KR102661332B1 - Method for preparation of platinum nanoparticle-metal oxide composite - Google Patents

Method for preparation of platinum nanoparticle-metal oxide composite Download PDF

Info

Publication number
KR102661332B1
KR102661332B1 KR1020210139395A KR20210139395A KR102661332B1 KR 102661332 B1 KR102661332 B1 KR 102661332B1 KR 1020210139395 A KR1020210139395 A KR 1020210139395A KR 20210139395 A KR20210139395 A KR 20210139395A KR 102661332 B1 KR102661332 B1 KR 102661332B1
Authority
KR
South Korea
Prior art keywords
platinum
coating layer
metal oxide
platinum nanoparticles
nanoparticle
Prior art date
Application number
KR1020210139395A
Other languages
Korean (ko)
Other versions
KR20230055693A (en
Inventor
정우철
이시원
김승현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020210139395A priority Critical patent/KR102661332B1/en
Publication of KR20230055693A publication Critical patent/KR20230055693A/en
Application granted granted Critical
Publication of KR102661332B1 publication Critical patent/KR102661332B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 원자층 수준의 망간 산화물 또는 철 산화물 코팅층을 도입하고, 산화 열처리를 통하여 간단하게 백금 나노입자-금속 산화물 복합체를 제조할 수 있고, 대규모 적용이 용이하므로 제조 방법이 경제적이다. 또한, 상기 망간 산화물 또는 철 산화물 코팅층과 같은 산화물 코팅층이 도입된 백금 나노입자는 열적 및 화학적 안정성이 개선되고, 나아가 백금 나노입자의 화학적 특성을 유지 또는 개선할 수 있다. The present invention introduces an atomic layer-level manganese oxide or iron oxide coating layer and can simply manufacture a platinum nanoparticle-metal oxide complex through oxidation heat treatment. The manufacturing method is economical because it is easy to apply on a large scale. Additionally, platinum nanoparticles introduced with an oxide coating layer such as the manganese oxide or iron oxide coating layer have improved thermal and chemical stability, and can further maintain or improve the chemical properties of the platinum nanoparticles.

Description

백금 나노입자-금속 산화물 복합체의 제조 방법{Method for preparation of platinum nanoparticle-metal oxide composite}Method for preparation of platinum nanoparticle-metal oxide composite}

본 발명은 열적 및 화학적 내구성이 우수한 백금 나노입자-금속 산화물 복합체의 제조 방법, 및 이에 따라 제조된 백금 나노입자-금속 산화물 복합체를 제공하기 위한 것이다. The present invention is intended to provide a method for producing a platinum nanoparticle-metal oxide complex with excellent thermal and chemical durability, and a platinum nanoparticle-metal oxide complex prepared thereby.

백금을 포함한 금속 나노입자 촉매는, 화학적으로 일산화탄소, 포름알데히드, 질소산화물 등 유해 물질을 제거하거나 유용한 고부가가치 화학물질을 제조하는 등 여러 분야에 널리 사용되고 있다. 또한, 상기 외에도 수소 생산 및 수소 활용과 같은 신재생에너지 생산 및 활용을 촉진하는데 중요한 역할을 수행한다.Metal nanoparticle catalysts containing platinum are widely used in various fields, such as chemically removing harmful substances such as carbon monoxide, formaldehyde, and nitrogen oxides, or manufacturing useful high value-added chemicals. In addition, in addition to the above, it plays an important role in promoting the production and utilization of new and renewable energy, such as hydrogen production and hydrogen utilization.

금속 나노입자는 본질적으로 벌크 물질과 상이한 독특한 성질을 갖고 있으며, 예를 들어 표면 에너지 증가, 융점 강하, 저온 소결성 등의 특성을 나타내 벌크 물질 대비 낮은 내구성을 갖는다. 반면, 대다수의 산업적 촉매 반응은 고온 및 다양한 화학종이 포함된 환경에서 작동하기 때문에, 여기에 금속 나노입자를 촉매로 사용할 경우 낮은 내구성에 기인한 성능 저하가 필연적으로 수반되며, 따라서 금속 나노입자를 산업적으로 사용하기 위해서는 단순한 나노입자 촉매 제조를 넘어 이의 열적 및 화학적 내구성을 개선하는 것이 중요하다.Metal nanoparticles have unique properties that are inherently different from bulk materials. For example, they exhibit characteristics such as increased surface energy, lower melting point, and low-temperature sinterability, resulting in lower durability than bulk materials. On the other hand, since the majority of industrial catalytic reactions operate at high temperatures and in environments containing various chemical species, when metal nanoparticles are used here as catalysts, performance degradation due to low durability is inevitably accompanied. Therefore, metal nanoparticles are used as industrial catalysts. In order to use it as a catalyst, it is important to go beyond simple nanoparticle catalyst production and improve its thermal and chemical durability.

종래에는 금속 나노입자의 내구성을 확보하기 위해서 나노입자의 표면을 금속 산화물 막에 의해 물리적으로 보호하는 형태의 금속-산화물 코어-쉘 구조체가 많이 제안되었다. 예를 들어, SiO2, TiO2, ZrO2, CeO2 등 다양한 종류의 금속 산화물을 활용한 나노입자 안정화 전략들이 소개되었다. 그러나, 이러한 금속 산화물에 의한 금속 나노입자 안정화 방법은, 유기 작용기 등을 포함한 복잡한 제조 공정이 요구되며 이는 낮은 공정 수율, 높은 공정 비용 및 시간을 수반하므로 경제성이 떨어져 실제 산업에 적용하기에 어렵다는 단점이 있다. Conventionally, in order to ensure the durability of metal nanoparticles, many metal-oxide core-shell structures have been proposed in which the surface of the nanoparticle is physically protected by a metal oxide film. For example, nanoparticle stabilization strategies using various types of metal oxides such as SiO 2 , TiO 2 , ZrO 2 , and CeO 2 have been introduced. However, this method of stabilizing metal nanoparticles using metal oxides requires a complex manufacturing process including organic functional groups, which entails low process yield, high process cost and time, so it has the disadvantage of being difficult to apply in actual industry due to poor economic feasibility. there is.

이에 본 발명은, 열적 및 화학적 내구성이 우수한 백금 나노입자-금속 산화물 복합체의 제조 방법을 제공하고자 한다. Accordingly, the present invention seeks to provide a method for producing a platinum nanoparticle-metal oxide complex with excellent thermal and chemical durability.

또한, 본 발명은 상기의 제조 방법으로 제조된 백금 나노입자-금속 산화물 복합체를 제공하고자 한다. Additionally, the present invention seeks to provide a platinum nanoparticle-metal oxide complex prepared by the above production method.

또한, 본 발명은 상기 백금 나노입자-금속 산화물 복합체를 이용한 촉매를 제공하고자 한다. Additionally, the present invention seeks to provide a catalyst using the platinum nanoparticle-metal oxide complex.

상기 과제를 해결하기 위하여, 본 발명은 이하의 단계를 포함하는 백금 나노입자-금속 산화물 복합체의 제조 방법을 제공한다:In order to solve the above problems, the present invention provides a method for producing a platinum nanoparticle-metal oxide complex comprising the following steps:

백금 나노입자 표면에, 원자층 증착법으로 망간 산화물 또는 철 산화물 코팅층을 형성하는 단계(단계 1); 및Forming a manganese oxide or iron oxide coating layer on the surface of the platinum nanoparticles by atomic layer deposition (step 1); and

상기 코팅층이 형성된 백금 나노입자를 산화 분위기 하에 열처리하는 단계(단계 2).Heat treating the platinum nanoparticles on which the coating layer is formed under an oxidizing atmosphere (step 2).

본 발명은 백금 나노입자의 열적 및 화학적 내구성을 향상시키기 위하여, 백금 나노입자의 표면에 금속 산화물을 코팅하는 것으로, 이를 위하여 금속 산화물을 원자층 증착법으로 백금 나노입자 표면에 코팅한 후 산화 분위기에서 열처리하는 것을 특징으로 한다. The present invention is to coat the surface of platinum nanoparticles with a metal oxide in order to improve the thermal and chemical durability of the platinum nanoparticles. To this end, the metal oxide is coated on the surface of the platinum nanoparticles by atomic layer deposition and then heat treated in an oxidizing atmosphere. It is characterized by:

원자층 증착법을 사용하기 때문에, 일차로 백금 나노입자의 표면에 금속 산화물 코팅층을 옴스트롱 수준의 두께로 형성할 수 있고, 이어 산화 분위기에서 열처리하여 자발적 에피택시얼(epitaxial) 금속 산화물 코팅층을 형성할 수 있다.Because the atomic layer deposition method is used, a metal oxide coating layer can be first formed on the surface of platinum nanoparticles with an Angstrom-level thickness, and then heat-treated in an oxidizing atmosphere to form a spontaneous epitaxial metal oxide coating layer. You can.

이를 통하여, 백금 나노입자의 표면에 매우 얇은 금속 산화물 코팅층을 형성할 수 있고, 이러한 금속 산화물 코팅층은 백금 나노입자의 표면이 외부 환경에 노출되는 것을 방지하는 동시에 백금 나노입자가 반응에 참여할 수 있는 채널을 제공하는 양면성을 가지게 된다. 그 결과, 본 발명에 따른 백금 나노입자-금속 산화물 복합체는 내구성 측면에서 우수한 열적 및 화학적 안정성을 나타내고, 동시에 촉매 반응성 측면에서 금속 산화물로 코팅되지 않은 백금 나노입자 대비 향상된 반응 특성을 나타낼 수 있다. 이러한 향상된 반응 특성은 우수한 촉매의 내구성으로부터 기인하거나, 백금 나노입자와 금속 산화물 코팅층과의 상호작용(metal-support interaction, MSI)에 기인하거나, 또는 상기 두 가지 효과가 동시에 작용한 것에 기인한다. Through this, a very thin metal oxide coating layer can be formed on the surface of the platinum nanoparticles, and this metal oxide coating layer prevents the surface of the platinum nanoparticles from being exposed to the external environment and provides a channel for the platinum nanoparticles to participate in the reaction. It has a duality that provides. As a result, the platinum nanoparticle-metal oxide complex according to the present invention exhibits excellent thermal and chemical stability in terms of durability, and at the same time can exhibit improved reaction characteristics in terms of catalytic reactivity compared to platinum nanoparticles not coated with metal oxide. These improved reaction characteristics are due to the excellent durability of the catalyst, the interaction between the platinum nanoparticles and the metal oxide coating layer (metal-support interaction, MSI), or the two effects acting simultaneously.

이하 각 단계 별로 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail for each step.

(단계 1)(Step 1)

본 발명의 단계 1은, 백금 나노입자 표면에, 원자층 증착법으로 망간 산화물 또는 철 산화물 코팅층을 형성하는 단계이다. Step 1 of the present invention is a step of forming a manganese oxide or iron oxide coating layer on the surface of the platinum nanoparticle by atomic layer deposition.

바람직하게는, 상기 백금 나노입자는 직경이 1 nm 내지 20 nm이다. 또한, 상기 백금 나노입자는 지지체 상에 담지된 형태일 수 있으며, 이 경우 지지체 상에 백금 나노입자의 표면이 일부 드러나며, 드러난 표면에서 코팅층이 형성된다. Preferably, the platinum nanoparticles have a diameter of 1 nm to 20 nm. Additionally, the platinum nanoparticles may be supported on a support, in which case a portion of the surface of the platinum nanoparticles is exposed on the support, and a coating layer is formed on the exposed surface.

상기 단계 1은 원자층 증착법을 이용하는 것으로, 이를 통하여 망간 산화물 또는 철 산화물을 백금 나노입자의 표면에 옴스트롱 수준의 두께로 형성할 수 있다. Step 1 uses atomic layer deposition, through which manganese oxide or iron oxide can be formed on the surface of platinum nanoparticles to an angstrom-level thickness.

구체적으로, 상기 원자층 증착법은 백금 나노입자 표면에 망간 산화물 또는 철 산화물, 퍼징 가스, 산화성 가스, 및 퍼징 가스를 순차적으로 노출시키는 것을 한 주기(cycle)로 하여 반복하여 수행할 수 있으며, 상기 망간 산화물 또는 철 산화물의 농도, 상기 반응 가스의 노출 시간, 또는 주기 수행 회수 등을 조절하여, 상기 망간 산화물 또는 철 산화물 코팅층의 두께를 형성할 수 있다. Specifically, the atomic layer deposition method can be performed repeatedly in one cycle by sequentially exposing the surface of the platinum nanoparticles to manganese oxide or iron oxide, purging gas, oxidizing gas, and purging gas, and the manganese The thickness of the manganese oxide or iron oxide coating layer can be formed by adjusting the concentration of the oxide or iron oxide, the exposure time of the reaction gas, or the number of cycles performed.

한편, 망간 산화물 또는 철 산화물 코팅층을 형성하기 위하여 각각의 전구체를 사용할 수 있다. 예를 들어, 망간의 경우 Mn(TMHD)3((tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III))를, 철의 경우 Ferrocene(Fe(Cp)2)를 사용할 수 있으며, 다만 이에 한정되지 않는다. Meanwhile, each precursor can be used to form a manganese oxide or iron oxide coating layer. For example, Mn(TMHD) 3 ((tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III)) for manganese and Ferrocene(Fe(Cp) 2 ) for iron. can be used, but is not limited to this.

바람직하게는, 상기 망간 산화물 또는 철 산화물 코팅층의 두께가 0.3 nm 내지 1.0 nm가 되도록 상기 단계 1을 수행한다. 상기 코팅층의 두께가 1.0 nm 초과이면 코팅층의 두께가 너무 두껍기 때문에, 최종적으로 제조된 백금 나노입자-금속 복합체에서 백금 나노입자가 반응에 참여할 수 있는 채널을 제공하기 어렵다. 반대로, 상기 코팅층의 두께가 0.3 nm 미만이면 코팅층의 두께가 너무 얇기 때문에, 최종적으로 제조된 백금 나노입자-금속 복합체에서 백금 나노입자의 열적 및 화학적 내구성을 향상시키기 어렵다.Preferably, step 1 is performed so that the thickness of the manganese oxide or iron oxide coating layer is 0.3 nm to 1.0 nm. If the thickness of the coating layer exceeds 1.0 nm, it is difficult to provide a channel through which platinum nanoparticles can participate in the reaction in the finally produced platinum nanoparticle-metal complex because the thickness of the coating layer is too thick. Conversely, if the thickness of the coating layer is less than 0.3 nm, it is difficult to improve the thermal and chemical durability of the platinum nanoparticles in the finally manufactured platinum nanoparticle-metal composite because the thickness of the coating layer is too thin.

한편, 상기 원자층 증착법에 사용되는 퍼징 가스로는 당업계에서 널리 사용되는 것이면 특별히 제한되지 않으며, 예를 들어 아르곤 가스, 질소 가스, 헬륨 가스 등 비활성 기체를 사용할 수 있다. Meanwhile, the purging gas used in the atomic layer deposition method is not particularly limited as long as it is widely used in the art, and for example, an inert gas such as argon gas, nitrogen gas, or helium gas can be used.

한편, 상기 단계 1은 25 내지 300℃에서 수행하는 것이 바람직하다. Meanwhile, Step 1 is preferably performed at 25 to 300°C.

(단계 2)(Step 2)

본 발명의 단계 2는, 상기 단계 1에서 제조한 코팅층이 형성된 백금 나노입자를 산화 분위기 하에 열처리하는 단계이다. Step 2 of the present invention is a step of heat treating the platinum nanoparticles with the coating layer prepared in Step 1 under an oxidizing atmosphere.

상기 단계 1에 의하여, 백금 나노입자의 표면에 옴스트롱 수준의 망간 산화물 또는 철 산화물 코팅층이 형성되어 있어, 산화 분위기에서 열처리하면 자발적 에피택시얼(epitaxial) 금속 산화물 코팅층이 형성된다. 이는 서로 다른 물질간의 격자 정합이므로 이종에피텍시(heteroepitaxy)라고도 하며, 백금과 망간 산화물 또는 백금과 철 산화물 간 격자구조 및 격자상수가 유사한 형태로 재배열 되면서 격자가 정합된 에피텍시얼 구조가 형성된다. 이러한 구조를 통해 금속과 산화물 간의 상호 작용이 극대화되는 효과를 얻을 수 있으며, 따라서 향상된 반응 성능과 안정성이 구현될 수 있다. By Step 1, an angstrom-level manganese oxide or iron oxide coating layer is formed on the surface of the platinum nanoparticles, and when heat treated in an oxidizing atmosphere, a spontaneous epitaxial metal oxide coating layer is formed. This is also called heteroepitaxy because it is lattice matching between different materials. The lattice structure and lattice constant between platinum and manganese oxide or platinum and iron oxide are rearranged in a similar form, resulting in an epitaxial structure in which the lattice is matched. is formed Through this structure, the interaction between the metal and the oxide can be maximized, and thus improved reaction performance and stability can be achieved.

상기 열처리 온도는 바람직하게는, 400 내지 900℃이고, 보다 바람직하게는 500 내지 800℃이다. The heat treatment temperature is preferably 400 to 900°C, more preferably 500 to 800°C.

바람직하게는, 상기 산화 분위기는 산소 기체를 포함하는 대기 분위기이다. 이때 산소 기체를 포함하는 대기는 산소를 0.1 % 내지 100 % 포함한다. Preferably, the oxidizing atmosphere is an atmospheric atmosphere containing oxygen gas. At this time, the atmosphere containing oxygen gas contains 0.1% to 100% oxygen.

또한, 상기 단계 2는 30분 내지 2시간 동안 수행한다. Additionally, step 2 is performed for 30 minutes to 2 hours.

(백금 나노입자-금속 산화물 복합체)(Platinum nanoparticle-metal oxide complex)

본 발명은 상술한 본 발명에 따른 제조 방법에 의하여 제조된 백금 나노입자-금속 산화물 복합체를 제공한다. The present invention provides a platinum nanoparticle-metal oxide complex prepared by the production method according to the present invention described above.

본 발명에 따라 백금 나노입자의 표면에 옴스트롱 수준의 망간 산화물 또는 철 산화물 코팅층을 형성할 수 있으며, 이에 본 발명에 따른 백금 나노입자-금속 산화물 복합체는 백금 나노입자의 표면이 외부 환경에 노출되는 것이 방지되어 열적 및 화학적 내구성이 향상된다. According to the present invention, an angstrom-level manganese oxide or iron oxide coating layer can be formed on the surface of the platinum nanoparticles, and the platinum nanoparticle-metal oxide complex according to the present invention is used to prevent the surface of the platinum nanoparticles from being exposed to the external environment. This prevents damage and improves thermal and chemical durability.

뿐만 아니라, 상기 망간 산화물 또는 철 산화물 코팅층은 결정질의 코팅층으로서 백금 나노입자의 표면이 외부 환경에 노출되는 것을 방지하는 것과 동시에 금속-산화물 상호작용 (metal-support interaction, MSI)를 통해 백금 나노입자가 반응에 참여할 수 있는 채널을 제공한다. 후술할 실시예와 같이, 본 발명에 따른 백금 나노입자-금속 산화물 복합체에서, 백금이 외부로 노출되지 않음에도 불구하고, 백금에 의한 촉매 성능을 나타내며, 따라서 백금 나노입자의 열적 및 화학적 내구성을 향상시킴과 동시에 백금 나노입자의 화학적 특성을 유지 또는 개선할 수 있다. In addition, the manganese oxide or iron oxide coating layer is a crystalline coating layer that prevents the surface of the platinum nanoparticles from being exposed to the external environment and at the same time allows the platinum nanoparticles to form through metal-oxide interaction (metal-support interaction, MSI). Provides a channel to participate in the response. As in the examples to be described later, in the platinum nanoparticle-metal oxide composite according to the present invention, catalytic performance due to platinum is exhibited even though platinum is not exposed to the outside, thereby improving the thermal and chemical durability of platinum nanoparticles. At the same time, the chemical properties of platinum nanoparticles can be maintained or improved.

따라서, 본 발명에 따른 백금 나노입자-금속 산화물 복합체는, 백금 나노입자의 화학적 특성을 가지고 있으므로, 백금 나노입자가 사용되는 분야, 예컨대 화학적 촉매로 이용될 수 있다. Therefore, since the platinum nanoparticle-metal oxide complex according to the present invention has the chemical properties of platinum nanoparticles, it can be used in fields where platinum nanoparticles are used, such as a chemical catalyst.

상술한 바와 같이, 본 발명은 원자층 수준의 망간 산화물 또는 철 산화물 코팅층을 도입하고, 산화 열처리를 통하여 간단하게 백금 나노입자-금속 산화물 복합체를 제조할 수 있고, 대규모 적용이 용이하므로 제조 방법이 경제적이다. 또한, 상기 망간 산화물 또는 철 산화물 코팅층과 같은 산화물 코팅층이 도입된 백금 나노입자는 열적 및 화학적 안정성이 개선되고, 나아가 백금 나노입자의 화학적 특성을 유지 또는 개선할 수 있다.As described above, the present invention introduces an atomic layer-level manganese oxide or iron oxide coating layer and can simply manufacture a platinum nanoparticle-metal oxide complex through oxidation heat treatment. The manufacturing method is economical because it is easy to apply on a large scale. am. Additionally, platinum nanoparticles introduced with an oxide coating layer such as the manganese oxide or iron oxide coating layer have improved thermal and chemical stability, and can further maintain or improve the chemical properties of the platinum nanoparticles.

도 1은, 실시예 1 및 2에서 제조한 MnOx/Pt/Al2O3 (800℃ 열처리) 및 FeOx/Pt/Al2O3 (500℃ 열처리)의 표면을 투과전자현미경(TEM)으로 관찰하여 그 결과를 나타낸 것이다.
도 2는, 실시예 1 및 2에서 제조한 MnOx/Pt/Al2O3 및 FeOx/Pt/Al2O3와, 비교예의 Pt/Al2O3에 대한 DRFITS 분석 결과를 나타낸 것이다.
도 3은, 실험예 3에 따른 열적 내구성 평가 결과를 나타낸 것이다.
도 4는, 실험예 4에 따른 화학적 내구성 평가 결과를 나타낸 것이다.
도 5는, 실험예 5에 따른 촉매 특성을 평가한 결과를 나타낸 것이다.
Figure 1 shows transmission electron microscopy (TEM ) images of the surfaces of MnO It was observed and the results were shown.
Figure 2 shows the results of DRFITS analysis for MnO
Figure 3 shows the results of thermal durability evaluation according to Experimental Example 3.
Figure 4 shows the results of chemical durability evaluation according to Experimental Example 4.
Figure 5 shows the results of evaluating catalyst properties according to Experimental Example 5.

이하, 본 발명의 실시예 및 실험예에 대해 상세히 설명한다. 이들 실시예 및 실험예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예 및 실험예에 한정되는 것은 아니다.Hereinafter, examples and experimental examples of the present invention will be described in detail. These examples and experimental examples are for illustrating the present invention in more detail, and the scope of the present invention is not limited to these examples and experimental examples.

실시예 1: 백금 나노입자-금속 산화물 복합체(MnOExample 1: Platinum nanoparticle-metal oxide complex (MnO xx /Pt/Al/Pt/Al 22 OO 33 )의 제조)Manufacture of

백금 및 망간 산화물 담지용 산화알루미늄을 지지체로 사용하기 위하여, 상용 Al2O3 분말을 900℃ 분위기에서 24시간 동안 공기 중에서 열처리하여 안정화시켰다. 백금의 경우 Pt(acac)2를 전구체로 사용하여 ALD 1 cycle 공정 진행 후 대기 환경 하에 500℃에서 10분 동안 열처리하여 준비하였다. 이 후, Mn(TMHD)3((tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III))를 전구체로 사용하여 250℃의 온도에서 ALD 55 cycle 공정을 진행해 Pt/Al2O3 위에 망간 산화물을 증착하였다. 망간 산화물 증착 후, 500℃에서 1시간 또는 800℃에서 1시간 동안 대기 분위기에서 열처리를 진행하여, 두 종류의 백금 나노입자-금속 산화물 복합체(MnOx/Pt/Al2O3)를 제조하였다.In order to use aluminum oxide for carrying platinum and manganese oxide as a support, commercial Al 2 O 3 powder was stabilized by heat treatment in air at 900°C for 24 hours. In the case of platinum, Pt(acac) 2 was used as a precursor and was prepared by performing an ALD 1 cycle process and then heat treating it at 500°C for 10 minutes in an atmospheric environment. Afterwards, an ALD 55 cycle process was performed at a temperature of 250°C using Mn(TMHD) 3 ((tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III)) as a precursor to produce Pt. /Al 2 O 3 After depositing the manganese oxide, heat treatment was performed in an air atmosphere at 500°C for 1 hour or 800°C for 1 hour to produce two types of platinum nanoparticle-metal oxide complexes (MnO x) . /Pt/Al 2 O 3 ) was prepared.

실시예 2: 백금 나노입자-금속 산화물 복합체(FeOExample 2: Platinum nanoparticle-metal oxide complex (FeO xx /Pt/Al/Pt/Al 22 OO 33 )의 제조)Manufacture of

백금 및 철 산화물 담지용 산화알루미늄을 지지체로 사용하기 위하여, 상용 Al2O3 분말을 900℃ 분위기에서 24시간 동안 공기 중에서 열처리하여 안정화시켰다. 백금의 경우 Pt(acac)2를 전구체로 사용하여 ALD 1 cycle 공정 진행 후 대기 환경 하에 500℃에서 10분 동안 열처리하여 준비하였다. 이 후, Ferrocene(Fe(Cp)2)를 전구체로 사용하여 250oC의 온도에서 ALD 50 cycle 공정을 진행해 Pt/Al2O3 위에 철 산화물을 증착하였다. 철 산화물 증착 후, 500℃에서 1시간 또는 800℃에서 1시간 동안 대기 분위기에서 열처리를 진행하여, 두 종류의 백금 나노입자-금속 산화물 복합체(FeOx/Pt/Al2O3)를 제조하였다.In order to use aluminum oxide for supporting platinum and iron oxides as a support, commercial Al 2 O 3 powder was stabilized by heat treatment in air at 900°C for 24 hours. In the case of platinum, Pt(acac) 2 was used as a precursor and was prepared by performing an ALD 1 cycle process and then heat treating it at 500°C for 10 minutes in an atmospheric environment. Afterwards, using Ferrocene (Fe(Cp) 2 ) as a precursor, an ALD 50 cycle process was performed at a temperature of 250 o C to deposit iron oxide on Pt/Al 2 O 3 . After iron oxide deposition, heat treatment was performed in an air atmosphere at 500°C for 1 hour or 800°C for 1 hour to prepare two types of platinum nanoparticle-metal oxide complexes (FeO x /Pt/Al 2 O 3 ).

비교예: 백금 나노입자(Pt/AlComparative example: Platinum nanoparticles (Pt/Al 22 OO 33 ))

실시예 1 및 2에서 출발 물질로 사용한 알루미늄 산화물에 담지된 백금 나노입자 촉매(Pt/Al2O3)를 비교예로서 사용하였다. A platinum nanoparticle catalyst (Pt/Al 2 O 3 ) supported on aluminum oxide used as a starting material in Examples 1 and 2 was used as a comparative example.

실험예 1Experimental Example 1

상기 실시예 1 및 2에서 제조한 MnOx/Pt/Al2O3 (800℃ 열처리) 및 FeOx/Pt/Al2O3 (500℃ 열처리)의 표면을 투과전자현미경(TEM)으로 관찰하여 그 결과를 도 1에 나타내었다. The surfaces of MnO The results are shown in Figure 1.

도 1에 나타난 바와 같이, MnOx/Pt/Al2O3 및 FeOx/Pt/Al2O3의 표면에 결정질의 금속 산화물 원자층이 옴스트롱 수준의 두께로 형성되어 있음을 확인할 수 있었다. As shown in Figure 1, it was confirmed that a crystalline metal oxide atomic layer was formed on the surfaces of MnO x /Pt/Al 2 O 3 and FeO x /Pt/Al 2 O 3 with a thickness of angstrom level.

실험예 2Experimental Example 2

상기 실시예 1 및 2에서 제조한 MnOx/Pt/Al2O3 및 FeOx/Pt/Al2O3와, 비교예의 Pt/Al2O3에 대하여, 확산 반사 적외선 푸리에 변환 분광법(diffuse reflectance infrared Fourier transform spectroscopy, 이하 'DRFITS') 분석을 수행하여 가스 흡착 특성을 분석하였다. Diffuse reflection infrared Fourier transform spectroscopy was performed on MnO Gas adsorption characteristics were analyzed by performing infrared Fourier transform spectroscopy (hereinafter 'DRFITS') analysis.

구체적으로, DRFITS는 다음과 같이 진행하였다. 먼저, 10% 산소 및 90% 헬륨으로 구성된 혼합 가스 분위기에서 200℃에서 10분 동안 열처리하여 각 시료를 준비하였다. 이 후 25℃의 온도로 하온 시킨 뒤, 10% 일산화탄소 및 90% 헬륨으로 구성된 혼합 가스에 5분간 노출시킨 뒤 100% 헬륨 가스로 10분간 퍼징을 진행한 후 IR 스펙트럼을 관찰하였다. 이 같은 방법으로 CO의 흡착 특성을 분석하였으며, 그 결과를 도 2에 나타내었다. Specifically, DRFITS proceeded as follows. First, each sample was prepared by heat treatment at 200°C for 10 minutes in a mixed gas atmosphere consisting of 10% oxygen and 90% helium. Afterwards, the temperature was lowered to 25°C, exposed to a mixed gas consisting of 10% carbon monoxide and 90% helium for 5 minutes, purged with 100% helium gas for 10 minutes, and the IR spectrum was observed. The adsorption characteristics of CO were analyzed using this method, and the results are shown in Figure 2.

도 2에 나타난 바와 같이, MnOx/Pt/Al2O3의 경우 800℃ 산화열처리 이후 현저히 낮은 CO 가스 흡착 특성을 나타내었고, FeOx/Pt/Al2O3의 경우 500℃ 이상의 온도에서 산화 열처리 이후 CO 가스 흡착이 현저히 줄어들었다. 이는 MnOx, FeOx 결정성 원자층 산화물 막이 형성된 투과전자현미경 관찰 결과를 고려하였을때, 각 온도에서 산화 열처리 이후 백금 나노입자 표면이 외부 환경에 노출되지 않음을 나타낸다. As shown in Figure 2 , MnO After heat treatment, CO gas adsorption was significantly reduced. This indicates that the surface of the platinum nanoparticles is not exposed to the external environment after oxidation heat treatment at each temperature, considering the transmission electron microscope observation results showing the formation of MnO

실험예 3Experimental Example 3

상기 실시예 1에서 제조한 MnOx/Pt/Al2O3 및 비교예의 Pt/Al2O3에 대하여, 열적 및 화학적 내구성 평가를 수행하였다. Thermal and chemical durability evaluations were performed on MnO x /Pt/Al 2 O 3 prepared in Example 1 and Pt/Al 2 O 3 in Comparative Example.

먼저, 열적 내구성의 경우, 800℃의 대기 상에 복합체를 1시간 동안 노출시킨 뒤 백금 나노입자의 반경이 증가하는 정도를 평가하였다. 그 결과를 각각 하기 표 1 및 도 3에 나타내었다. First, in the case of thermal durability, the degree to which the radius of platinum nanoparticles increases was evaluated after exposing the composite to the atmosphere at 800°C for 1 hour. The results are shown in Table 1 and Figure 3 below, respectively.

800℃ 열처리 후 입자반경Particle radius after heat treatment at 800℃ 입자반경 증가 폭Particle radius increase 실시예 1 (MnOx/Pt/Al2O3)Example 1 (MnO x /Pt/Al 2 O 3 ) 6.7 nm6.7nm 223 %223% 비교예 (Pt/Al2O3)Comparative Example (Pt/Al 2 O 3 ) 14.0 nm14.0nm 460 %460%

상기 표 1에 나타난 바와 같이, 비교예는 초기 입자 반경 대비 460%의 증가 폭을 보였으며, MnOx 코팅이 적용된 실시예 1은 233%의 증가 폭을 보이며 코팅 이후 백금 나노입자의 열적 내구성이 향상됨을 보였다. As shown in Table 1, the comparative example showed an increase of 460% compared to the initial particle radius, and Example 1 to which the MnO x coating was applied showed an increase of 233%, and the thermal durability of the platinum nanoparticles was improved after coating. showed.

또한, 도 3에서도 눈에 띄는 입자 반경의 차이를 확인할 수 있었다.Additionally, a noticeable difference in particle radius could be confirmed in Figure 3.

다음으로, 화학적 내구성의 경우, 700℃ 4% 프로판(C3H8) 분위기에서 복합체를 12시간 노출시킨 뒤 형성된 카본 침적(carbon coking) 양을 정량 평가하였다. 그 결과를 하기 표 2 및 도 4에 나타내었다. Next, in the case of chemical durability, the amount of carbon coking formed after exposing the composite to a 4% propane (C 3 H 8 ) atmosphere at 700°C for 12 hours was quantitatively evaluated. The results are shown in Table 2 and Figure 4 below.

카본 침적 양Carbon deposition amount 실시예 1 (MnOx/Pt/Al2O3)Example 1 (MnO x /Pt/Al 2 O 3 ) 375 μmol375 μmol 비교예 (Pt/Al2O3)Comparative Example (Pt/Al 2 O 3 ) 1,234 μmol1,234 μmol

상기 표 2에 나타난 바와 같이, 비교예는 1,234 μmol의 카본 침적을 나타내었고, MnOx 코팅을 적용한 실시예 1은 375 μmol의 카본 침적을 보이며 코팅을 통해 약 70%의 카본 침적 저감을 확인할 수 있었다 (70% = {(1,234 - 375)/(1,234)} × 100). As shown in Table 2, Comparative Example showed 1,234 μmol of carbon deposition, and Example 1 using MnO (70% = {(1,234 - 375)/(1,234)} × 100).

또한, 도 4에 나타난 바와 같이, 카본 침적 실험 이후, 석영솜에 검정색의 카본 파우더가 발생되었음을 확인할 수 있고, 대조군과 비교해 코팅층 도입을 통하여 카본 침적을 억제되었음을 확인할 수 있었다. In addition, as shown in Figure 4, after the carbon deposition experiment, it was confirmed that black carbon powder was generated on the quartz cotton, and it was confirmed that carbon deposition was suppressed through the introduction of a coating layer compared to the control group.

실험예 5Experimental Example 5

상기 실시예 1 및 2에서 제조한 MnOx/Pt/Al2O3 (800℃ 열처리) 및 FeOx/Pt/Al2O3 (800℃ 열처리)와, 비교예의 Pt/Al2O3 (800℃ 열처리)에 대하여, 일산화탄소 제거 반응에 적용하여 촉매 반응성을 확인하였다. MnO x /Pt/Al 2 O 3 ( 800 ° C heat treatment ) and FeO ℃ heat treatment), the catalyst reactivity was confirmed by applying it to the carbon monoxide removal reaction.

구체적으로, 일산화탄소 제거 반응성은 각 복합체 0.1 g을 촉매로 사용하여 2:1의 비율로 CO:O2 혼합가스(28.6 Torr CO, 14.3 Torr O2)를 주입하여 측정하였다. 캐리어 가스는 헬륨을 사용하였으며 총 유량은 106 mL/min으로 통제하였다. 그 결과를 도 5에 나타내었다. Specifically, carbon monoxide removal reactivity was measured by injecting CO:O 2 mixed gas (28.6 Torr CO, 14.3 Torr O 2 ) at a ratio of 2:1 using 0.1 g of each composite as a catalyst. Helium was used as the carrier gas, and the total flow rate was controlled at 106 mL/min. The results are shown in Figure 5.

도 5는 CO 산화 반응 속도를 나타내는 아레니우스 플롯(plot)을 나타내며, 도 5에 나타난 바와 같이 비교예 촉매와 비교하여 MnOx 코팅층이 도입된 백금 나노입자는 약 20배 높은 촉매 특성을 나타내었고, FeOx 코팅층이 도입된 샘플은 약 100배 높은 촉매 특성을 나타내었다. Figure 5 shows an Arrhenius plot showing the CO oxidation reaction rate, and as shown in Figure 5, compared to the comparative example catalyst, the platinum nanoparticles with the MnO x coating layer introduced showed catalytic properties about 20 times higher. , the sample with the FeO x coating layer showed catalytic properties about 100 times higher.

이와 같은 높은 반응 특성은 우수한 촉매의 내구성으로부터 기인하거나 백금 나노입자와 산화물 코팅층과 상호작용(metal-support interaction, MSI)에 기인하거나 또는 상기 두 가지 효과가 동시에 작용함으로써 나타나는 것으로 판단된다. Such high reaction characteristics are believed to result from the excellent durability of the catalyst, the interaction between platinum nanoparticles and the oxide coating layer (metal-support interaction, MSI), or the two effects acting simultaneously.

Claims (10)

백금 나노입자 표면에, 원자층 증착법으로 망간 산화물 또는 철 산화물 코팅층을 형성하는 단계(단계 1); 및
상기 코팅층이 형성된 백금 나노입자를 산화 분위기 하에 400 내지 900℃에서 30분 내지 2시간 동안 열처리하는 단계(단계 2)를 포함하는,
백금 나노입자-금속 산화물 복합체의 제조 방법.
Forming a manganese oxide or iron oxide coating layer on the surface of the platinum nanoparticles by atomic layer deposition (step 1); and
Comprising the step (step 2) of heat treating the platinum nanoparticles on which the coating layer is formed at 400 to 900° C. for 30 minutes to 2 hours in an oxidizing atmosphere.
Method for producing platinum nanoparticle-metal oxide complex.
제1항에 있어서,
상기 백금 나노입자는 직경이 1 nm 내지 20 nm인,
제조 방법.
According to paragraph 1,
The platinum nanoparticles have a diameter of 1 nm to 20 nm,
Manufacturing method.
제1항에 있어서,
상기 망간 산화물 또는 철 산화물 코팅층의 두께가 0.3 nm 내지 1.0 nm인,
제조 방법.
According to paragraph 1,
The thickness of the manganese oxide or iron oxide coating layer is 0.3 nm to 1.0 nm,
Manufacturing method.
제1항에 있어서,
상기 단계 1은 25 내지 300℃에서 수행하는,
제조 방법.
According to paragraph 1,
Step 1 is performed at 25 to 300°C,
Manufacturing method.
삭제delete 제1항에 있어서,
상기 산화 분위기는 산소 기체를 포함하는 대기 분위기인,
제조 방법.
According to paragraph 1,
The oxidizing atmosphere is an atmospheric atmosphere containing oxygen gas,
Manufacturing method.
제6항에 있어서,
상기 산소 기체를 포함하는 대기는 산소를 0.1 % 내지 100 % 포함하는,
제조 방법.
According to clause 6,
The atmosphere containing oxygen gas contains 0.1% to 100% oxygen,
Manufacturing method.
삭제delete 제1항 내지 제4항, 제6항, 및 제7항 중 어느 한 항의 제조 방법에 의하여 제조된, 백금 나노입자-금속 산화물 복합체.
A platinum nanoparticle-metal oxide complex manufactured by the production method of any one of claims 1 to 4, 6, and 7.
제9항의 백금 나노입자-금속 산화물 복합체를 포함하는 촉매.
A catalyst comprising the platinum nanoparticle-metal oxide complex of claim 9.
KR1020210139395A 2021-10-19 2021-10-19 Method for preparation of platinum nanoparticle-metal oxide composite KR102661332B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210139395A KR102661332B1 (en) 2021-10-19 2021-10-19 Method for preparation of platinum nanoparticle-metal oxide composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210139395A KR102661332B1 (en) 2021-10-19 2021-10-19 Method for preparation of platinum nanoparticle-metal oxide composite

Publications (2)

Publication Number Publication Date
KR20230055693A KR20230055693A (en) 2023-04-26
KR102661332B1 true KR102661332B1 (en) 2024-04-26

Family

ID=86099602

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210139395A KR102661332B1 (en) 2021-10-19 2021-10-19 Method for preparation of platinum nanoparticle-metal oxide composite

Country Status (1)

Country Link
KR (1) KR102661332B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305813B1 (en) * 2014-05-30 2021-09-29 한국화학연구원 A plasma―catalyst for C―H bond cleavage with the metal oxide deposed by atomic layer deposition on the surface of porous support; and A use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305813B1 (en) * 2014-05-30 2021-09-29 한국화학연구원 A plasma―catalyst for C―H bond cleavage with the metal oxide deposed by atomic layer deposition on the surface of porous support; and A use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Powder Mater Vol.27 No.1 pp.63-71

Also Published As

Publication number Publication date
KR20230055693A (en) 2023-04-26

Similar Documents

Publication Publication Date Title
US8309489B2 (en) Thermally stable nanoparticles on supports
EP2543632B1 (en) Method for producing aligned carbon nanotube aggregate
KR20050121426A (en) Method for preparing catalyst for manufacturing carbon nano tubes
KR20040013401A (en) Bismuth titanium silicon oxide, bismuth titanium silicon oxide thin film and preparing method thereof
US9296621B2 (en) Doping and reduction of nanostructures and thin films through flame annealing
EP1555065A1 (en) Photocatalyst material and process for producing the same
JP5622278B2 (en) Base material for manufacturing aligned carbon nanotube aggregate, method for manufacturing aligned carbon nanotube assembly, and method for manufacturing base material for manufacturing aligned carbon nanotube assembly
KR950003416B1 (en) Process for activating the surface of heavy metal carbides having an increased specific surface for catalystic reactions
KR102661332B1 (en) Method for preparation of platinum nanoparticle-metal oxide composite
KR102105763B1 (en) A Fabrication Method of Combustion Waves Based Palladium Oxides Composites And A Fabrication Method of pH Sensor
US10464019B2 (en) Nickel-based catalyst for low temperature co oxidation prepared using atomic layer deposition and application thereof
KR101321100B1 (en) Catalysts with inverse concentration gradient of catalytic element and method for preparing the same
EP4134163A1 (en) Method for producing metal catalyst having inorganic film deposited thereon by means of ald process, and metal catalyst having improved activity according thereto
CN113209999A (en) Catalyst for methane dry gas reforming reaction and preparation method thereof
EP4134162A1 (en) Method for manufacturing metal catalyst having inorganic film deposited thereon by means of ald process into which maintenance step is introduced, and metal catalyst manufactured thereby
CN107249739B (en) Method for forming catalytic nanocoating
JP4691688B2 (en) Organic inorganic hybrid thin film sensor
KR102315375B1 (en) Method for preparation of oxide support-nanoparticles composites
CN111468187B (en) Preparation method of high-dispersity monatomic catalyst based on surface polymerization reaction
Atanasova et al. Chemical vapor deposition of palladium on silica and alumina supports
Maeda et al. STM observations of organometallic complexes on the TiO2 (1 1 0) and Si (1 1 1) surfaces
Jayadevan et al. Surface chemical and leakage current density characteristics of nanocrystalline Ag–Ba0. 5Sr0. 5TiO3 thin films
KR102562274B1 (en) Organometallic precursor compounds
KR20220049970A (en) Method for preparing metal catalyst deposited with layer film by ALD process and metal catalyst thereof
Navio et al. Preparation And Characterization Of M/Ti02 Catalysts (M= Pt, Ru, Rh) Using Metal Acetylacetonate Complexes

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant