KR102664215B1 - Lead-free dielectric ceramic composition with stable high-temperature dielectric properties and manufacturing method thereof - Google Patents
Lead-free dielectric ceramic composition with stable high-temperature dielectric properties and manufacturing method thereof Download PDFInfo
- Publication number
- KR102664215B1 KR102664215B1 KR1020210188842A KR20210188842A KR102664215B1 KR 102664215 B1 KR102664215 B1 KR 102664215B1 KR 1020210188842 A KR1020210188842 A KR 1020210188842A KR 20210188842 A KR20210188842 A KR 20210188842A KR 102664215 B1 KR102664215 B1 KR 102664215B1
- Authority
- KR
- South Korea
- Prior art keywords
- ceramic composition
- lead
- powder
- dielectric
- dielectric constant
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 51
- 239000000203 mixture Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 238000005245 sintering Methods 0.000 claims abstract description 5
- 239000000843 powder Substances 0.000 claims description 22
- 238000004146 energy storage Methods 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 4
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims description 2
- 239000011812 mixed powder Substances 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims 1
- 230000006866 deterioration Effects 0.000 abstract description 2
- 230000007704 transition Effects 0.000 abstract description 2
- 230000002265 prevention Effects 0.000 abstract 1
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010422 internal standard material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
본 발명은 (Bi0.65-2xBa0.35-2xNa0.46xSr0.01x)(Fe0.65-0.65xTi0.35-0.1xNb0.74xZr0.01x)O3 (단, 0< x ≤ 0.1임)로 표시되는 BiFeO3-BaTiO3계 무연 유전체 세라믹스 조성물 및 그 제조방법에 대한 것으로서, 본 발명에 따른 BiFeO3-BaTiO3계 세라믹스 조성물은 대략 500℃까지 고온 영역에서도 높은 유전율(1000 이상)을 가지면서도 우수한 온도 안정성을 가지며, 대략 320℃까지의 고온 영역에서도 높은 유전율(1000 이상)과 낮은 유전손실 값(0.1 이하)을 가지면서도 유전율 및 유전손실 값의 우수한 온도 안정성을 가질 뿐만 아니라, 기존의 BaTiO3계에 비해 고온 상전이 온도가 아주 높기 때문에 고온 영역에서 보다 안정적으로 사용이 가능하며, 또한, 위와 같은 본 발명에 의한 BiFeO3-BaTiO3계 세라믹스 조성의 제반 유전특성은 첨가제의 종류 및 함량 중에서 선택된 하나 또는 둘 이상의 조합에 따른 소결 조건 조절에 의해 유전율 제어와 유전손실의 열화 방지가 효과적으로 이루어질 수 있다. The present invention is (Bi 0.65-2x Ba 0.35-2x Na 0.46x Sr 0.01x )(Fe 0.65-0.65x Ti 0.35-0.1x Nb 0.74x Zr 0.01x )O 3 (however, 0 < x ≤ 0.1) BiFeO 3 -BaTiO 3 based lead-free dielectric ceramic composition and manufacturing method thereof are shown. The BiFeO 3 -BaTiO 3 based ceramic composition according to the present invention has a high dielectric constant (more than 1000) even in a high temperature range up to approximately 500°C and has excellent dielectric constant. It has temperature stability and has a high dielectric constant (above 1000) and low dielectric loss value (less than 0.1) even in the high temperature range up to approximately 320℃, and not only has excellent temperature stability of dielectric constant and dielectric loss value, but is also superior to the existing BaTiO 3 system. Since the high - temperature phase transition temperature is very high compared to Control of dielectric constant and prevention of deterioration of dielectric loss can be effectively achieved by controlling sintering conditions according to a combination of two or more.
Description
본 발명은 온도 안정성이 높은 유전율을 가지는 세라믹스 조성물에 관한 것으로서, 보다 상세하게는 고온에서도 저유전 손실과 고온에서 유전율의 온도 안정성이 탁월한 BiFeO3-BaTiO3계 세라믹스 조성물 및 그 제조방법에 관한 것이다. The present invention relates to a ceramic composition having a high dielectric constant with high temperature stability, and more specifically, to a BiFeO 3 -BaTiO 3 based ceramic composition with low dielectric loss even at high temperatures and excellent temperature stability of dielectric constant at high temperatures, and a method for manufacturing the same.
적층형 세라믹 커패시터(Multi-layer Ceramic Capacitor, MLCC)는 휴대폰, 개인용 PC, digital display 등 IT의 전자 회로에서 수동부품의 60%를 차지하고 있는 대표적인 수동소자로 IC 등 능동 소자의 전원 공급 회로에서 noise를 분리하는 기능(decoupling), signal에서 dc 성분을 제거하는 기능, signal의 평탄화 기능 등 그 역할이 대표적인 능동 소자인 반도체에 버금갈 정도로 중요한 소자이다. Multi-layer ceramic capacitor (MLCC) is a representative passive device that accounts for 60% of passive components in IT electronic circuits such as mobile phones, personal PCs, and digital displays. It separates noise from the power supply circuit of active devices such as ICs. It is an important device whose roles, such as decoupling, removing DC components from the signal, and flattening the signal, are comparable to those of semiconductors, which are representative active devices.
최근 4차 산업을 비롯한 미래형 모빌리티에 MLCC의 사용은 급속도로 증가할 것으로 전망되고 있으며, 산업기술 발전에 맞추어 경쟁력을 강화하기 위해서는 극한의 환경에서도 일정한 유전특성을 유지할 수 있으며, 높은 유전용량과 온도 안정성을 갖는 유전체 재료의 개발과 환원 분위기에서 전극과 동시소결 공정기술, post-BaTiO3 세라믹 유전체 조성에 대한 연구개발이 활발히 진행되고 있다.Recently, the use of MLCC in future mobility, including the 4th industry, is expected to increase rapidly. In order to strengthen competitiveness in line with the development of industrial technology, constant dielectric characteristics can be maintained even in extreme environments, and high dielectric capacitance and temperature stability are required. Research and development is actively underway on the development of dielectric materials with , electrode and co-sintering process technology in a reducing atmosphere, and post-BaTiO 3 ceramic dielectric composition.
특히, 미래형 자동차나 고온에서 사용되는 MLCC는 높은 유전율과 낮은 유전손실을 가지면서도 150 ℃ 이상의 고온 영역에서 유전율과 유전손실 값의 온도 안정성이 우수한 유전특성을 갖는 세라믹스 조성이 요망된다. In particular, MLCCs used in future automobiles or at high temperatures require a ceramic composition that has high dielectric constant and low dielectric loss while also having excellent dielectric properties with excellent temperature stability of dielectric constant and dielectric loss values in the high temperature range of 150 ℃ or higher.
본 발명이 해결하고자 하는 기술적 과제는, BiFeO3-BaTiO3(BF-BT)계 세라믹스로서 고온 영역에서 높은 유전율과 낮은 유전손실을 가지면서도 유전율과 유전손실 값의 온도 안정성이 우수한 유전특성을 갖는 세라믹스 조성을 제공하는 것이다. The technical problem to be solved by the present invention is to provide BiFeO 3 -BaTiO 3 (BF-BT) based ceramics, which have high dielectric constant and low dielectric loss in a high temperature range and excellent dielectric properties with excellent temperature stability of dielectric constant and dielectric loss values. It provides composition.
상기 기술적 과제를 달성하기 위해, 본 발명은 하기 화학식으로 표시되는 무연 유전체 세라믹스 조성물을 제안한다. In order to achieve the above technical problem, the present invention proposes a lead-free dielectric ceramic composition represented by the following chemical formula.
[화학식] [Chemical formula]
(Bi0.65-2xBa0.35-2xNa0.46xSr0.01x)(Fe0.65-0.65xTi0.35-0.1xNb0.74xZr0.01x)O3 (BFBT-NSNZ)(Bi 0.65-2x Ba 0.35-2x Na 0.46x Sr 0.01x )(Fe 0.65-0.65x Ti 0.35-0.1x Nb 0.74x Zr 0.01x )O 3 (BFBT-NSNZ)
(상기 화학식에서, 0< x ≤ 0.1임).(In the above formula, 0 < x ≤ 0.1).
또한, 상기 화학식의 x 값이 증가함에 따라, 25 ~ 500℃의 온도 범위 중 하기 부등식을 만족시키는 유전율(εr) 값을 가지는 온도 범위가 증가하는 것을 특징으로 하는 무연 유전체 세라믹스 조성물을 제안한다. In addition, as the x value of the above chemical formula increases, a lead-free dielectric ceramic composition is proposed, characterized in that the temperature range having a dielectric constant (ε r ) value that satisfies the following inequality in the temperature range of 25 to 500°C increases.
0.85 × εr150℃ ≤ εr ≤ 1.15 × εr150℃ 0.85 × ε r150℃ ≤ ε r ≤ 1.15 × ε r150℃
(상기 부등식에서 εr150℃는 150℃에서 측정한 유전율 값임).(In the above inequality, ε r150℃ is the dielectric constant value measured at 150℃).
또한, 상기 화학식에서 x = 0.10이고, 88 ~ 500℃의 온도 범위에서 상기 부등식을 만족시키는 유전율(εr) 값을 가지는 것을 특징으로 하는 무연 유전체 세라믹스 조성물을 제안한다. In addition, in the above formula, x = 0.10, and a lead-free dielectric ceramic composition is proposed, characterized in that it has a dielectric constant (ε r ) value that satisfies the above inequality in the temperature range of 88 to 500°C.
또한, 상기 화학식에서 x 값이 증가함에 따라, 25 ~ 500℃의 온도 범위 중 0.1 이하의 유전손실 값(tanδ)을 가지는 온도 범위가 증가하는 것을 특징으로 하는 무연 유전체 세라믹스 조성물을 제안한다. In addition, as the value of
또한, 상기 화학식에서 x = 0.10이고, 75 ~ 316℃에서 0.1 이하의 유전손실 값(tanδ)을 가지는 것을 특징으로 하는 무연 유전체 세라믹스 조성물을 제안한다. In addition, a lead-free dielectric ceramic composition is proposed, where x = 0.10 in the above formula and has a dielectric loss value (tanδ) of 0.1 or less at 75 to 316°C.
또한, 상기 화학식에서 x 값이 증가함에 따라, 100 kV/cm까지 0.6 J/cm3 이상의 에너지 저장 밀도와 70% 이상의 에너지 저장 효율을 가지는 것을 특징으로 하는 무연 세라믹스 조성물을 제안한다. In addition, as the x value increases in the above formula, a lead-free ceramic composition is proposed, which has an energy storage density of more than 0.6 J/cm 3 and an energy storage efficiency of more than 70% up to 100 kV/cm.
그리고, 본 발명은 발명의 다른 측면에서 상기 무연 유전체 세라믹스 조성물의 제조방법으로서, (a) Bi2O3 분말, Fe2O3 분말, TiO2 분말, BaCO3 분말, Na2CO3 분말, Nb2O5 분말, SrCO3 분말 및 ZrO2 분말을 포함하는 혼합 분말을 분쇄하고 하소(calcination)시켜 원료 분말을 제조하는 단계, 및 (b) 상기 단계 (a)에서 제조한 원료 분말을 이용해 성형체를 제조한 후 소결하는 단계를 포함하는 무연 유전체 세라믹스 조성물의 제조방법을 제안한다.In addition, in another aspect of the invention, the present invention is a method of manufacturing the lead-free dielectric ceramic composition, including (a) Bi 2 O 3 powder, Fe 2 O 3 powder, TiO 2 powder, BaCO 3 powder, Na 2 CO 3 powder, Nb 2 O 5 powder, SrCO 3 powder, and ZrO 2 powder, pulverizing and calcining a mixed powder to produce raw material powder, and (b) forming a molded body using the raw material powder prepared in step (a). Lead-free dielectric ceramic composition comprising the step of manufacturing and then sintering Propose a manufacturing method.
본 발명에 따른 BiFeO3-BaTiO3계 세라믹스 조성물은 대략 250℃까지의 고온 영역에서도 높은 유전율(1000 이상)과 유전손실 값(0.1 이하)을 가지면서도 유전율 및 유전손실 값의 우수한 온도 안정성을 가질 뿐만 아니라, 기존의 BaTiO3계에 비해 고온 상전이 온도가 아주 높기 때문에 고온 영역에서 보다 안정적으로 사용이 가능하다. The BiFeO 3 -BaTiO 3 based ceramic composition according to the present invention not only has a high dielectric constant (more than 1000) and a dielectric loss value (0.1 or less) even in a high temperature range of up to approximately 250°C, but also has excellent temperature stability of the dielectric constant and dielectric loss values. In addition, because the high-temperature phase transition temperature is very high compared to the existing BaTiO 3 system, it can be used more stably in high temperature areas.
또한, 위와 같은 본 발명에 의한 BiFeO3-BaTiO3계 세라믹스 조성의 제반 유전특성은 첨가제의 종류 및 함량 중에서 선택된 하나 또는 둘 이상의 조합에 따른 소결 조건 조절에 의해 유전율 제어와 유전손실의 열화 방지가 효과적으로 이루어질 수 있다. In addition, the overall dielectric properties of the BiFeO 3 -BaTiO 3 based ceramic composition according to the present invention are effectively controlled by controlling the dielectric constant and preventing deterioration of dielectric loss by adjusting the sintering conditions according to one or a combination of two or more selected from the type and content of additives. It can be done.
도 1은 본원 실시예에서 제조한 BFBT-NSNZ 세라믹스의 상온 XRD 패턴이다.
도 2(a) 본원 실시예에서 제조한 BFBT-NSNZ 세라믹스의 상온 분극-전기장(P-E) 이력 곡선(hysteresis loop)이고, 도 2(b)는 각각 다양한 전기장 하에서 BFBT-NSNZ 세라믹스(x = 0.10)의 상온 에너지 저장 밀도(W store )와 에너지 저장 효율(η) 측정 결과이다.
도 3(a)와 도 3(b)는 각각 10 kHz와 100 kHz의 주파수에서 본원 실시예에서 제조한 BFBT-NSNZ 세라믹스(0 ≤ x ≤ 0.10)의 유전 상수(ε r )의 온도 의존성 및 유전 상수의 온도 안정성을 보여주는 그래프이고, 도 3(c)는 유전손실(tan δ ≤ 0.1)의 온도 의존성을 보여주는 그래프이다. Figure 1 is a room temperature XRD pattern of BFBT-NSNZ ceramics manufactured in an example of the present application.
Figure 2(a) is the room temperature polarization-electric field ( PE ) hysteresis loop of the BFBT-NSNZ ceramics prepared in the examples of the present application, and Figure 2(b) shows the BFBT-NSNZ ceramics (x = 0.10) under various electric fields, respectively. These are the room temperature energy storage density ( W store ) and energy storage efficiency (η) measurement results.
3(a) and 3(b) show the temperature dependence and dielectric constant of the dielectric constant ( ε r ) of the BFBT-NSNZ ceramics (0 ≤ x ≤ 0.10) prepared in the examples of the present application at frequencies of 10 kHz and 100 kHz, respectively. This is a graph showing the temperature stability of the constant, and Figure 3(c) is a graph showing the temperature dependence of dielectric loss (tan δ ≤ 0.1).
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the embodiments according to the concept of the present invention can make various changes and have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terms used in this specification are merely used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “include” or “have” are intended to indicate the existence of a described feature, number, step, operation, component, part, or combination thereof, but are not intended to indicate the presence of one or more other features or numbers. It should be understood that this does not exclude in advance the possibility of the existence or addition of steps, operations, components, parts, or combinations thereof.
이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail through examples.
본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다. Embodiments according to the present specification may be modified into various other forms, and the scope of the present specification is not to be construed as being limited to the embodiments described in detail below. The embodiments of this specification are provided to more completely explain the present specification to those with average knowledge in the art.
<실시예> BFBT-NSNZ 세라믹스의 합성 및 특성 분석<Example> Synthesis and characterization of BFBT-NSNZ ceramics
본 실시예에서는 (Bi0.65-2xBa0.35-2xNa0.46xSr0.01x)(Fe0.65-0.65xTi0.35-0.1xNb0.74xZr0.01x)O3 (단, 0 ≤ x ≤ 0.10) 로 표시되는 무연 유전체 세라믹스(BFBT-NSNZ)를 공지의 고상 반응법을 통해 합성하였다. In this example, (Bi 0.65-2x Ba 0.35-2x Na 0.46x Sr 0.01x )(Fe 0.65-0.65x Ti 0.35-0.1x Nb 0.74x Zr 0.01x )O 3 (however, 0 ≤ x ≤ 0.10) The indicated lead-free dielectric ceramic (BFBT-NSNZ) was synthesized through a known solid-state reaction method.
먼저, Bi2O3, Fe2O3, TiO2, BaCO3, Na2CO3, Nb2O5, SrCO3 및 ZrO2(99.9% Sigma Aldrich Co., St. Louis, MO) 각각의 건조된 분말을 화학양론비에 따라 칭량하고 지르코니아 볼과 함께 에탄올에서 24시간 동안 볼밀링하여 슬러리를 제조하고 100℃에서 건조시킨 후, 800℃에서 5시간 동안 소성한 후, 6시간 동안 다시 볼밀링하였다. First, each of Bi 2 O 3 , Fe 2 O 3 , TiO 2 , BaCO 3 , Na 2 CO 3 , Nb 2 O 5 , SrCO 3 and ZrO 2 (99.9% Sigma Aldrich Co., St. Louis, MO) was dried. The powder was weighed according to the stoichiometric ratio and ball milled in ethanol with zirconia balls for 24 hours to prepare a slurry, dried at 100°C, calcined at 800°C for 5 hours, and then ball milled again for 6 hours. .
이어서, 소성된 분말을 98 MPa의 압력으로 직경 10mm의 디스크 모양의 세라믹 시편으로 압축 성형하고 알루미나 도가니에서 3시간 동안 1000℃의 온도에서 소결하였다. 소결된 펠릿을 연마한 후 양면에 은(Ag) 페이스트를 도포하고 650℃의 온도에서 30분간 소성해 전극을 형성한 후에 전기적 측정을 실시하였다.Subsequently, the calcined powder was compression molded into a disk-shaped ceramic specimen with a diameter of 10 mm at a pressure of 98 MPa and sintered at a temperature of 1000°C for 3 hours in an alumina crucible. After polishing the sintered pellets, silver (Ag) paste was applied to both sides and fired at a temperature of 650°C for 30 minutes to form electrodes, and then electrical measurements were performed.
도 1은 소결된 BFBT-NSNZ 세라믹스의 2θ(20 - 70°) 범위에서 XRD 패턴을 보여준다. 세라믹스 시편은 눈에 띄는 2차상 없이 단상 페로브스카이트 구조를 보였으며, 이는 BNBT-NS가 BF-BT 격자로 성공적으로 확산되어 안정적인 고용체를 형성했음을 나타낸다. 참고로, XRD 패턴의 점선은 내부 표준 물질로 사용한 Si의 피크를 나타낸다. 명백한 피크 분리(peak splitting)가 나타나지 않았기 때문에 모든 BFBT-NSNZ 세라믹스는 준입방(pseudocubic) 대칭을 가지는 것으로 관찰되었으며, 모든 세라믹스 조성은 피크 위치와 피크의 상대적 강도에서 눈에 띄는 큰 차이 없이 유사한 결정 구조를 가지는 것으로 확인되었다. 시편의 상대 밀도는 95% 이상으로 확인되었다.Figure 1 shows the XRD pattern in the 2θ (20 - 70°) range of sintered BFBT-NSNZ ceramics. The ceramic specimen showed a single-phase perovskite structure without a noticeable secondary phase, indicating that BNBT-NS successfully diffused into the BF-BT lattice to form a stable solid solution. For reference, the dotted line in the XRD pattern represents the peak of Si used as an internal standard material. All BFBT-NSNZ ceramics were observed to have pseudocubic symmetry, as no obvious peak splitting was observed, and all ceramic compositions had similar crystal structures without significant differences in peak positions and relative intensities. It was confirmed to have. The relative density of the specimen was confirmed to be over 95%.
도 2(a)는 0.00 ≤ x ≤ 0.10 조성의 BFBT-NSNZ 세라믹스의 상온 분극-전기장(P-E) 이력 곡선(hysteresis loop)을 보여준다. NSNZ는 BF35BT 세라믹스의 분극과 항전계(coercive field)에 큰 영향을 미치는 것을 관찰할 수 있다. x = 0인 BFBT-NSNZ 세라믹스는 높은 잔류 분극(remnant polarization, P r ) 및 높은 항전계(E c )와 함께 전형적인 강유전성 거동을 보여준다. BF35BT 세라믹스에 NSNZ를 첨가하면 P-E 이력 곡선이 가늘어지고 P r 과 E c 가 모두 지속적으로 감소했다. 따라서, 순수한 BF35BT 세라믹스에서 지배적인 장거리 강유전성 정렬(long-range ferroelectric order)은 NSNZ의 첨가에 의해 교란되어 완화형(relaxor) 강유전성 상태로 전환될 수 있다. x = 0.10의 상온 에너지 저장 밀도(energy storage density, W store )와 에너지 저장 효율(energy storage efficiency, η)이 도 2(b)에 표시되어 있으며, 이는 인가된 전기장이 증가함에 따라 W store 가 0.131에서 0.569 J/cm3로 증가함을 보여준다. 한편 η도 74%에서 78%로 증가했다. 기존 문헌에 따른 결과와 비교하여 BFBT-NSNZ 세라믹스는 우수한 에너지 저장 성능을 나타내며, 이는 BFBT-NSNZ가 에너지 저장 응용 분야에 적합한 재료일 수 있음을 시사한다. Figure 2(a) shows the room temperature polarization-electric field ( PE ) hysteresis loop of BFBT-NSNZ ceramics with a composition of 0.00 ≤ x ≤ 0.10. It can be observed that NSNZ has a significant effect on the polarization and coercive field of BF35BT ceramics. The BFBT-NSNZ ceramics with x = 0 show typical ferroelectric behavior with high remnant polarization ( P r ) and high coercive field ( E c ). When NSNZ was added to BF35BT ceramics, the PE hysteresis curve became thinner and both P r and E c continued to decrease. Therefore, the long-range ferroelectric order that dominates in pure BF35BT ceramics can be disturbed by the addition of NSNZ and converted to a relaxed ferroelectric state. The room temperature energy storage density ( W store ) and energy storage efficiency (η) at x = 0.10 are shown in Figure 2(b), which means that W store increases to 0.131 as the applied electric field increases. It shows an increase from 0.569 J/cm 3 . Meanwhile, η also increased from 74% to 78%. Compared with the results according to existing literature, BFBT-NSNZ ceramics exhibit excellent energy storage performance, suggesting that BFBT-NSNZ may be a suitable material for energy storage applications.
주파수 10 kHz와 100 kHz에서 상온으로부터 500 ℃까지 BF35BT 세라믹스에서 NSNZ 농도의 함수로 나타낸 유전 상수(ε r )와 유전손실(tan δ)의 온도 의존성을 도 3에 도시했다. 도 3(a)를 참조하면, x = 0인 BF35BT 세라믹스는 누설 거동을 나타내었지만 BF35BT 세라믹에 NSNZ를 첨가하면 최대 유전율(maximum dielectric permittivity, εm)이 급격히 떨어지고 온도 불변의 평활한 유전 상수가 넓은 범위에서 나타난다. 도 3(b)는 0 ≤ x ≤ 0.10인 BFBT-NSNZ에 대해 100 kHz에서 유전율의 온도 의존성을 보여주는데, 이를 참조하면 x = 0.04에서 유전율(ε)은 100 ℃ ~ 314 ℃의 온도 범위에서 1449 ± 15%로 나타났다. 또한, x = 0.10인 BFBT-NSNZ 세라믹스는 88 ℃에서 500 ℃까지 1134 ± 15%의 유전율로 가장 넓은 유전 온도 안정성 범위를 나타냈다. BF35BT의 NSNZ 함량이 증가함에 따라 150 ℃에서의 유전율 값을 기준점으로 안정적인 ε 값(ε ± 15%, 100kHz)을 갖는 온도 범위가 105 ℃에서 412 ℃로 확대되었다. 본 실시예에서 x = 0.10인 BFBT-NSNZ 세라믹스의 안정적인 유전율을 갖는 온도 범위는 이전에 보고된 BF35BT 세라믹보다 크다. 참고로, 본 발명에 따른 무연 세라믹과 공지의 무연 세라믹과의 유전 온도 안정성 범위 비교 결과는 아래 표 1에 기재했다. The temperature dependence of dielectric constant ( ε r ) and dielectric loss (tan δ ) as a function of NSNZ concentration in BF35BT ceramics from room temperature to 500 °C at frequencies of 10 kHz and 100 kHz is shown in Figure 3. Referring to Figure 3(a), the BF35BT ceramics with x = 0 exhibited leakage behavior, but when NSNZ was added to the BF35BT ceramics, the maximum dielectric permittivity (ε m ) dropped sharply and the temperature-invariant smooth dielectric constant was wide. Appears in range. Figure 3(b) shows the temperature dependence of the dielectric constant at 100 kHz for BFBT-NSNZ with 0 ≤ x ≤ 0.10, with reference to which the dielectric constant ( ε ) at x = 0.04 is 1449 ± It was found to be 15%. Additionally, the BFBT-NSNZ ceramics with x = 0.10 showed the widest dielectric temperature stability range with a dielectric constant of 1134 ± 15% from 88 °C to 500 °C. As the NSNZ content of BF35BT increased, the temperature range with a stable ε value (ε ± 15%, 100 kHz) expanded from 105 ℃ to 412 ℃, using the dielectric constant value at 150 ℃ as a reference point. In this example, the temperature range over which the BFBT-NSNZ ceramics with x = 0.10 has a stable dielectric constant is larger than that of the previously reported BF35BT ceramics. For reference, the results of comparing the dielectric temperature stability range between the lead-free ceramic according to the present invention and the known lead-free ceramic are shown in Table 1 below.
<표 1> 본 발명과 공지의 무연 유전체 세라믹의 유전체 온도 안정성 범위 비교<Table 1> Comparison of dielectric temperature stability ranges of the present invention and known lead-free dielectric ceramics
또한, NSNZ의 첨가에 의해 유전손실(tan δ)의 온도 의존성도 감소하였다. BFBT계 세라믹은 일반적으로 유전손실이 높지만, NSNZ 농도가 증가함에 따라 0.1 이하의 유전손실(tan δ ≤ 0.1)을 가지는 비교적 넓은 안정적인 온도 범위가 증가했다. x = 0.10에서 유전손실이 안정적인 범위는 75 ℃ ~ 316 ℃이었다. Additionally, the temperature dependence of dielectric loss (tan δ ) was reduced by the addition of NSNZ. BFBT-based ceramics generally have high dielectric loss, but as NSNZ concentration increased, the relatively wide stable temperature range with dielectric loss below 0.1 (tan δ ≤ 0.1) increased. The stable range of dielectric loss at x = 0.10 was 75 ℃ ~ 316 ℃.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The present invention is not limited to the above-mentioned embodiments, but can be manufactured in various different forms, and those skilled in the art will be able to form other specific forms without changing the technical idea or essential features of the present invention. You will be able to understand that this can be implemented. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.
Claims (7)
[화학식]
(Bi0.65-2xBa0.35-2xNa0.46xSr0.01x)(Fe0.65-0.65xTi0.35-0.1xNb0.74xZr0.01x)O3
(상기 화학식에서, 0< x ≤ 0.1임).A lead-free ceramic composition represented by the following chemical formula:
[Chemical formula]
(Bi 0.65-2x Ba 0.35-2x Na 0.46x Sr 0.01x )(Fe 0.65-0.65x Ti 0.35-0.1x Nb 0.74x Zr 0.01x )O 3
(In the above formula, 0 < x ≤ 0.1).
상기 화학식의 x 값이 증가함에 따라,
25 ~ 500℃의 온도 범위 중 하기 부등식을 만족시키는 유전율(εr) 값을 가지는 온도 범위가 증가하는 것을 특징으로 하는 무연 세라믹스 조성물:
0.85 × εr150℃ ≤ εr ≤ 1.15 × εr150℃
(상기 부등식에서 εr150℃는 150℃에서 측정한 유전율 값임).According to paragraph 1,
As the value of x in the above formula increases,
A lead-free ceramic composition characterized by an increasing temperature range having a dielectric constant (ε r ) value that satisfies the following inequality in the temperature range of 25 to 500°C:
0.85 × ε r150℃ ≤ ε r ≤ 1.15 × ε r150℃
(In the above inequality, ε r150℃ is the dielectric constant value measured at 150℃).
상기 화학식에서 x = 0.10이고,
88 ~ 500℃의 온도 범위에서 상기 부등식을 만족시키는 유전율(εr) 값을 가지는 것을 특징으로 하는 무연 세라믹스 조성물.According to paragraph 2,
In the above formula, x = 0.10,
A lead-free ceramic composition characterized by having a dielectric constant (ε r ) value that satisfies the above inequality in the temperature range of 88 to 500°C.
상기 화학식에서 x 값이 증가함에 따라,
25 ~ 500℃의 온도 범위 중 0.1 이하의 유전손실 값(tanδ)을 가지는 온도 범위가 증가하는 것을 특징으로 하는 무연 세라믹스 조성물.According to paragraph 1,
As the value of x increases in the above formula,
A lead-free ceramic composition characterized by an increasing temperature range with a dielectric loss value (tanδ) of 0.1 or less in the temperature range of 25 to 500°C.
상기 화학식에서 x = 0.10이고,
75 ~ 316℃에서 0.1 이하의 유전손실 값(tanδ)을 가지는 것을 특징으로 하는 무연 세라믹스 조성물.According to clause 4,
In the above formula, x = 0.10,
A lead-free ceramic composition characterized by having a dielectric loss value (tanδ) of 0.1 or less at 75 to 316°C.
상기 화학식에서 x 값이 증가함에 따라,
100 kV/cm까지 0.6 J/cm3 이상의 에너지 저장 밀도와 70% 이상의 에너지 저장 효율을 가지는 것을 특징으로 하는 무연 세라믹스 조성물.According to paragraph 1,
As the value of x increases in the above formula,
A lead-free ceramic composition characterized by an energy storage density of more than 0.6 J/cm 3 and an energy storage efficiency of more than 70% up to 100 kV/cm.
(b) 상기 단계 (a)에서 제조한 원료 분말을 이용해 성형체를 제조한 후 소결하는 단계;를 포함하는
제1항에 따른 무연 세라믹스 조성물의 제조방법.(a) Grinding a mixed powder containing Bi 2 O 3 powder, Fe 2 O 3 powder, TiO 2 powder, BaCO 3 powder, Na 2 CO 3 powder, Nb 2 O 5 powder, SrCO 3 powder, and ZrO 2 powder Preparing raw material powder by calcination; and
(b) manufacturing a molded body using the raw material powder prepared in step (a) and then sintering it.
The lead-free ceramic composition according to paragraph 1 Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210188842A KR102664215B1 (en) | 2021-12-27 | 2021-12-27 | Lead-free dielectric ceramic composition with stable high-temperature dielectric properties and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210188842A KR102664215B1 (en) | 2021-12-27 | 2021-12-27 | Lead-free dielectric ceramic composition with stable high-temperature dielectric properties and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230099465A KR20230099465A (en) | 2023-07-04 |
KR102664215B1 true KR102664215B1 (en) | 2024-05-09 |
Family
ID=87156426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210188842A KR102664215B1 (en) | 2021-12-27 | 2021-12-27 | Lead-free dielectric ceramic composition with stable high-temperature dielectric properties and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102664215B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116874295A (en) * | 2023-06-07 | 2023-10-13 | 西安电子科技大学 | Layered ceramic medium with high energy storage density and high energy storage efficiency and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003151976A (en) | 2001-08-28 | 2003-05-23 | Tdk Corp | High-permittivity insulating film, gate insulating film and semiconductor device |
JP2005285847A (en) | 2004-03-26 | 2005-10-13 | Tokyo Ohka Kogyo Co Ltd | FORMING METHOD OF Bi-BASED FERROELECTRIC THIN FILM, AND ADJUSTING METHOD OF COATING SOLUTION FOR FORMATION OF Bi-BASED FERROELECTRIC THIN FILM |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101754292B1 (en) | 2015-11-27 | 2017-07-06 | 창원대학교 산학협력단 | Method for preparing BiFeO3-BaTiO3 ceramics having improved piezoelectric and ferroelectric properties and lead-free piezoelectric ceramics prepared thereby |
KR102585979B1 (en) * | 2018-03-09 | 2023-10-06 | 삼성전자주식회사 | Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device |
KR102380196B1 (en) | 2020-03-11 | 2022-03-30 | 창원대학교 산학협력단 | BiFeO3-BaTiO3 BASED ENVIRONMENT FRIENDLY LEAD-FREE PIEZOCERAMICS WITH PHYSICAL PROPERTIES AND MANUFACTURING METHOD THEREOF |
-
2021
- 2021-12-27 KR KR1020210188842A patent/KR102664215B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003151976A (en) | 2001-08-28 | 2003-05-23 | Tdk Corp | High-permittivity insulating film, gate insulating film and semiconductor device |
JP2005285847A (en) | 2004-03-26 | 2005-10-13 | Tokyo Ohka Kogyo Co Ltd | FORMING METHOD OF Bi-BASED FERROELECTRIC THIN FILM, AND ADJUSTING METHOD OF COATING SOLUTION FOR FORMATION OF Bi-BASED FERROELECTRIC THIN FILM |
Also Published As
Publication number | Publication date |
---|---|
KR20230099465A (en) | 2023-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0. 5Na0. 5) 0.94 Ba0. 06TiO3 ceramics | |
KR101156015B1 (en) | Multi layer ceramic capacitor and method of manufacturing the same | |
Li et al. | Enhanced ferroelectric properties in (Ba1− xCax)(Ti0. 94Sn0. 06) O3 lead-free ceramics | |
Yuan et al. | High-temperature stable dielectrics in Mn-modified (1-x) Bi 0.5 Na 0.5 TiO 3-xCaTiO 3 ceramics | |
Wang et al. | An effective approach to achieve high energy storage density and efficiency in BNT-based ceramics by doping AgNbO 3 | |
Li et al. | Antiferroelectric to relaxor ferroelectric phase transition in PbO modified (Pb 0.97 La 0.02)(Zr 0.95 Ti 0.05) O 3 ceramics with a large energy-density for dielectric energy storage | |
Malik et al. | Temperature invariant high dielectric properties over the range 200 C–500 C in BiFeO3 based ceramics | |
CN114436645B (en) | Rare earth element doped barium titanate giant dielectric ceramic material and preparation method thereof | |
Yuan et al. | Effects of Ca and Mn additions on the microstructure and dielectric properties of (Bi 0.5 Na 0.5) TiO 3 ceramics | |
JP2010285336A (en) | Sintered material for dielectric substance and method for producing the same, and sintered material for dielectric substance which has core-shell fine structure and method for producing the same | |
TW201704187A (en) | Ceramic capacitor dielectric material the capacitance change rate of the ceramic capacitor dielectric material under DC bias is improved, and thus can satisfy the X7T dielectric characteristics of EIA. | |
Lin et al. | Ferroelectric and piezoelectric properties of Bi0. 5Na0. 5TiO3–SrTiO3–Bi0. 5Li0. 5TiO3 lead-free ceramics | |
CN111763084A (en) | Manganese-doped barium strontium titanate ceramic with high electrocaloric effect and preparation method and application thereof | |
KR102664215B1 (en) | Lead-free dielectric ceramic composition with stable high-temperature dielectric properties and manufacturing method thereof | |
JP5153069B2 (en) | Dielectric porcelain | |
KR101732422B1 (en) | Precursor powder for sintering used for preparing dielectric material and process for preparing the same | |
Zhao et al. | Dielectric and ferroelectric characteristics of [(Bi 0.5 Na 0.5) 0.94 Ba 0.06] 1− x Sr x TiO 3 ceramics | |
KR101905143B1 (en) | Nonferroelectric dielectric materials and method thereof | |
Liu et al. | Improving energy storage performance and high-temperature stability in Bi0. 5Na0. 5TiO3-based lead-free dielectric ceramics by ZrO2 doping | |
Xiao et al. | Simultaneous enhancement of dielectric properties and temperature stability in BaTiO3‐based ceramics enabling X8R multilayer ceramic capacitor | |
JP2002274935A (en) | Dielectric ceramic and laminated electronic part | |
Feng et al. | Microstructures and energy-storage properties of (1− x)(Na 0.5 Bi 0.5) TiO 3–x BaTiO 3 with BaO–B 2 O 3–SiO 2 additions | |
Yuan et al. | Effects of ZnO and CeO 2 additions on the microstructure and dielectric properties of Mn-modified (Bi 0.5 Na 0.5) 0.88 Ca 0.12 TiO 3 ceramics | |
KR20220085010A (en) | Reduction sintered dielectric ceramic compositions and manufacturing method thereof | |
Chen et al. | Dielectric properties of Bi 4 Ti 3 O 12 ceramics by impedance spectroscopic method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right |