여 중도용 세라믹 코팅제를 제조하였다.2) A ceramic coating material for intermediate use was prepared by adding inorganic pigments of various colors to the above ceramic coating material for undercoating.

3) 상도용 세라믹코팅제로서 상기 하도용 세라믹코팅제에 불소실란으로서 헵타데카플루오로데실트리메톡시실란 12g 첨가시키고 경화촉매로 트리메틸아민 10g을 가한 후 상온에서 5일간 숙성시켜 상도용 세라믹코팅제를 제조한 것(상기 특허문헌 0003의 실시예 1과 동일)을 사용하는 점만 다를 뿐 나머지는 실시예 1과 동일하게 하여 도장하였다.3) 12 g of heptadecafluorodecyltrimethoxysilane as fluorosilane was added to the above ceramic coating agent for use as a top coat ceramic coating agent, 10 g of trimethylamine was added as a curing catalyst, and the mixture was aged at room temperature for 5 days to prepare a ceramic coating agent for topical use (The same as in Example 1 of the above-mentioned Patent Document 3) was used, and the other was coated in the same manner as in Example 1.

[비교예 2][Comparative Example 2]

상기의 실시예 1과 비교하여 상도처리단계에서 불소실란을 제외한 것 외에는 실시예 1과 동일하게 제조 및 도장하였다. The fluorinated silane was prepared and coated in the same manner as in Example 1, except that the fluorine silane was removed in the top treatment step as compared with the above-mentioned Example 1.

[비교예 3][Comparative Example 3]

상기의 실시예 1과 비교하여 하도용 세라믹코팅제의 제조시 지르코늄아세틸아세토네이트, 지르코늄아세테이트, 알루미늄아세테이트, 알루미늄아세틸아세토네이트를 투입하지 않는 것 외에는 실시예 1과 동일하게 제조하여 도장하였다.Compared with the above Example 1, a ceramic coating agent for undercoating was prepared and coated in the same manner as in Example 1 except that zirconium acetylacetonate, zirconium acetate, aluminum acetate, and aluminum acetylacetonate were not added.

이하에서는 위 실시예 1 내지 8 및 비교예 1 내지 3에서 제조된 시험편에 대한 성능시험을 다음과 같이 실시하였다.Hereinafter, the performance tests on the test pieces prepared in Examples 1 to 8 and Comparative Examples 1 to 3 were carried out as follows.

<시험예> <Test Example>

성능비교실험은 환경부 상수도공사 표준시방서(2014년) 4.3.6 세라믹메탈계 방수·방식의 품질시험 및 KS F 4929 세라믹메탈함유수지계 방수·방식재 규격에 따라 표 1과 같이 진행하였다.The performance comparison experiment was carried out as shown in Table 1 according to the standard specification of the Ministry of Environment Waterworks Construction (2014) 4.3.6 Quality test of ceramic metal waterproofing and method and KS F 4929 ceramic metal-containing resin waterproofing and abrasive standard.

Figure 112018056676889-pat00001
Figure 112018056676889-pat00001

<실험결과><Experimental Results>

성능비교표Performance comparison chart 시험항목Test Items 단위unit 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 실시예7Example 7 실시예8Example 8 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 1One 5% HCl5% HCl MPaMPa 3.003.00 3.013.01 4.254.25 2.562.56 2.682.68 2.602.60 2.672.67 2.592.59 2.222.22 1.501.50 2.102.10 22 1% NaClO1% NaClO MPaMPa 3.053.05 3.103.10 4.204.20 2.592.59 2.672.67 2.902.90 2.672.67 2.602.60 2.262.26 1.601.60 2.202.20 33 5%
NaOH
5%
NaOH
MPaMPa 3.053.05 3.183.18 4.224.22 2.642.64 2.692.69 2.972.97 2.732.73 2.652.65 2.212.21 1.601.60 2.202.20
44 동결
융해
freezing
Fusion
MPaMPa 3.013.01 3.023.02 -- 2.612.61 2.692.69 2.712.71 2.652.65 2.622.62 2.172.17 1.501.50 2.152.15
55 내후성Weatherability MPaMPa 3.013.01 3.033.03 -- 2.592.59 2.602.60 2.642.64 2.612.61 2.612.61 2.202.20 1.451.45 2.132.13 66 습윤
건조
Wet
dry
MPaMPa 3.103.10 3.153.15 4.254.25 2.712.71 2.912.91 2.902.90 2.712.71 2.742.74 2.292.29 1.601.60 2.252.25
77 수중
침지
Underwater
Immersion
MPaMPa 3.103.10 3.153.15 4.284.28 2.532.53 2.652.65 2.952.95 2.662.66 2.572.57 2.382.38 1.651.65 2.262.26
88 상온Room temperature MPaMPa 3.123.12 3.203.20 4.304.30 2.712.71 2.802.80 2.732.73 2.672.67 2.722.72 2.892.89 3.013.01 2.302.30 99 내흡수성Absorbency kg/㎡·h0.5 kg / m &lt; 2 &gt; h 0.5 00 00 -- 00 00 00 00 00 00 0.050.05 0.050.05 1010 염소이온침투
저항성
Chlorine ion penetration
Resistance
CoulombCoulomb 00 00 -- 00 00 00 00 00 00 109109 113113
1111 겉모양Appearance -- 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 1212 내굽힘성Bending resistance -- 박리Exfoliation 박리Exfoliation 1313 내충격성Impact resistance -- 박리Exfoliation 박리Exfoliation 1414 내투수성Permeability -- 투수Pitcher 투수Pitcher 1515 염화이온침투 저항성Chloride ion penetration resistance Mm 00 00 00 00 00 00 00 00 00 2.42.4 2.852.85 1616 내습성Moisture resistance -- 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 이상무no problem 부풂Boo 박리Exfoliation 1717 저온·
고온
반복저항
Low temperature ·
High temperature
Repeat resistance
-- 균열crack 박리Exfoliation

<시험결과 분석> <Analysis of Test Results>

위 실시예 1 내지 8 및 비교예 1 내지 3에 대한 여러 가지 시험의 결과인 [표 2]를 보면, 본 발명의 우수한 내약품성을 갖는 침투성 방수도장공법에 따른 세라믹코팅제의 도포량 및 불소실란이 수치한정 범위 이내로서 가장 바람직한 예인 실시예 1, 2, 3은 그 범위 밖인 실시예 4 내지 8 및 구성물질 등이 다른 비교예 1 내지 3와 비교하여 모든 항목의 내약품성 및 부착강도에서 우수한 성능이 있음을 알 수 있었다. 특히 실시예 1, 2, 3은, 비교예 1의 불소실란 첨가, 지르코늄 및 알루미늄 화합물을 첨가하지 않은 경우, 비교예 2의 불소실란을 첨가하지 않을 경우, 비교예 3의 지르코늄 및 알루미늄 화합물을 첨가하지 않은 경우보다 내약품성 및 부착성능이 우수하다는 것을 알 수 있다. The results of various tests for Examples 1 to 8 and Comparative Examples 1 to 3 show that the application amount of the ceramic coating agent and the fluorosilane amount according to the permeable waterproof coating method having excellent chemical resistance of the present invention Examples 1, 2 and 3, which are the most preferable examples within the defined range, have excellent performance in terms of chemical resistance and adhesion strength of all items as compared with the comparative examples 1 to 3, And it was found. Particularly, Examples 1, 2 and 3 show that when the fluorosilane addition, the zirconium and aluminum compounds of Comparative Example 1 are not added, the zirconium and aluminum compounds of Comparative Example 3 are added when fluorosilane of Comparative Example 2 is not added It is understood that the chemical resistance and the adhesion performance are superior to those in the case of not using the resin.

그 이유는 지르코늄 및 알루미늄 화합물을 첨가하지 않은 경우 부착강도가 저하되었다. 나아가 [도 1] 내지 [도 3]에서 알 수 있듯이, [도 1]의 불소실란을 사용한 경우에는 불소가 도막표면에 쉽게 노출되어 내약품성이 우수한 반면, [도 2]의 불소수지를 사용한 경우에는 불소의 일부만이 도막표면에 노출되거나, [도 3]의 불소가 전혀 함유되지 않은 세라믹코팅제는 내약품성의 성능이 저하되는 결과를 알 수 있었다.The reason is that the adhesion strength was lowered when zirconium and aluminum compounds were not added. Furthermore, as can be seen from [Figure 1] to [Figure 3], when fluorine silane of [Figure 1] is used, fluorine is easily exposed to the surface of the coating film and chemical resistance is excellent. On the other hand, , Only a part of fluorine was exposed on the surface of the coating film, and the ceramic coating agent containing no fluorine in [Fig. 3] was found to have deteriorated chemical resistance.

이상 본 발명은 실시예 및 도시된 도면을 참고하여 설명하고 있으나, 이는 예시적인 것에 해당되며, 당해기술이 속하는 분야에서 통상적인 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의해서 정해지는 것임은 자명하다 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes and modifications may be made without departing from the scope of the invention. . Accordingly, it should be apparent that the true scope of the present invention is defined by the following claims.

Claims (7)

1) 콘크리트구조물 및 강구조물의 표면 위에 존재하는 이물질을 제거하기 위하여, 변형, 박리, 풍화된 부분의 이물질을 제거하는 바탕면 정리 및 청소작업을 하는 바탕만들기단계;
2) 상기 바탕만들기단계의 피처리물 표면 위에 알콕시실란 150중량부와 실란커플링제 30중량부를 혼합한 용액에 10~20㎚의 금속산화물졸 170중량부를 첨가한 후에 지르코늄 화합물 10~20중량부와 알루미늄 화합물 10~20중량부를 투입하여 12시간 동안 반응시켜 제조되는 하도용 세라믹코팅제를 0.10~0.30㎏/㎡ 도포하는 하도 처리단계;
3) 상기 하도 처리단계 후에 상기 하도용 세라믹코팅제 380중량부에 무기안료 230중량부 및 첨가제 6중량부가 첨가된 중도용 세라믹코팅제를 0.15~0.40㎏/㎡ 도포하는 중도처리단계;
4) 상기 중도 처리단계 후 상기 중도용 세라믹코팅제 616중량부에 불소실란 10~20중량부가 함유된 상도용 세라믹코팅제를 0.10~0.45㎏/㎡ 도포하는 상도처리단계로 이루어지는 것을 특징으로 하는 내약품성이 우수한 침투성 방수도장공법.
1) a step of making a base to clean and clean the debris on the surface of the concrete structure and the steel structure;
2) 170 parts by weight of a metal oxide sol of 10 to 20 nm was added to a mixture of 150 parts by weight of alkoxysilane and 30 parts by weight of a silane coupling agent on the surface of the object to be processed in the above base forming step, and then 10 to 20 parts by weight of a zirconium compound 10 to 20 parts by weight of an aluminum compound is added to the mixture, and the mixture is allowed to react for 12 hours, thereby applying a low-temperature ceramic coating agent in an amount of 0.10 to 0.30 kg / m 2;
3) After the sublimation treatment step, a middle treatment step of applying 0.15 to 0.40 kg / m 2 of a medium ceramic coating agent to which 230 parts by weight of inorganic pigments and 6 parts by weight of additives are added to 380 parts by weight of the undercoat ceramic coating agent;
4) a top treatment step of applying 0.10 to 0.45 kg / m 2 of an in-phase ceramic coating agent containing 61 to 6 parts by weight of the intermediate ceramic coating agent and 10 to 20 parts by weight of fluorosilane after the intermediate treatment step, Excellent permeability waterproof coating method.
제 1항에 있어서,
상기 하도처리단계 중 알콕시실란은 메틸트리메톡시실란(MTMS), 메틸트리에톡시실란(MTES), 테트라메톡시실란(TMOS), 테트라에톡시실란(TEOS), 디페닐디에톡시실란(DPDES), 디페닐디메톡시실란(DPDMS) 중에서 선택된 1종 이상인 것을 특징으로 하는 내약품성이 우수한 침투성 방수도장공법.
The method according to claim 1,
The alkoxysilane may be selected from the group consisting of methyltrimethoxysilane (MTMS), methyltriethoxysilane (MTES), tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), diphenyldiethoxysilane (DPDES) , And diphenyldimethoxysilane (DPDMS). &Lt; / RTI &gt;
제 2항에 있어서,
상기 하도처리단계 중 실란커플링제는 N-(β-아미노에틸)-γ-아미노프로필메틸디메톡시실란, 3-아미노프로필트리에톡시실란, 비스-(γ-트리메톡시실리프로필)아민 중에서 선택된 1종 이상인 것을 특징으로 하는 내약품성이 우수한 침투성 방수도장공법.
3. The method of claim 2,
The silane coupling agent during the undercoating step is selected from the group consisting of 1 (1) selected from N- (? -Aminoethyl) -? - aminopropylmethyldimethoxysilane, 3-aminopropyltriethoxysilane and bis Or more, which is excellent in chemical resistance.
제 3항에 있어서,
상기 하도처리단계 중 금속산화물졸은 실리카졸, 알루미나졸, 티타니아졸 중에서 선택된 1종 이상인 것을 특징으로 하는 내약품성이 우수한 침투성 방수도장공법.
The method of claim 3,
Wherein the metal oxide sol is at least one selected from the group consisting of silica sol, alumina sol, and titania sol in the undercoating step.
제 4항에 있어서,
상기 하도처리단계 중 지르코늄 화합물은 지르코늄아세틸아세토네이트, 지르코늄아세테이트인 것을 특징으로 하는 내약품성이 우수한 침투성 방수도장공법.
5. The method of claim 4,
Wherein the zirconium compound is zirconium acetylacetonate or zirconium acetate during the undercoating step, wherein the zirconium compound is zirconium acetylacetonate or zirconium acetate.
제 5항에 있어서,
상기 하도처리단계 중 알루미늄 화합물은 알루미늄아세틸아세토네이트, 알루미늄아세테이트인 것을 특징으로 하는 내약품성이 우수한 침투성 방수도장공법.
6. The method of claim 5,
Wherein the aluminum compound in the undercoating step is aluminum acetylacetonate or aluminum acetate, and has excellent chemical resistance.
제 6항에 있어서,
상기 상도처리단계 중 불소실란은 헵타데카플루오로테트라데실트리메톡시실란, 트리데카플루오로-1,1,2,2-테트라하이드로옥틸트리에톡시실란인 것을 특징으로 하는 내약품성이 우수한 침투성 방수도장공법.
The method according to claim 6,
Wherein the fluorine silane in the top treatment step is heptadecafluorotetradecyl trimethoxysilane, tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane, and has excellent chemical resistance. Painting method.
KR1020180042070A 2018-04-11 2018-04-11 Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance and Method for Waterproof and Coating Thereof KR101892898B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180042070A KR101892898B1 (en) 2018-04-11 2018-04-11 Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance and Method for Waterproof and Coating Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180042070A KR101892898B1 (en) 2018-04-11 2018-04-11 Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance and Method for Waterproof and Coating Thereof

Publications (1)

Publication Number Publication Date
KR101892898B1 true KR101892898B1 (en) 2018-10-04

Family

ID=63863210

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180042070A KR101892898B1 (en) 2018-04-11 2018-04-11 Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance and Method for Waterproof and Coating Thereof

Country Status (1)

Country Link
KR (1) KR101892898B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102060594B1 (en) 2019-05-27 2019-12-30 황이순 Water proof painting composition and painting method
KR102184866B1 (en) 2020-07-29 2020-12-02 티오켐 주식회사 Ceramic Coating Agent Having Mixed Silane and Method for Waterproof and Coating Thereof
KR20220078984A (en) * 2020-12-04 2022-06-13 윤숙현 Inorganic ceramic heat shielding floor coating material and heat shielding coating method using the same
KR20230044663A (en) * 2021-09-27 2023-04-04 윤숙현 Method for manufacturing non-combustible flooring using ceramic binder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943158B1 (en) 2009-09-24 2010-02-22 티오켐 주식회사 Penetrating coating process for concretes or cements
KR101279938B1 (en) 2005-02-01 2013-07-05 다우 코닝 도레이 캄파니 리미티드 Curable coating compositions
KR101556842B1 (en) 2014-01-21 2015-10-01 티오켐 주식회사 Method on Painting for Anticorrosion of Sea Windforce Ironpipe by Metaloxide Sol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279938B1 (en) 2005-02-01 2013-07-05 다우 코닝 도레이 캄파니 리미티드 Curable coating compositions
KR100943158B1 (en) 2009-09-24 2010-02-22 티오켐 주식회사 Penetrating coating process for concretes or cements
KR101556842B1 (en) 2014-01-21 2015-10-01 티오켐 주식회사 Method on Painting for Anticorrosion of Sea Windforce Ironpipe by Metaloxide Sol

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102060594B1 (en) 2019-05-27 2019-12-30 황이순 Water proof painting composition and painting method
KR102184866B1 (en) 2020-07-29 2020-12-02 티오켐 주식회사 Ceramic Coating Agent Having Mixed Silane and Method for Waterproof and Coating Thereof
KR20220078984A (en) * 2020-12-04 2022-06-13 윤숙현 Inorganic ceramic heat shielding floor coating material and heat shielding coating method using the same
KR102516574B1 (en) 2020-12-04 2023-03-31 휴켐플러스 주식회사 Inorganic ceramic heat shielding floor coating material and heat shielding coating method using the same
KR20230044663A (en) * 2021-09-27 2023-04-04 윤숙현 Method for manufacturing non-combustible flooring using ceramic binder
KR102617792B1 (en) 2021-09-27 2024-01-03 주식회사 지노랩 Method for manufacturing non-combustible flooring using ceramic binder

Similar Documents

Publication Publication Date Title
KR101892899B1 (en) Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance &amp; Adhesion Strength and Method for Waterproof and Coating Thereof
KR101892898B1 (en) Penetrating Ceramic Coating Agents Having Excellent Chemical Resistance and Method for Waterproof and Coating Thereof
KR100935808B1 (en) Ultra-weatherability antipollution process over nonflammable ceramic coating materials and fluorine resins
KR100979955B1 (en) Inorganic paint composition comprising urushiol and preparation method thereof
US5747561A (en) Solid surface modifier
KR101512965B1 (en) Eco-Friendly Surface Protectant and Eco-Friendly Surface Method of Surface Protection Using Thereof
CN112625468A (en) Multifunctional composite coating and preparation method thereof
KR101004613B1 (en) A flexible waterborne acrylic coating system for waterproofing and carbonation protection of reinforced concrete structures
CN103436159A (en) Composite high-polymer waterproof paint and preparation method thereof
KR102184866B1 (en) Ceramic Coating Agent Having Mixed Silane and Method for Waterproof and Coating Thereof
KR101699490B1 (en) Environmentally-friendly surface treatment construction method of concrete or steel reinforcement structure
JP3992602B2 (en) Thermal insulation structure
KR100942027B1 (en) Aqueous painting composition and coating method for steel corrosion.concrete blocks neutralization prevention water proof using the same
CN107629627B (en) Permeable hydrophobic multifunctional waterproof coating and preparation method and application thereof
KR101062478B1 (en) Construction method for waterproofing of concrete structure
KR100943158B1 (en) Penetrating coating process for concretes or cements
KR102060601B1 (en) Water proof painting composition for concrete structure and painting method
KR101034560B1 (en) A complex waterproofing method to concrete constructions
JP3245566B2 (en) Method of forming moisture-permeable coating film
EP0669963B1 (en) Solid surface modifier
KR101556842B1 (en) Method on Painting for Anticorrosion of Sea Windforce Ironpipe by Metaloxide Sol
KR102158511B1 (en) Eco-friendly ceramic-based paint composition for preventing corrosion and deterioration of surface and construction method for surface protection of structure using the same
KR101102134B1 (en) Method For Manufacturing Inorganic Ceramic Agent For Preventing Concrete From Deteriorating With Eco-friendly Property
KR102493087B1 (en) Eco-friendly coating composition for thermal protection of concrete or steel structure and construction method using it
JP7528400B2 (en) Concrete surface impregnation material

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant