KR102656050B1 - Catalyst composition for polymerization of polyolefin, preparing method of catalyst for polymerization of polyolefin and process for polymerization of polyolefin using the same - Google Patents

Catalyst composition for polymerization of polyolefin, preparing method of catalyst for polymerization of polyolefin and process for polymerization of polyolefin using the same Download PDF

Info

Publication number
KR102656050B1
KR102656050B1 KR1020180148929A KR20180148929A KR102656050B1 KR 102656050 B1 KR102656050 B1 KR 102656050B1 KR 1020180148929 A KR1020180148929 A KR 1020180148929A KR 20180148929 A KR20180148929 A KR 20180148929A KR 102656050 B1 KR102656050 B1 KR 102656050B1
Authority
KR
South Korea
Prior art keywords
catalyst
formula
polyolefin
magnesium compound
polymerization
Prior art date
Application number
KR1020180148929A
Other languages
Korean (ko)
Other versions
KR20200062930A (en
Inventor
진숙영
김동규
박세호
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020180148929A priority Critical patent/KR102656050B1/en
Publication of KR20200062930A publication Critical patent/KR20200062930A/en
Application granted granted Critical
Publication of KR102656050B1 publication Critical patent/KR102656050B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • C08F4/6546Pretreating with metals or metal-containing compounds with magnesium or compounds thereof organo-magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen

Abstract

본 발명은 폴리올레핀 중합용 촉매 조성물, 그 촉매의 제조방법 및 이를 이용한 폴리올레핀의 제조방법에 관한 것으로, 보다 상세하게는 마그네슘 화합물이 알코올 용매에 용해된 마그네슘 화합물 용액, 하기 화학식 1로 표시되는 내부전자공여체 화합물 및 탄화수소 용매에 혼합된 전이금속 화합물을 포함하는, 폴리올레핀 중합용 촉매 조성물, 상기 촉매 조성물을 이용한 폴리올레핀 중합용 촉매의 제조방법, 그리고 상기 촉매 조성물에 의해 획득된 촉매의 존재 하에, 올레핀계 단량체를 중합시키는 단계를 포함하는, 폴리올레핀의 제조방법에 관한 것이다.
[화학식 1]

상기 화학식 1에서, R1, R2, X 및 n은 명세서에 정의된 바와 같다.
The present invention relates to a catalyst composition for polyolefin polymerization, a method for producing the catalyst, and a method for producing polyolefin using the same. More specifically, it relates to a magnesium compound solution in which a magnesium compound is dissolved in an alcohol solvent, and an internal electron donor represented by the following formula (1). A catalyst composition for polyolefin polymerization comprising a compound and a transition metal compound mixed in a hydrocarbon solvent, a method for producing a catalyst for polyolefin polymerization using the catalyst composition, and a method for producing an olefin-based monomer in the presence of a catalyst obtained by the catalyst composition. It relates to a method for producing polyolefin, including the step of polymerization.
[Formula 1]

In Formula 1, R 1 , R 2 , X and n are as defined in the specification.

Description

폴리올레핀 중합용 촉매 조성물, 그 촉매의 제조방법 및 이를 이용한 폴리올레핀의 제조방법{CATALYST COMPOSITION FOR POLYMERIZATION OF POLYOLEFIN, PREPARING METHOD OF CATALYST FOR POLYMERIZATION OF POLYOLEFIN AND PROCESS FOR POLYMERIZATION OF POLYOLEFIN USING THE SAME}Catalyst composition for polyolefin polymerization, method for producing the catalyst, and method for producing polyolefin using the same

본 발명은 폴리올레핀 중합용 촉매 조성물, 그 촉매의 제조방법 및 이를 이용한 폴리올레핀의 제조방법에 관한 것으로, 보다 상세하게는 저입도이면서 사이즈 분포가 균일한 촉매의 제조방법 및 이를 이용하여 중합 활성이 높고, 입자 사이즈가 균일하고 작으며, 분자량 분포 조절이 용이하여 성형성이 향상된 이차 전지 분리막용 폴리올레핀을 제조하는 방법에 관한 것이다. The present invention relates to a catalyst composition for polyolefin polymerization, a method for producing the catalyst, and a method for producing polyolefin using the same. More specifically, a method for producing a catalyst with low particle size and uniform size distribution and high polymerization activity using the same, It relates to a method of producing polyolefin for secondary battery separators with uniform and small particle size and easy control of molecular weight distribution, thereby improving moldability.

폴리올레핀 중 널리 사용되고 있는 폴리에틸렌은 밀도와 성능에 따라 저밀도 폴리에틸렌과 고밀도 폴리에틸렌으로 구별된다. 고밀도 폴리에틸렌은 연화점, 굳기, 강도 및 전기절연성이 뛰어나 각종 용기, 포장용 필름, 섬유, 파이프, 패킹, 절연재료 등에 주로 사용된다. 특히 고밀도 폴리에틸렌은 기계적 물성이 뛰어나고, 내화학성 및 전기 절연특성이 우수하며, 가격이 저렴하여 이차전지 분리막용 소재로 사용되고 있다. Polyethylene, which is widely used among polyolefins, is divided into low-density polyethylene and high-density polyethylene depending on density and performance. High-density polyethylene has excellent softening point, hardness, strength, and electrical insulation properties, and is mainly used in various containers, packaging films, fibers, pipes, packing, and insulating materials. In particular, high-density polyethylene has excellent mechanical properties, excellent chemical resistance and electrical insulation properties, and is inexpensive, so it is used as a material for secondary battery separators.

최근 전자 기기의 휴대성을 높이기 위한 전기 화학 전지의 경량화 및 소형화 추세와 더불어, 전기 자동차 등에 대한 사용을 위한 고출력 대용량 전지를 필요로 하는 경향이 있다. 이에, 이차 전지용 분리막의 경우 그 두께를 얇게 하고 중량을 가볍게 하는 것이 요구되면서도 그와 동시에 고용량 전지의 생산을 위하여 열에 의한 형태 안정성이 우수할 것이 요구된다. 또한, 최근에는 분리막의 특성에 있어서 투과성이나 내열수축성 등뿐만 아니라, 사이클 특성 등의 전지 수명에 영향을 미치는 특성이나 전해액 주입성 등의 전지 생산성과 관련된 특성도 중요시되고 있다. In addition to the recent trend of reducing the weight and miniaturization of electrochemical batteries to increase the portability of electronic devices, there is a tendency to require high-output, large-capacity batteries for use in electric vehicles, etc. Accordingly, in the case of a separator for secondary batteries, it is required to have a thin thickness and light weight, and at the same time, it is required to have excellent shape stability due to heat for the production of high-capacity batteries. In addition, recently, in terms of the characteristics of separators, not only permeability and heat shrinkage resistance, but also characteristics that affect battery life, such as cycle characteristics, and characteristics related to battery productivity, such as electrolyte injectability, are being considered important.

그 중, 전지 생산에 있어서 상당 시간이 소요되고 전지의 생산성과 밀접한 관련이 있는 공정 중 하나가 권취 공정이며, 현재 생산 속도 증대를 위해 고속 권취가 이루어지고 있다. 따라서, 이러한 고속 권취 시 분리막이 끊어져 공정 불량을 야기하는 문제를 방지하기 위하여 분리막의 인장 강도를 향상시키려는 연구가 필요하다. 인장 강도를 높이기 위해서는 고분자량의 폴리올레핀 제조를 필요로 하는데, 폴리올레핀의 분자량이 높을 경우 용융 점도의 증가로 가공성이 저하되어 생산성이 떨어지고, 성형품의 품질이 일정하지 않은 단점을 초래한다. 상기 단점을 개선하기 위해 중합체의 밀도 및 분자량 조절이 용이한 촉매계의 개발의 필요하다. Among them, one of the processes that takes a considerable amount of time in battery production and is closely related to battery productivity is the winding process, and high-speed winding is currently being carried out to increase production speed. Therefore, research is needed to improve the tensile strength of the separator in order to prevent the problem of the separator breaking during high-speed winding and causing process defects. In order to increase tensile strength, it is necessary to manufacture high molecular weight polyolefin. When the molecular weight of polyolefin is high, processability decreases due to an increase in melt viscosity, resulting in low productivity and inconsistent quality of molded products. In order to improve the above shortcomings, it is necessary to develop a catalyst system that can easily control the density and molecular weight of the polymer.

한편, 폴리올레핀을 제조하는데 사용되는 촉매는 적용되는 중심 금속의 종류에 따라 지글러-나타계 촉매, 크롬계 촉매 및 메탈로센 촉매로 나눌 수 있다. 이들 촉매는 촉매 활성, 수소 반응성, 분자량 분포, 공단량체에 대한 반응 특성이 서로 다르기 때문에 제조 공정 및 응용 제품의 요구 특성에 따라 선택적으로 사용되어 왔다. 이 중 마그네슘을 포함하는 지글러-나타계 촉매는 다른 촉매에 비해 높은 활성, 운전 안정성, 우수한 물성, 경제성 면에서 장점을 가지고 있어 폴리올레핀 중합체 제조에 가장 많이 사용되고 있다.Meanwhile, catalysts used to produce polyolefin can be divided into Ziegler-Natta catalysts, chromium-based catalysts, and metallocene catalysts depending on the type of central metal applied. Since these catalysts have different catalytic activity, hydrogen reactivity, molecular weight distribution, and reaction characteristics toward comonomers, they have been selectively used depending on the required characteristics of the manufacturing process and application product. Among these, the Ziegler-Natta catalyst containing magnesium has advantages over other catalysts in terms of high activity, operational stability, excellent physical properties, and economic efficiency, and is thus most widely used in the production of polyolefin polymers.

예를 들어, 미국 특허 제 6,225,428호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 촉매의 제조 방법이 복잡한 단점이 있다. 미국 특허 제 9,644,050호에는 내부전자 공여체를 도입한 지글러-나타계 촉매를 이용하여 촉매의 입도를 제어하는 방법이 기재되어 있으나, 촉매 제조 방법이 복잡하고 저입도의 폴리머 입자를 얻는데 한계가 있다. 대한민국 특허 출원 제 2014-0140957호에는 메탈로센 촉매를 이용하여 분자량 분포를 조절하는 방법이 기재되어 있으나, 염소화 폴리에틸렌의 성형 시 분자량 분포가 좁아 성형성이 좋지 못한 단점이 있다. 대한민국 특허 출원 제 2015-0156838호에는 지글러-나타 촉매 조성물을 이용한 폴리에틸렌을 제조하는 방법이 기재되어 있으나, 분자량 분포를 조절하기 위한 폴리에틸렌 중합 방법이 복잡한 단점이 있다.For example, U.S. Patent No. 6,225,428 describes a method of controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but it has the disadvantage that the catalyst preparation method is complicated. U.S. Patent No. 9,644,050 describes a method of controlling the particle size of a catalyst using a Ziegler-Natta catalyst incorporating an internal electron donor, but the catalyst preparation method is complicated and there are limitations in obtaining polymer particles of low particle size. Korean Patent Application No. 2014-0140957 describes a method of controlling molecular weight distribution using a metallocene catalyst, but has the disadvantage of poor moldability due to the narrow molecular weight distribution when molding chlorinated polyethylene. Korean Patent Application No. 2015-0156838 describes a method for producing polyethylene using a Ziegler-Natta catalyst composition, but has the disadvantage that the polyethylene polymerization method for controlling molecular weight distribution is complicated.

따라서, 상기 단점들을 해결하기 위해 활성이 우수하고 입자 사이즈가 작으며, 간단한 공정에 의해 분자량 분포 조절이 용이한 폴리올레핀을 제조할 수 있는 기술이 제공되는 경우 관련 분야에서 널리 적용될 수 있을 것으로 기대된다. Therefore, in order to solve the above shortcomings, if a technology for producing polyolefin with excellent activity, small particle size, and easy molecular weight distribution control through a simple process is provided, it is expected to be widely applied in related fields.

본 발명의 일 견지는 내부전자공여체 화합물을 포함하여 저입도이면서 사이즈 분포가 균일한 촉매 조성물을 제공하는 것이다. One aspect of the present invention is to provide a catalyst composition containing an internal electron donor compound and having a low particle size and uniform size distribution.

본 발명의 다른 견지는 공정 경제가 우수하며, 내부전자공여체 화합물을 포함하여 저입도이면서 사이즈 분포가 균일한 촉매를 제조할 수 있는 방법을 제공하는 것이다. Another aspect of the present invention is to provide a method for producing a catalyst that has excellent process economy and has a low particle size and uniform size distribution, including an internal electron donor compound.

본 발명의 또 다른 견지는 본 발명의 촉매에 의해 중합 활성이 높고, 입자 사이즈가 균일하고 작으며, 분자량 분포 조절이 용이하여 성형성이 향상된 폴리올레핀을 제조하는 방법을 제공하는 것이다. Another aspect of the present invention is to provide a method for producing polyolefin with high polymerization activity, uniform and small particle size, and easy control of molecular weight distribution, thereby improving moldability, using the catalyst of the present invention.

본 발명의 한 측면에 의하면, 마그네슘 화합물이 알코올 용매에 용해된 마그네슘 화합물 용액, 하기 화학식 1로 표시되는 내부전자공여체 화합물 및 탄화수소 용매에 혼합된 전이금속 화합물을 포함하는, 폴리올레핀 중합용 촉매 조성물이 제공된다. According to one aspect of the present invention, a catalyst composition for polyolefin polymerization is provided, comprising a magnesium compound solution in which a magnesium compound is dissolved in an alcohol solvent, an internal electron donor compound represented by the following formula (1), and a transition metal compound mixed in a hydrocarbon solvent. do.

[화학식 1][Formula 1]

상기 화학식 1에서, R1, R2, X 및 n은 명세서에 정의된 바와 같다.In Formula 1, R 1 , R 2 , X and n are as defined in the specification.

본 발명의 다른 측면에 의하면, 마그네슘 화합물을 알코올 용매에 용해하여 마그네슘 화합물 용액을 제조하는 단계; 상기 마그네슘 화합물 용액에 하기 화학식 1로 표시되는 내부전자공여체 화합물을 투입하는 단계; 및 상기 내부전자공여체 화합물을 포함하는 마그네슘 화합물 용액에 탄화수소 용매에 혼합된 전이금속 화합물을 투입시키는 단계를 포함하는 폴리올레핀 중합용 촉매의 제조방법이 제공된다. According to another aspect of the invention, preparing a magnesium compound solution by dissolving a magnesium compound in an alcohol solvent; Adding an internal electron donor compound represented by the following formula (1) to the magnesium compound solution; and adding a transition metal compound mixed in a hydrocarbon solvent to a magnesium compound solution containing the internal electron donor compound. A method for producing a catalyst for polyolefin polymerization is provided.

[화학식 1][Formula 1]

상기 화학식 1에서, R1, R2, X 및 n은 명세서에 정의된 바와 같다.In Formula 1, R 1 , R 2 , X and n are as defined in the specification.

본 발명의 다른 측면에 의하면, 상기 본 발명의 촉매 조성물에 의해 제조된 촉매의 존재 하에, 올레핀계 단량체를 중합시키는 단계를 포함하는, 폴리올레핀의 제조방법이 제공된다.According to another aspect of the present invention, a method for producing polyolefin is provided, comprising the step of polymerizing an olefin-based monomer in the presence of a catalyst prepared by the catalyst composition of the present invention.

본 발명에 의하면 폴리올레핀 중합 반응에서 높은 활성 및 겉보기 밀도를 가질 뿐만 아니라, 제조되는 폴리올레핀의 입자 사이즈 및 분포도, 분자량 분포 등을 용이하게 조절할 수 있도록 하여 기계적 물성 및 가공성이 향상된 이차 전지 분리막용 폴리올레핀을 제조할 수 있는 폴리올레핀 중합용 촉매 조성물, 촉매의 제조 방법과, 이를 이용한 폴리올레핀의 제조 방법을 획득할 수 있다. According to the present invention, a polyolefin for a secondary battery separator that not only has high activity and apparent density in the polyolefin polymerization reaction, but also has improved mechanical properties and processability by easily controlling the particle size, distribution, and molecular weight distribution of the produced polyolefin, is manufactured. A catalyst composition for polyolefin polymerization, a method for producing the catalyst, and a method for producing polyolefin using the same can be obtained.

이하, 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention may be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below.

본 발명은 내부전자공여체 화합물을 포함하여 저입도이면서 사이즈 분포가 균일한 촉매를 제조할 수 있는 폴리올레핀 중합용 촉매 조성물에 관한 것으로, 보다 상세하게 본 발명의 폴리올레핀 중합용 촉매 조성물은 마그네슘 화합물이 알코올 용매에 용해된 마그네슘 화합물 용액, 하기 화학식 1로 표시되는 내부전자공여체 화합물 및 탄화수소 용매에 혼합된 전이금속 화합물을 포함하는 것이다. The present invention relates to a catalyst composition for polyolefin polymerization that can produce a catalyst with low particle size and uniform size distribution, including an internal electron donor compound. More specifically, the catalyst composition for polyolefin polymerization of the present invention is a magnesium compound that is used as an alcohol solvent. It includes a magnesium compound solution dissolved in a solution, an internal electron donor compound represented by the following formula (1), and a transition metal compound mixed in a hydrocarbon solvent.

[화학식 1][Formula 1]

이때, 상기 화학식 1에서, R1은 수소, 선형 또는 분지형의 (C1-C20)알킬기, (C2-C20)알케닐기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C1-C20)알킬실릴기, (C7-C20)알킬아릴기, 또는 헤테로원자를 포함하는 (C2-C20)알킬기이며; R2는 수소이거나, 적어도 하나의 수소가 선형 또는 분지형의 (C1-C20)알킬기, 및 (C2-C20)알케닐기로부터 선택된 치환기로 치환되며; X는 할로겐이며; n은 0 또는 1 내지 3의 정수이다.At this time, in Formula 1, R 1 is hydrogen, a linear or branched (C 1 -C 20 )alkyl group, (C 2 -C 20 )alkenyl group, (C 3 -C 20 )cycloalkyl group, (C 6 - C 20 )aryl group, (C 1 -C 20 )alkylsilyl group, (C 7 -C 20 )alkylaryl group, or (C 2 -C 20 )alkyl group containing heteroatoms; R 2 is hydrogen, or at least one hydrogen is substituted with a substituent selected from linear or branched (C 1 -C 20 )alkyl groups, and (C 2 -C 20 )alkenyl groups; X is halogen; n is 0 or an integer from 1 to 3.

상기 화학식 1에서 R1이 헤테로원자를 포함하는 (C2-C20)알킬기인 경우, 상기 헤테로 원자는 O, N 또는 이들의 조합일 수 있다. 한편, 상기 할로겐 X는 불소(Fluorine), 염소 (Chlorine), 브롬(Bromine) 또는 요오드(Iodine)일 수 있다.In Formula 1, when R 1 is a (C 2 -C 20 )alkyl group containing a heteroatom, the hetero atom may be O, N, or a combination thereof. Meanwhile, the halogen X may be fluorine, chlorine, bromine, or iodine.

상기 화학식 1에서 R2가 수소인 경우는 시클로펜틸 고리가 치환되지 않은 경우를 의미하는 것이며, R2는 적어도 하나의 수소가 선형 또는 분지형의 (C1-C20)알킬기, 및 (C2-C20)알케닐기로부터 선택된 치환기로 치환될 수 있는 것으로, 이때 치환기는 1 내지 내지 4개, 예를 들어 1개 내지 2개일 수 있다. In Formula 1, when R 2 is hydrogen, it means when the cyclopentyl ring is unsubstituted, and R 2 is a linear or branched (C 1 -C 20 ) alkyl group where at least one hydrogen is, and (C 2 -C 20 ) may be substituted with a substituent selected from an alkenyl group, and in this case, the number of substituents may be 1 to 4, for example, 1 to 2.

마그네슘 화합물이 알코올 용매에 용해된 마그네슘 화합물 용액에서 상기 마그네슘 화합물은 알코올과 혼합되어 완전히 용해될 수 있고 알코올은 마그네슘 화합물의 결정 구조를 성글게 하여 후속적으로 반응하게 되는 내부전자공여체 및 전이금속 화합물이 구조적으로 안정적이게 배위할 수 있도록 한다.In a solution of a magnesium compound in which a magnesium compound is dissolved in an alcohol solvent, the magnesium compound can be mixed with alcohol and completely dissolved, and the alcohol causes the crystal structure of the magnesium compound to become sparse, so that the internal electron donor and transition metal compound that subsequently react are structural. to ensure stable coordination.

상기 마그네슘 화합물은 환원성을 갖지 않는 화합물로서, 마그네슘 화합물의 구체적인 예로는 마그네슘 할라이드, 알콕시 마그네슘, 알킬마그네슘할라드, 알콕시할로겐화마그네슘, 또는 아릴옥시할로겐화마그네슘 등을 들 수 있다. 구체적인 예로는, 염화마그네슘, 이염화마그네슘, 브롬화마그네슘, 불화마그네슘, 또는 요오드화마그네슘 등의 할로겐화마그네슘; 메톡시염화마그네슘, 에톡시염화마그네슘, 이소프록시염화마그네슘, 부톡시염화마그네슘, 또는 옥톡시염화마그네슘 등의 알콕시할로겐화마그네슘; 페녹시염화마그네슘 등의 알릴옥시할로겐화마그네슘; 및 에톡시마그네슘, 이소프록시마그네슘, 또는 부톡시마그네슘 등의 알콕시마그네슘 등이 사용될 수 있으며, 마그네슘 할라이드를 사용하는 것이 촉매의 활성을 증가시켜 바람직하다. 또한, 그 중에서도 이염화마그네슘을 사용하는 것이 주 활성금속인 전이금속 화합물과 구조적, 배위적으로 안정하고 높은 활성을 나타내어 바람직하다.The magnesium compound is a non-reducing compound, and specific examples of the magnesium compound include magnesium halide, alkoxy magnesium, alkyl magnesium halide, alkoxy magnesium halide, or aryloxy magnesium halide. Specific examples include magnesium halides such as magnesium chloride, magnesium dichloride, magnesium bromide, magnesium fluoride, or magnesium iodide; Alkoxy magnesium halides such as methoxy magnesium chloride, ethoxy magnesium chloride, isopoxy magnesium chloride, butoxy magnesium chloride, or octoxy magnesium chloride; Allyloxymagnesium halides such as magnesium phenoxychloride; and alkoxymagnesium such as ethoxymagnesium, isopoxymagnesium, or butoxymagnesium, etc. may be used, and the use of magnesium halide is preferred as it increases the activity of the catalyst. In addition, it is preferable to use magnesium dichloride because it is structurally and coordinately stable and exhibits high activity with the transition metal compound, which is the main active metal.

상기 마그네슘 화합물 용액의 마그네슘 화합물 및 상기 알코올의 몰비는 1:0.5 내지 1:10일 수 있고, 바람직하게는 1:1 내지 1:5일 수 있다. 마그네슘 화합물에 대한 알코올의 몰비가 마그네슘 화합물 대비 10몰을 초과할 경우 전이금소 화합물에 의해 이루어지는 결정 형성이 어려우며 활성을 저해하는 경향이 있고, 0.5몰 미만인 경우 마그네슘 화합물의 용해가 이루어 지지 않아 균질한 마그네슘 화합물 용액을 획득할 수 없어 바람직하지 못하다.The molar ratio of the magnesium compound and the alcohol in the magnesium compound solution may be 1:0.5 to 1:10, and preferably 1:1 to 1:5. If the molar ratio of alcohol to magnesium compound exceeds 10 mol compared to the magnesium compound, crystal formation by the transition metal compound is difficult and tends to inhibit activity, and if it is less than 0.5 mol, the magnesium compound does not dissolve, resulting in homogeneous magnesium. This is undesirable because a compound solution cannot be obtained.

상기 알코올의 구체적인 예로는 메탄올, 에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, n-펜단올, 이소펜단올, 네오펜탄올, 시클로펜탄올, n-헥산올, n-헵탄올, n-옥탄올, 데칸올, 도데칸올, 2-메틸펜탄올, 2-에틸부탄올, 2-에틸헥산올 등의 지방족 또는 지환족 알코올; 시클로헥산올, 메틸시클로헥산올, a-메틸벤질알코올 등의 방향족 알코올이 사용될 수 있고, 이 중에서 지방족 또는 지환족 알코올이나 탄소수 2 이상의 알코올을 사용하는 것이 바람직하며, 예를 들어 2-에틸 1-헥산올을 사용할 수 있다.Specific examples of the alcohol include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pendanol, isopendanol, neopentanol, cyclopentanol, n-hexanol, n-heptanol, Aliphatic or cycloaliphatic alcohols such as n-octanol, decanol, dodecanol, 2-methylpentanol, 2-ethylbutanol, and 2-ethylhexanol; Aromatic alcohols such as cyclohexanol, methylcyclohexanol, and a-methylbenzyl alcohol may be used, and among these, aliphatic or cycloaliphatic alcohols or alcohols having 2 or more carbon atoms are preferred, for example, 2-ethyl 1- Hexanol can be used.

한편, 상기 마그네슘 화합물 용액은 탄화수소 용매를 추가로 포함할 수 있으며, 탄화수소 용매가 추가되는 경우, 적은 양의 알코올을 사용하면서도 마그네슘 화합물과 알코올의 균질 용액을 얻을 수 있어 바람직하다. 상기 마그네슘 화합물 용액을 제조하는 단계의 마그네슘 화합물 및 상기 탄화수소 용매의 몰비는 1:5 내지 1:20일 수 있다. Meanwhile, the magnesium compound solution may further include a hydrocarbon solvent, and when a hydrocarbon solvent is added, it is preferable to obtain a homogeneous solution of the magnesium compound and alcohol while using a small amount of alcohol. The molar ratio of the magnesium compound and the hydrocarbon solvent in the step of preparing the magnesium compound solution may be 1:5 to 1:20.

이때, 상기 탄화수소 용매는 탄소수가 5 내지 20인 지방족 탄화수소, 지환족 탄화수소, 방향족 탄화수소 또는 이들의 조합일 수 있고, 예를 들어 탄소수가 6 내지 17인 지방족 또는 지환족 탄화수소 용매가 가장 바람직하다. 보다 구체적인 예로는 헥산, 헵탄, 옥탄, 데칸, 도데칸, 테트라데칸, 미네랄 오일 등의 지방족 탄화수소; 시클릭헥산, 시클릭옥탄, 메틸 시클릭펜탄, 메틸 시클릭헥산 등의 지환족 탄화수소; 벤젠, 톨루엔, 자일렌, 에틸벤젠, 큐멘 등의 방향족 탄화수소 등을 들 수 있다.At this time, the hydrocarbon solvent may be an aliphatic hydrocarbon, an alicyclic hydrocarbon, an aromatic hydrocarbon, or a combination thereof having 5 to 20 carbon atoms. For example, an aliphatic or cycloaliphatic hydrocarbon solvent having 6 to 17 carbon atoms is most preferred. More specific examples include aliphatic hydrocarbons such as hexane, heptane, octane, decane, dodecane, tetradecane, and mineral oil; Alicyclic hydrocarbons such as cyclic hexane, cyclic octane, methyl cyclic pentane, and methyl cyclic hexane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and cumene can be mentioned.

본 발명의 폴리올레핀 중합용 촉매 조성물은 나아가 하기 화학식 1로 표시되는 내부전자공여체 화합물을 포함한다. The catalyst composition for polyolefin polymerization of the present invention further includes an internal electron donor compound represented by the following formula (1).

[화학식 1][Formula 1]

상기 화학식 1에서, R1, R2, X 및 n은 상기에서 정의된 바와 같다. In Formula 1, R 1 , R 2 , X and n are as defined above.

상기 화학식 1로 표시되는 화합물은 카보네이트계 화합물로, 마그네슘 및 티타늄 잔기의 할라이드로의 전환을 용이하게 하여 미세 결정 크기를 조절함으로써 촉매 입자 사이즈를 조절 할 수 있고, 할로겐화 및 타이타네이트화 동안 활성 부위의 형성을 조절할 수 있으며, 겉보기 밀도 (Bulk Density) 및 분자량 분포 등을 조절할 수 있다.The compound represented by Formula 1 is a carbonate-based compound that facilitates the conversion of magnesium and titanium residues into halides, allows the catalyst particle size to be adjusted by controlling the microcrystal size, and acts as an active site during halogenation and titanation. The formation of can be controlled, and the bulk density and molecular weight distribution can be adjusted.

바람직한 본 발명의 화학식 1 화합물은 예를 들어, 1-클로로에틸 사이클로펜틸 카보네이트, 1-클로로부틸 사이클로펜틸 카보네이트, 1-클로로프로필 사이클로펜틸카보네이트, 1-클로로-2-메틸프로필 사이클로펜틸 카보네이트, 사이클로펜틸 1-아이오도에틸 카보네이트, 사이클로펜틸 1-아이오도부틸 카보네이트, 사이클로펜틸 1-아이오도프로필 카보네이트 및 사이클로펜틸 1-아이오도-2-메틸프로필 카보네이트로 이루어진 그룹으로부터 선택될 수 있다.Preferred compounds of formula 1 of the invention include, for example, 1-chloroethyl cyclopentyl carbonate, 1-chlorobutyl cyclopentyl carbonate, 1-chloropropyl cyclopentyl carbonate, 1-chloro-2-methylpropyl cyclopentyl carbonate, cyclopentyl It may be selected from the group consisting of 1-iodoethyl carbonate, cyclopentyl 1-iodobutyl carbonate, cyclopentyl 1-iodopropyl carbonate and cyclopentyl 1-iodo-2-methylpropyl carbonate.

본 발명에 사용될 수 있는 상기 전이금속 화합물의 구체적인 예로는 폴리에틸렌 중합용 지글러 나타 촉매로 사용되는 것으로 알려진 전이금속 화합물이라면 제한 없이 사용 가능하다. 특히, 상기 전이 금속 화합물의 바람직한 예로는 하기 화학식 2의 화합물을 포함한다. Specific examples of the transition metal compound that can be used in the present invention include any transition metal compound known to be used as a Ziegler-Natta catalyst for polyethylene polymerization. In particular, preferred examples of the transition metal compound include compounds of the following formula (2).

[화학식 2][Formula 2]

MX m(OR3)4-m MX m (OR 3 ) 4-m

상기 화학식 2에서, M은 주기율표 IVB, VB 및 VIB족의 전이 금속 원소로 이루어진 군에서 선택되고, X는 할로겐이며, R3은 (C1-C10)알킬기이고, m은 금속의 산화수로 0 내지 4이다.In Formula 2, M is selected from the group consisting of transition metal elements of groups IVB, VB and VIB of the periodic table , It is from 4 to 4.

상기 M의 바람직한 예로는 티타늄, 지르코늄, 하프늄, 바나듐, 니오븀, 탄탈륨, 크롬, 몰리브덴을 들 수 있다. 그리고, 상기 화학식2의 전이금속 화합물로의 구체적인 예로는 사염화티타늄, 사브롬티타늄, 사요오드티타늄, 테트라부톡시 티타늄, 테트라에톡시 티타늄, 디에톡시 티타늄 디클로라이드, 또는 에톡시 티타늄 트리클로라이드 등을 들 수 있으며, 사염화티타늄을 사용하는 것이 바람직하다.Preferred examples of M include titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, and molybdenum. In addition, specific examples of the transition metal compound of Formula 2 include titanium tetrachloride, titanium tetrabromine, titanium tetraiodo, tetrabutoxy titanium, tetraethoxy titanium, diethoxy titanium dichloride, or ethoxy titanium trichloride. It is preferable to use titanium tetrachloride.

한편, 상기 할로겐 X는 불소(Fluorine), 염소 (Chlorine), 브롬(Bromine) 또는 요오드(Iodine)일 수 있다.Meanwhile, the halogen X may be fluorine, chlorine, bromine, or iodine.

상기 전이금속 화합물은 탄화수소 용매에 분산된 것일 수 있다. 상기 탄화수소 용매는 상기 마그네슘 화합물 용액을 제조하는 단계에 사용될 수 있는 탄화수소 용매로부터 선택하여 사용할 수 있다. 상기 탄화수소 용매의 구체적인 예로는 지방족 또는 지환족 (C5-C20)탄화수소를 들 수 있으며, 그 중에서도 지방족 또는 지환족 (C6-C17)탄화수소 용매가 바람직하다. 보다 구체적인 예로는 헥산, 헵탄, 옥탄, 데칸, 도데칸, 테트라데칸, 미네랄 오일 등의 지방족 탄화수소; 시클릭헥산, 시클릭옥탄, 메틸 시클릭펜탄, 메틸 시클릭헥산 등의 지환족 탄화수소; 벤젠, 톨루엔, 자일렌, 에틸벤젠, 큐멘 등의 방향족 탄화수소 등을 들 수 있다. 제조되는 고체촉매의 입자크기 분포가 균일하고, 촉매 입자표면이 매끄러운 구형 형태이기 위해서는 헥산을 사용하는 것이 더욱 바람직하다. The transition metal compound may be dispersed in a hydrocarbon solvent. The hydrocarbon solvent may be selected from hydrocarbon solvents that can be used in the step of preparing the magnesium compound solution. Specific examples of the hydrocarbon solvent include aliphatic or cycloaliphatic (C 5 -C 20 ) hydrocarbons, and among them, aliphatic or cycloaliphatic (C 6 -C 17 ) hydrocarbon solvents are preferable. More specific examples include aliphatic hydrocarbons such as hexane, heptane, octane, decane, dodecane, tetradecane, and mineral oil; Alicyclic hydrocarbons such as cyclic hexane, cyclic octane, methyl cyclic pentane, and methyl cyclic hexane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and cumene can be mentioned. In order for the particle size distribution of the produced solid catalyst to be uniform and the catalyst particle surface to be smooth and spherical, it is more preferable to use hexane.

상기 마그네슘 화합물 및 상기 화학식 2의 전이금속 화합물의 몰비는 1:1 내지 1:10의 몰비로 할 수 있고, 바람직하게는 1:3 내지 1:5의 몰비로 할 수 있다. 화학식 2의 전이금속 화합물의 과량 포함되는 경우에는 높은 촉매 활성으로 인하여 중합 단계에서 반응을 조절하지 못하는 문제가 있으며, 상기 범위 미만인 경우에는 촉매의 활성이 지나치게 낮은 문제가 발생할 수 있다.The molar ratio of the magnesium compound and the transition metal compound of Formula 2 may be 1:1 to 1:10, and preferably 1:3 to 1:5. If an excessive amount of the transition metal compound of Formula 2 is included, there is a problem of not being able to control the reaction in the polymerization step due to high catalytic activity, and if it is less than the above range, a problem may occur in which the activity of the catalyst is too low.

상기 본 발명의 폴리에틸렌 중합용 촉매 조성물을 이용하여 제조한 촉매의 존재 하에 폴리에틸렌을 중합할 수 있고, 또한, 상기 촉매는 화학식 3으로 표시되는 조촉매 화합물을 더 포함할 수 있다.Polyethylene can be polymerized in the presence of a catalyst prepared using the catalyst composition for polyethylene polymerization of the present invention, and the catalyst may further include a cocatalyst compound represented by Formula 3.

[화학식 3][Formula 3]

AlR4 pX3 -p AlR 4p

상기 화학식 3에서, R4는 (C1-C8)알킬기, X는 할로겐, p은 0 내지 3의 정수일 수 있다.In Formula 3, R 4 may be a (C 1 -C 8 )alkyl group, X may be a halogen, and p may be an integer from 0 to 3.

상기 조촉매는 전이금속 화합물을 환원시켜 활성점을 형성함으로써 촉매 활성을 높일 수 있다. 이러한 조촉매로는 상기 화학식 3로 표시되는 알킬알루미늄 화합물을 제한 없이 사용할 수 있으며, 구체적으로, 트리에틸알루미늄, 트리메틸알루미늄, 트리이소프로필알루미늄, 트리옥틸알루미늄, 디에틸알루미늄클로라이드, 디에틸알루미늄브로마이드, 디에틸알루미늄아이오다이드, 디에틸알루미늄플로라이드, 에틸알루미늄디클로라이드, 디메틸알루미늄클로라이드, 메틸알루미늄디클로라이드 또는 이들의 조합을 사용할 수 있다.The cocatalyst can increase catalytic activity by reducing transition metal compounds to form active sites. As such a cocatalyst, an alkyl aluminum compound represented by Formula 3 may be used without limitation, and specifically, triethyl aluminum, trimethyl aluminum, triisopropyl aluminum, trioctyl aluminum, diethylaluminum chloride, diethylaluminum bromide, Diethylaluminum iodide, diethylaluminum fluoride, ethyl aluminum dichloride, dimethyl aluminum chloride, methyl aluminum dichloride, or a combination thereof can be used.

조촉매의 몰비는 마그네슘 화합물에 대하여 1:0.01 내지 1:10일 수 있고, 바람직하게는 1:0.01 내지 1:2일 수 있다. 조촉매의 사용량이 너무 적은 경우 제조되는 폴리에틸렌의 분자량 분포가 좁게 나타날 수 있고, 조촉매의 사용량이 너무 많은 경우 촉매 활성이 급격하게 저하될 수 있다.The molar ratio of the cocatalyst to the magnesium compound may be 1:0.01 to 1:10, preferably 1:0.01 to 1:2. If the amount of co-catalyst used is too small, the molecular weight distribution of the produced polyethylene may appear narrow, and if the amount of co-catalyst used is too large, the catalytic activity may rapidly decrease.

나아가, 본 발명에 의하면 단순한 공정으로 수행되어 공정 경제가 우수하며, 내부전자공여체 화합물을 포함하여 저입도이면서 사이즈 분포가 균일한 촉매를 제조할 수 있는 방법이 제공되며, 보다 상세하게 본 발명의 폴리올레핀 중합용 촉매의 제조방법은 마그네슘 화합물을 알코올 용매에 용해하여 마그네슘 화합물 용액을 제조하는 단계; 상기 마그네슘 화합물 용액에 하기 화학식 1로 표시되는 내부전자공여체 화합물을 투입하는 단계; 및 상기 내부전자공여체 화합물을 포함하는 마그네슘 화합물 용액에 탄화수소 용매에 혼합된 전이금속 화합물을 투입시키는 단계를 포함하는 것이다. Furthermore, according to the present invention, a method is provided that is performed in a simple process, has excellent process economics, and can produce a catalyst with low particle size and uniform size distribution, including an internal electron donor compound. In more detail, the polyolefin of the present invention is provided. The method for producing a polymerization catalyst includes dissolving a magnesium compound in an alcohol solvent to prepare a magnesium compound solution; Adding an internal electron donor compound represented by the following formula (1) to the magnesium compound solution; and adding a transition metal compound mixed in a hydrocarbon solvent to the magnesium compound solution containing the internal electron donor compound.

[화학식 1][Formula 1]

이때, 상기 화학식 1에서, R1, R2, X 및 n은 상기 촉매 조성물에 관하여 정의된 바와 같다. At this time, in Formula 1, R 1 , R 2 , X and n are as defined for the catalyst composition.

한편, 상기 본 발명의 폴리올레핀 중합용 촉매의 제조방법에 있어서, 구체적인 성분, 성분비 등 촉매 조성물과 관련된 내용은 상기 촉매 조성물에 관하여 기재한 바와 같다. Meanwhile, in the method for producing the catalyst for polyolefin polymerization of the present invention, details related to the catalyst composition, such as specific components and component ratios, are the same as described for the catalyst composition.

마그네슘 화합물을 알코올 용매에 용해하여 마그네슘 화합물 용액을 제조하는 단계에서 상기 마그네슘 화합물은 알코올과 혼합되어 완전히 용해될 수 있고 알코올은 마그네슘 화합물의 결정 구조를 성글게 하여 후속적으로 반응하게 되는 내부전자공여체 및 전이금속 화합물이 구조적으로 안정적이게 배위할 수 있도록 한다.In the step of preparing a magnesium compound solution by dissolving a magnesium compound in an alcohol solvent, the magnesium compound can be completely dissolved by mixing with alcohol, and the alcohol is an internal electron donor and transfer agent that subsequently reacts by loosening the crystal structure of the magnesium compound. It allows metal compounds to coordinate structurally and stably.

상기 마그네슘 화합물 용액을 제조하는 단계의 마그네슘 화합물 및 상기 알코올의 몰비는 1:0.5 내지 1:10일 수 있고, 바람직하게는 1:1 내지 1:5일 수 있다. 마그네슘 화합물에 대한 알코올의 몰비가 마그네슘 화합물 대비 10몰을 초과할 경우 전이금소 화합물에 의해 이루어지는 결정 형성이 어려우며 활성을 저해하는 경향이 있고, 0.5몰 미만인 경우 마그네슘 화합물의 용해가 이루어 지지 않아 균질한 마그네슘 화합물 용액을 획득할 수 없어 바람직하지 못하다.The molar ratio of the magnesium compound and the alcohol in the step of preparing the magnesium compound solution may be 1:0.5 to 1:10, and preferably 1:1 to 1:5. If the molar ratio of alcohol to magnesium compound exceeds 10 mol compared to the magnesium compound, crystal formation by the transition metal compound is difficult and tends to inhibit activity, and if it is less than 0.5 mol, the magnesium compound does not dissolve, resulting in homogeneous magnesium. This is undesirable because a compound solution cannot be obtained.

상기 마그네슘 화합물 용액을 제조하는 단계는 60 내지 150 ℃에서 수행할 수 있다. 즉, 마그네슘 화합물을 알코올에 용해시키는 용해 온도는 80 내지 140 ℃가 바람직하며, 상기 범위를 벗어나는 경우 마그네슘 화합물이 알코올에 용해가 잘 되지 않거나, 부반응이 증가하는 경향이 있다.The step of preparing the magnesium compound solution can be performed at 60 to 150 °C. That is, the dissolution temperature for dissolving the magnesium compound in alcohol is preferably 80 to 140 ° C. If it is outside the above range, the magnesium compound does not dissolve well in alcohol or side reactions tend to increase.

한편, 상기 마그네슘 화합물 용액을 제조하는 단계는 탄화수소 용매의 존재 하에서 수행될 수 있으며, 탄화수소 용매가 추가되는 경우, 적은 양의 알코올을 사용하면서도 마그네슘 화합물과 알코올의 균질 용액을 얻을 수 있어 바람직하다. 상기 마그네슘 화합물 용액을 제조하는 단계의 마그네슘 화합물 및 상기 탄화수소 용매의 몰비는 1:5 내지 1:20일 수 있다. Meanwhile, the step of preparing the magnesium compound solution may be performed in the presence of a hydrocarbon solvent, and when a hydrocarbon solvent is added, it is preferable to obtain a homogeneous solution of the magnesium compound and alcohol while using a small amount of alcohol. The molar ratio of the magnesium compound and the hydrocarbon solvent in the step of preparing the magnesium compound solution may be 1:5 to 1:20.

균질한 마그네슘 화합물 용액을 제조한 후에 상기 마그네슘 화합물 용액에 하기 화학식 1로 표시되는 내부전자공여체 화합물을 투입하는 단계를 수행한다. After preparing a homogeneous magnesium compound solution, the step of adding an internal electron donor compound represented by the following formula (1) to the magnesium compound solution is performed.

[화학식 1][Formula 1]

상기 화학식 1에서, R1, R2, X 및 n은 상기에서 정의된 바와 같다. In Formula 1, R 1 , R 2 , X and n are as defined above.

상기 마그네슘 화합물 용액에 하기 화학식 1로 표시되는 내부전자공여체 화합물을 투입하는 단계는 -10℃ 내지 150℃에서 수행할 수 있고, 몰비는 마그네슘 화합물 1 몰을 기준으로 1:0.01 내지 1:1, 바람직하게는 1: 0.01 내지 1:0.2, 보다 바람직하게는 1: 0.01 내지 1:0.15 일수 있다. 상기 범위를 벗어나는 경우, 제조되는 촉매에 담지 되어야 할 전이금속 입자의 형성을 방해하여 촉매의 활성이 낮아질 수 있다.The step of adding an internal electron donor compound represented by the following formula (1) to the magnesium compound solution can be performed at -10°C to 150°C, and the molar ratio is preferably 1:0.01 to 1:1 based on 1 mole of the magnesium compound. Preferably it may be 1:0.01 to 1:0.2, more preferably 1:0.01 to 1:0.15. If it is outside the above range, the activity of the catalyst may be lowered by interfering with the formation of transition metal particles to be supported on the manufactured catalyst.

상기 마그네슘 화합물 용액에 상기 화학식 1로 표시되는 내부전자공여체 화합물을 투입한 이후에 내부전자공여체 화합물을 포함하는 마그네슘 화합물 용액에 탄화수소 용매에 혼합된 전이금속 화합물을 투입시키는 단계를 수행한다. 이러한 단계의 수행에 의해, 상기 내부전자공여체 화합물을 포함하는 마그네슘 화합물 용액에 전이금속 화합물을 투입시켜 고체 상태의 촉매를 제조할 수 있다. After adding the internal electron donor compound represented by Formula 1 to the magnesium compound solution, a transition metal compound mixed in a hydrocarbon solvent is added to the magnesium compound solution containing the internal electron donor compound. By performing these steps, a solid-state catalyst can be prepared by adding a transition metal compound to the magnesium compound solution containing the internal electron donor compound.

상기 전이금속 화합물은 탄화수소 용매에 분산시켜 투입시킬 수 있다. 상기 탄화수소 용매는 상기 마그네슘 화합물 용액을 제조하는 단계에 사용될 수 있는 탄화수소 용매로부터 선택하여 사용할 수 있다. The transition metal compound can be added by dispersing it in a hydrocarbon solvent. The hydrocarbon solvent may be selected from hydrocarbon solvents that can be used in the step of preparing the magnesium compound solution.

상기 본 발명의 폴리에틸렌 중합용 촉매의 제조방법을 이용하여 제조한 촉매의 존재 하에 폴리에틸렌을 중합할 수 있고, 또한, 상기 촉매에 화학식 3으로 표시되는 조촉매 화학물을 투입하여 활성화시키는 단계를 더 포함할 수 있다.Polyethylene can be polymerized in the presence of a catalyst prepared using the method for producing a catalyst for polyethylene polymerization of the present invention, and further includes the step of activating the catalyst by adding a cocatalyst chemical represented by Formula 3 to the catalyst. can do.

[화학식 3][Formula 3]

AlR4 pX3 -p AlR 4p

상기 화학식 3에서, R4는 (C1-C8)알킬기, X는 할로겐, p은 0 내지 3의 정수일 수 있다.In Formula 3, R 4 may be a (C 1 -C 8 )alkyl group, X may be a halogen, and p may be an integer from 0 to 3.

상기 조촉매는 전이금속 화합물을 환원시켜 활성점을 형성함으로써 촉매 활성을 높일 수 있다. 이러한 조촉매로는 상기 화학식 3로 표시되는 알킬알루미늄 화합물을 제한 없이 사용할 수 있으며, 구체적으로, 트리에틸알루미늄, 트리메틸알루미늄, 트리이소프로필알루미늄, 트리옥틸알루미늄, 디에틸알루미늄클로라이드, 디에틸알루미늄브로마이드, 디에틸알루미늄아이오다이드, 디에틸알루미늄플로라이드, 에틸알루미늄디클로라이드, 디메틸알루미늄클로라이드, 메틸알루미늄디클로라이드 또는 이들의 조합을 사용할 수 있다.The cocatalyst can increase catalytic activity by reducing transition metal compounds to form active sites. As such a cocatalyst, an alkyl aluminum compound represented by Formula 3 may be used without limitation, and specifically, triethyl aluminum, trimethyl aluminum, triisopropyl aluminum, trioctyl aluminum, diethylaluminum chloride, diethylaluminum bromide, Diethylaluminum iodide, diethylaluminum fluoride, ethyl aluminum dichloride, dimethyl aluminum chloride, methyl aluminum dichloride, or a combination thereof can be used.

또한, 상기 조촉매 화합물을 촉매에 투입시키는 단계는 -30 내지 100℃에서 수행될 수 있고, 특히 0 내지 30℃인 것이 바람직하다. 또한, 상기 조촉매 화합물과 촉매의 접촉 시간(반응 시간)은 반응이 이루어지는 시점에서부터 0.5 내지 24시간 동안 충분히 접촉시키는 것이 바람직하다.Additionally, the step of adding the co-catalyst compound to the catalyst may be performed at -30 to 100°C, and is particularly preferably 0 to 30°C. In addition, the contact time (reaction time) between the co-catalyst compound and the catalyst is preferably sufficient for 0.5 to 24 hours from the time the reaction occurs.

본 발명의 다른 견지에 의하면, 상기와 같은 본 발명의 폴리올레핀 중합용 촉매 조성물에 의해 제조된 폴리올레핀 중합용 촉매의 존재 하에, 올레핀계 단량체를 중합시키는 단계를 포함하는, 폴리올레핀의 제조방법이 제공된다.According to another aspect of the present invention, there is provided a method for producing polyolefin, comprising the step of polymerizing an olefin-based monomer in the presence of a catalyst for polyolefin polymerization prepared by the catalyst composition for polyolefin polymerization of the present invention as described above.

이때, 폴리올레핀 중합 반응은 기상, 액상, 또는 용액 상으로 이루어질 수 있다. 액상으로 중합 반응을 행할 때는 탄화수소 용매를 사용할 수 있고, 올레핀 자체를 용매로 사용할 수도 있다. At this time, the polyolefin polymerization reaction may be carried out in a gas phase, liquid phase, or solution phase. When carrying out a polymerization reaction in the liquid phase, a hydrocarbon solvent can be used, and olefin itself can also be used as a solvent.

중합 온도는 0 내지 200 ℃ 일 수 있고, 30 내지 150 ℃의 범위가 바람직하다. 중합 온도가 0 ℃ 미만이면 촉매의 활성이 좋지 않으며, 200 ℃를 초과하면 입체규칙성이 떨어지기 때문에 바람직하지 않다. 중합 압력은 1 내지 100 기압에서 진행할 수 있고, 2 내지 30 기압 조건에서 진행하는 것이 바람직하다. 중합압력이 100 기압을 초과하는 경우에는 공업적, 경제적 측면에서 바람직하지 않다. 중합반응은 회분식, 반연속식, 연속식 중의 어느 방법으로 행할 수 있다.The polymerization temperature may be 0 to 200°C, with a preferred range of 30 to 150°C. If the polymerization temperature is less than 0°C, the catalyst activity is not good, and if it exceeds 200°C, it is undesirable because stereoregularity deteriorates. Polymerization pressure may be 1 to 100 atm, and is preferably 2 to 30 atm. If the polymerization pressure exceeds 100 atmospheres, it is undesirable from an industrial and economic standpoint. The polymerization reaction can be performed by any of batch, semi-continuous, or continuous methods.

한편, 본 발명에 따른 고체 촉매를 사용하여 제조된 폴리올레핀은 통상적으로 첨가되는 열안정제, 광안정제, 난연제, 카본블랙, 안료, 산화방지제 등을 첨가할 수 있다. 또한, 상기 제조된 폴리올레핀은 선형저밀도폴리에틸렌(LLDPE), 저밀도폴리에틸렌(LDPE), 고밀도폴리에틸렌(HDPE), EP(에틸렌/프로필렌)고무 등과 혼합하여 사용할 수 있다.On the other hand, the polyolefin produced using the solid catalyst according to the present invention can be supplemented with commonly added heat stabilizers, light stabilizers, flame retardants, carbon black, pigments, antioxidants, etc. In addition, the prepared polyolefin can be mixed with linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), high-density polyethylene (HDPE), and EP (ethylene/propylene) rubber.

본 발명에 있어서 상기 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비닐노보덴, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸 스티렌, 디비닐벤젠 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.In the present invention, the olefinic monomer is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-itocene, norbornene, norbonadiene, ethylidene nobodene, phenylnobodene, vinylnobodene, dicyclopentadiene, 1,4-butadiene , 1,5-pentadiene, 1,6-hexadiene, styrene, alpha-methyl styrene, divinylbenzene, and 3-chloromethylstyrene.

이와 같이, 본 발명에 의하면 폴리올레핀 중합 반응에서 높은 활성 및 겉보기 밀도를 가질 뿐만 아니라, 제조되는 폴리올레핀의 입자 사이즈 및 분포도, 분자량 분포 등을 용이하게 조절할 수 있도록 하여 기계적 물성 및 가공성이 향상된 이차 전지 분리막용 폴리올레핀을 제조할 수 있는 폴리올레핀 중합용 촉매의 제조 방법과, 이를 이용한 폴리올레핀의 제조 방법을 획득할 수 있다. As such, according to the present invention, a secondary battery separator not only has high activity and apparent density in the polyolefin polymerization reaction, but also has improved mechanical properties and processability by easily controlling the particle size, distribution, and molecular weight distribution of the polyolefin produced. A method for producing a catalyst for polyolefin polymerization capable of producing polyolefin and a method for producing polyolefin using the same can be obtained.

이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples. The following examples are merely examples to aid understanding of the present invention, and the scope of the present invention is not limited thereto.

실시예Example

1. 촉매의 제조 및 폴리에틸렌의 중합1. Preparation of catalyst and polymerization of polyethylene

실시예 1Example 1

(1) 마그네슘 화합물 용액의 제조(1) Preparation of magnesium compound solution

서스 교반기와 오일 순환 히터가 장착된 2 리터(liter) 크기의 내압용 유리반응기를 사용하여, 질소 분위기 하에서 염화마그네슘 90 g, 데칸 450 ml, 에틸헥산올 502 ml을 투입하고, 80 ℃에서 300 rpm의 회전 속도로 교반하였다. 마그네슘 화합물을 완전히 용해시키기 위해 135 ℃로 승온시키고, 상기 혼합물이 균질한 용액이 되면 1시간 숙성 과정을 거쳐 1-클로로에틸 사이클로펜틸 카보네이트를 7.9 ml를 투입하고, 추가로 1시간 동안 숙성시킨 후 반응기의 온도를 25 ℃로 낮추어 마그네슘 화합물 용액을 제조하였다.Using a 2 liter pressure-resistant glass reactor equipped with a suction stirrer and an oil circulation heater, 90 g of magnesium chloride, 450 ml of decane, and 502 ml of ethylhexanol were added under a nitrogen atmosphere, and the mixture was heated at 300 rpm at 80°C. It was stirred at a rotation speed of . In order to completely dissolve the magnesium compound, the temperature was raised to 135°C, and when the mixture became a homogeneous solution, it was aged for 1 hour, 7.9 ml of 1-chloroethyl cyclopentyl carbonate was added, aged for an additional hour, and then aged in the reactor. A magnesium compound solution was prepared by lowering the temperature to 25°C.

(2) 고체 담체의 생성 및 고체 티타늄 촉매의 제조(2) Generation of solid carrier and preparation of solid titanium catalyst

용매로 헥산 2900 ml에 사염화티타늄 용액 370 ml를 투입한 후 30분간 숙성시켰다. 헥산과 사염화 티타늄 용액이 균질한 용액 상태가 될 수 있도록 700 rpm의 회전 속도로 교반을 진행하였다. 여기에 상기 (1)에서 제조된 마그네슘 화합물 용액 1500 ml를 3 시간에 걸쳐 서서히 투입하였다. 이때 반응물의 온도는 -15℃로 유지시켰다. 투입이 완료되면 1시간 동안 숙성시킨 후 -15℃에서 20℃까지 반응기의 온도를 0.3℃/min의 속도로 승온시켰다.370 ml of titanium tetrachloride solution was added to 2900 ml of hexane as a solvent and aged for 30 minutes. Stirring was performed at a rotation speed of 700 rpm so that the hexane and titanium tetrachloride solutions could become a homogeneous solution. Here, 1500 ml of the magnesium compound solution prepared in (1) above was slowly added over 3 hours. At this time, the temperature of the reactant was maintained at -15°C. Once the input was completed, it was aged for 1 hour and then the temperature of the reactor was raised from -15°C to 20°C at a rate of 0.3°C/min.

상기 반응기의 온도가 20℃가 되면 30분 동안 숙성 과정을 거친 후 반응기의 온도를 75℃까지 1℃/min의 속도로 승온시키고, 74℃에서 2시간 동안 숙성하였다. 반응기의 온도를 40℃까지 냉각시킨 후 교반을 중지하고 침전시킨 후 상등액을 제거하고 40℃ 헥산 2 리터(liter)로 5회 세정하였다. 최종 슬러리는 진공으로 30분 건조하여 촉매를 얻었다.When the temperature of the reactor reached 20°C, a maturation process was performed for 30 minutes, then the temperature of the reactor was raised to 75°C at a rate of 1°C/min, and the reactor was aged at 74°C for 2 hours. After cooling the temperature of the reactor to 40°C, stirring was stopped, precipitation was allowed, and the supernatant was removed and washed 5 times with 2 liters of hexane at 40°C. The final slurry was dried under vacuum for 30 minutes to obtain a catalyst.

(3) 폴리에틸렌의 중합(3) Polymerization of polyethylene

125℃ 가열된 2 리터(liter) 고압반응기를 질소로 1 시간 동안 환류시켜 고압반응기의 상태를 질소 분위기가 되도록 하였다. 질소 분위기 하에서 반응기의 온도를 25℃로 냉각시키고 정제 헥산 1 리터(liter)를 주입하였다. 2 mmol의 트리에틸알루미늄, 상기 (2)에서 제조된 촉매 1 mg을 첨가하였다. 첨가 후 250 rpm으로 교반 시키면서 반응기의 온도가 70℃가 되면 수소 분압 기준으로 0.7 bar를 투입하고 75℃까지 온도를 승온시킨다. 온도가 75℃가 됐을 때, 에틸렌을 주입하고 고압반응기 전체 압력이 7.1 bar를 유지하도록 하여 2시간 동안 중합 반응을 실시하였다. 반응 종료 후 반응기의 온도를 상온으로 냉각하여 생성된 폴리에틸렌은 여과를 통해 남아 있는 단량체를 제거한다. 상기와 같은 공정에 의해 수득된 폴레에틸렌은 60℃의 진공오븐에서 2시간 건조한 후 수율, 겉보기 밀도 및 폴리머 입자 사이즈를 측정하였다.A 2 liter high pressure reactor heated to 125°C was refluxed with nitrogen for 1 hour to bring the high pressure reactor to a nitrogen atmosphere. The temperature of the reactor was cooled to 25°C under a nitrogen atmosphere, and 1 liter of purified hexane was injected. 2 mmol of triethylaluminum and 1 mg of the catalyst prepared in (2) above were added. After addition, while stirring at 250 rpm, when the temperature of the reactor reaches 70°C, 0.7 bar is added based on the partial pressure of hydrogen and the temperature is raised to 75°C. When the temperature reached 75°C, ethylene was injected and the entire pressure of the high pressure reactor was maintained at 7.1 bar to conduct polymerization for 2 hours. After completion of the reaction, the temperature of the reactor is cooled to room temperature, and the resulting polyethylene is filtered to remove remaining monomers. Polyethylene obtained through the above process was dried in a vacuum oven at 60°C for 2 hours, and then the yield, apparent density, and polymer particle size were measured.

실시예 2Example 2

마그네슘 화합물 용액의 제조 단계에서 1-클로로에틸 사이클로펜틸 카보네이트 7.9 ml를 투입하는 것 대신 1-클로로에틸 사이클로펜틸 카보네이트를 3.9 ml를 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 촉매를 합성하고 폴리에틸렌을 제조하였다.A catalyst was synthesized in the same manner as in Example 1, except that 3.9 ml of 1-chloroethyl cyclopentyl carbonate was added instead of 7.9 ml of 1-chloroethyl cyclopentyl carbonate in the preparation step of the magnesium compound solution. Polyethylene was manufactured.

실시예 3Example 3

마그네슘 화합물 용액의 제조 단계에서 1-클로로에틸 사이클로펜틸 카보네이트 7.9 ml를 투입하는 것 대신 1-클로로에틸 사이클로펜틸 카보네이트를 15.7 ml를 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 촉매를 합성하고 폴리에틸렌을 제조하였다.A catalyst was synthesized in the same manner as in Example 1, except that 15.7 ml of 1-chloroethyl cyclopentyl carbonate was added instead of 7.9 ml of 1-chloroethyl cyclopentyl carbonate in the preparation step of the magnesium compound solution. Polyethylene was manufactured.

실시예 4Example 4

마그네슘 화합물 용액의 제조 단계에서 1-클로로에틸 사이클로펜틸 카보네이트 7.9 ml를 투입하는 것 대신 1-클로로에틸 사이클로펜틸 카보네이트를 23.6 ml를 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 촉매를 합성하고 폴리에틸렌을 제조하였다.A catalyst was synthesized in the same manner as in Example 1, except that 23.6 ml of 1-chloroethyl cyclopentyl carbonate was added instead of 7.9 ml of 1-chloroethyl cyclopentyl carbonate in the preparation step of the magnesium compound solution. Polyethylene was manufactured.

비교예 1 Comparative Example 1

마그네슘 화합물 용액의 제조 단계에서 1-클로로에틸 사이클로펜틸 카보네이트를 투입하는 것 대신 에틸 벤조에이트를 6.8 ml 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 촉매를 합성하고 폴리에틸렌을 제조하였다.A catalyst was synthesized and polyethylene was prepared in the same manner as in Example 1, except that 6.8 ml of ethyl benzoate was added instead of 1-chloroethyl cyclopentyl carbonate in the preparation step of the magnesium compound solution.

비교예 2 Comparative Example 2

마그네슘 화합물 용액의 제조 단계에서 1-클로로에틸 사이클로펜틸 카보네이트를 투입 하는 것 대신 디아이소부틸프탈레이트를 38.9 ml 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 촉매를 합성하고 폴리에틸렌을 제조하였다.A catalyst was synthesized and polyethylene was prepared in the same manner as in Example 1, except that 38.9 ml of diisobutyl phthalate was added instead of 1-chloroethyl cyclopentyl carbonate in the preparation step of the magnesium compound solution.

비교예 3 Comparative Example 3

마그네슘 화합물 용액의 제조 단계에서 1-클로로에틸 사이클로펜틸 카보네이트를 투입하는 것 대신 테트라에톡시 실란을 10.5 ml 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 촉매를 합성하고 폴리에틸렌을 제조하였다.A catalyst was synthesized and polyethylene was prepared in the same manner as in Example 1, except that 10.5 ml of tetraethoxy silane was added instead of 1-chloroethyl cyclopentyl carbonate in the preparation step of the magnesium compound solution.

2. 촉매 및 폴리에틸렌의 물성 측정2. Measurement of physical properties of catalyst and polyethylene

상기 실시예 및 비교예에서 제조한 촉매와 폴리에틸렌의 물성을 하기와 같은 방법으로 측정하여 표 1에 나타내었다.The physical properties of the catalyst and polyethylene prepared in the above examples and comparative examples were measured by the following method and are shown in Table 1.

실험예: 촉매 및 폴리에틸렌 특성 측정Experimental example: Measurement of catalyst and polyethylene properties

상기 실시예 및 비교예에서 얻어진 각 생성물의 입자 모양을 전자현미경 (SEM: Scanning Electron Micoroscope)으로 관찰하였고, 촉매 입자를 헥산에 현탁시킨 상태의 입자 크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X : Malvern Instruments사 제조)로 측정하여 입자 크기의 누적분포도를 얻고, 이로부터 입자의 촉매의 평균 입경, 입도 분포 지수(균일성)를 하기와 같이 구하였다. The particle shape of each product obtained in the above examples and comparative examples was observed using an electron microscope (SEM: Scanning Electron Microscope), and the particle size of the catalyst particles suspended in hexane was measured using a laser particle analyzer (Mastersizer : manufactured by Malvern Instruments) to obtain the cumulative distribution of particle size, and from this, the average particle diameter of the catalyst and particle size distribution index (uniformity) of the particles were determined as follows.

(1) 평균 입경 (D50): 누적중량 50%에 해당하는 입자의 크기(One) Average particle size (D 50 ): The size of particles corresponding to 50% of the cumulative weight

(2) 입도 분포 지수 (P): P = (D90-D10)/D50 (2) Particle size distribution index (P): P = (D 90 -D 10 )/D 50

(여기에서, D90은 누적중량 90%에 해당되는 입자의 크기이고, D10은 누적중량 10%에 해당되는 입자의 크기이다)(Here, D 90 is the particle size corresponding to 90% of the cumulative weight, and D 10 is the particle size corresponding to 10% of the cumulative weight)

한편, 하기 표 1의 폴리에틸렌의 폴리머 평균 입경 (APS), 용융지수(MI), 분자량 및 분자량 분포는 하기와 같이 구하였다. Meanwhile, the polymer average particle size (APS), melt index (MI), molecular weight, and molecular weight distribution of polyethylene in Table 1 below were obtained as follows.

(3) 폴리머평균 입경 (APS) 측정방법: 파우더 APS(Average Particle Size)의 측정은 파우더 입도 분석 장비인 Seishin RPS-105M을 사용하여 75, 125, 212, 300, 500, 710, 850 및 1000 ㎛의 총 8단계로 구성된 sieve에 시료 10 g을 떨어뜨려 5분간 진동과 헤머링으로 고르게 분산시켜 각 sieve에 남은 시료의 무게를 측정하여 평균 값을 산출함으로써 실시하였다.(3) Polymer average particle size (APS) measurement method: Powder APS (Average Particle Size) is measured using Seishin RPS-105M, a powder particle size analysis equipment, at 75, 125, 212, 300, 500, 710, 850, and 1000 ㎛. This was carried out by dropping 10 g of sample into a sieve consisting of a total of 8 steps, dispersing it evenly by vibration and hammering for 5 minutes, measuring the weight of the sample remaining in each sieve, and calculating the average value.

(4) 용융지수(MI) 측정방법: ASTM D1238에 따라 190 ℃, 2.16 kg에서 측정하였고, 10분당 g으로 표시하였다.(4) Melt index (MI) measurement method: Measured at 190°C and 2.16 kg according to ASTM D1238, and expressed as g per 10 minutes.

(5) 분자량 측정방법: 분자량 분포를 하기 조건으로 DIN 55672에 준한 방법에 따라 실시된 겔 투과 크로마토그래피로 측정하였다: 용매: 1,2,4-트리클로로벤젠, 유량: 1ml/min, 온도: 140 ℃, PE 표준을 이용한 보정.(5) Molecular weight measurement method: Molecular weight distribution was measured by gel permeation chromatography performed according to the method according to DIN 55672 under the following conditions: Solvent: 1,2,4-trichlorobenzene, flow rate: 1 ml/min, temperature: 140 °C, calibration using PE standards.

(6) 분자량 분포: 겔 투과 크로마토 그래피로 측정 된 중량평균분자량과 수평균분자량과의 비(Mw/Mn) (6) Molecular weight distribution: ratio of weight average molecular weight to number average molecular weight measured by gel permeation chromatography (Mw/Mn)

촉매 평균입경(㎛)Catalyst average particle diameter (㎛) 촉매 입도분포지수(Span)Catalyst particle size distribution index (Span) 폴리머 평균 입경 (APS, ㎛)Polymer average particle size (APS, ㎛) MI21.6kg
(dg/min)
MI 21.6kg
(dg/min)
분자량
(g/mol)
Molecular Weight
(g/mol)
분자량 분포Molecular weight distribution
실시예1Example 1 4.64.6 0.760.76 9999 0.360.36 672,000672,000 6.66.6 실시예2Example 2 5.35.3 0.720.72 108108 0.300.30 680,000680,000 6.86.8 실시예3Example 3 5.75.7 0.990.99 118118 0.350.35 651,000651,000 6.56.5 실시예4Example 4 6.16.1 1.021.02 135135 0.340.34 660,000660,000 6.06.0 비교예1Comparative Example 1 6.96.9 0.720.72 198198 0.310.31 685,000685,000 6.56.5 비교예2Comparative example 2 5.85.8 1.051.05 143143 0.540.54 653,000653,000 3.33.3 비교예3Comparative Example 3 9.59.5 0.830.83 182182 0.690.69 647,000647,000 5.85.8

일반적인 촉매의 균일도를 보는 스팬(span) 값은 낮을수록 우수하며, 값이 낮을수록 매우 균일한 촉매라고 할 수 있다. 따라서 스팬(span)값이 낮을수록 폴리에틸렌 중합 시 운전 안정성이 향상되고 우수한 물성을 가진 제품을 생산할 수 있다. The lower the span value, which measures the uniformity of a general catalyst, the better, and the lower the value, the more uniform the catalyst is. Therefore, the lower the span value, the improved operational stability during polyethylene polymerization and the ability to produce products with excellent physical properties.

상기 표 1에 나타난 바와 같이, 본 발명의 화합물을 내부전자공여체로 사용한 실시예에 따라 제조된 촉매의 스팬(span) 값은 약 1 이하 정도로 낮아 촉매의 균일도가 우수한 것을 확인할 수 있다. As shown in Table 1, the span value of the catalyst prepared according to the example using the compound of the present invention as an internal electron donor was low to about 1 or less, confirming that the uniformity of the catalyst was excellent.

또한, 상기 표 1에서 확인할 수 있는 바와 같이 본 발명에 따르면 평균 입경(㎛)이 작은 폴리에틸렌 촉매의 제조가 가능하므로 저입도이면서 사이즈 분포가 균일한 촉매를 제공할 수 있고, 이로부터 중합되는 폴리에틸렌은 중합 활성이 높고, 입자 사이즈가 균일하고 작으며, 분자량 분포 조절이 용이하여 성형성이 향상된 이차 전지 분리막용 폴리에틸렌을 제조할 수 있다.In addition, as can be seen in Table 1, according to the present invention, it is possible to manufacture a polyethylene catalyst with a small average particle diameter (㎛), so it is possible to provide a catalyst with a low particle size and uniform size distribution, and the polyethylene polymerized therefrom is Polyethylene for secondary battery separators with improved moldability can be manufactured because it has high polymerization activity, uniform and small particle size, and easy control of molecular weight distribution.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and variations are possible without departing from the technical spirit of the present invention as set forth in the claims. This will be self-evident to those with ordinary knowledge in the field.

Claims (8)

마그네슘 화합물이 알코올 용매에 용해된 마그네슘 화합물 용액, 하기 화학식 1로 표시되는 내부전자공여체 화합물 및 탄화수소 용매에 혼합된 전이금속 화합물을 포함하는, 폴리올레핀 중합용 촉매 조성물:
[화학식 1]

(상기 화학식 1에서,
R1은 수소, 선형 또는 분지형의 (C1-C20)알킬기, (C2-C20)알케닐기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C1-C20)알킬실릴기, (C7-C20)알킬아릴기, 또는 헤테로원자를 포함하는 (C2-C20)알킬기이며;
R2는 수소이거나, 적어도 하나의 수소가 선형 또는 분지형의 (C1-C20)알킬기, 및 (C2-C20)알케닐기로부터 선택된 치환기로 치환되며;
X는 할로겐이며;
n은 0 내지 3의 정수이다).
A catalyst composition for polyolefin polymerization comprising a magnesium compound solution in which a magnesium compound is dissolved in an alcohol solvent, an internal electron donor compound represented by the following formula (1), and a transition metal compound mixed in a hydrocarbon solvent:
[Formula 1]

(In Formula 1 above,
R 1 is hydrogen, a linear or branched (C 1 -C 20 )alkyl group, (C 2 -C 20 )alkenyl group, (C 3 -C 20 )cycloalkyl group, (C 6 -C 20 )aryl group, ( C 1 -C 20 )alkylsilyl group, (C 7 -C 20 )alkylaryl group, or (C 2 -C 20 )alkyl group containing heteroatoms;
R 2 is hydrogen, or at least one hydrogen is substituted with a substituent selected from linear or branched (C 1 -C 20 )alkyl groups, and (C 2 -C 20 )alkenyl groups;
X is halogen;
n is an integer from 0 to 3).
제1항에 있어서,
마그네슘 화합물 용액은 탄화수소 용매를 추가로 포함하는, 폴리올레핀 중합용 촉매 조성물.
According to paragraph 1,
A catalyst composition for polyolefin polymerization, wherein the magnesium compound solution further includes a hydrocarbon solvent.
제2항에 있어서,
상기 탄화수소 용매는 (C5-C20)의 지방족 탄화수소, 지환족 탄화수소, 방향족 탄화수소 또는 이들의 조합인, 폴리올레핀 중합용 촉매 조성물.
According to paragraph 2,
The hydrocarbon solvent is a (C 5 -C 20 ) aliphatic hydrocarbon, cycloaliphatic hydrocarbon, aromatic hydrocarbon, or a combination thereof, in the catalyst composition for polyolefin polymerization.
제1항에 있어서,
상기 마그네슘 화합물 및 화학식 1로 표시되는 내부전자공여체 화합물의 몰비는 1:0.01 내지 1:1인, 폴리올레핀 중합용 촉매 조성물.
According to paragraph 1,
A catalyst composition for polyolefin polymerization, wherein the molar ratio of the magnesium compound and the internal electron donor compound represented by Formula 1 is 1:0.01 to 1:1.
제1항에 있어서,
상기 마그네슘 화합물 및 화학식 1로 표시되는 내부전자공여체 화합물의 몰비는 1:0.01 내지 1:0.1인, 폴리올레핀 중합용 촉매 조성물.
According to paragraph 1,
A catalyst composition for polyolefin polymerization, wherein the molar ratio of the magnesium compound and the internal electron donor compound represented by Formula 1 is 1:0.01 to 1:0.1.
제1항에 있어서,
상기 전이금속화합물은 하기 화학식 2의 화합물을 포함하는, 폴리올레핀 중합용 촉매 조성물:
[화학식 2]
MXm(OR3)4 -m
(상기 화학식 2에서, M은 주기율표 IVB, VB 및 VIB족의 전이 금속 원소로 이루어진 군에서 선택되고,
X는 할로겐이며,
R3은 (C1-C10)알킬기이고,
m은 0 내지 4이다).
According to paragraph 1,
The transition metal compound is a catalyst composition for polyolefin polymerization comprising a compound of the following formula (2):
[Formula 2]
MX m (OR 3 ) 4 -m
(In Formula 2, M is selected from the group consisting of transition metal elements of groups IVB, VB, and VIB of the periodic table,
X is halogen,
R 3 is a (C 1 -C 10 )alkyl group,
m is 0 to 4).
마그네슘 화합물을 알코올 용매에 용해하여 마그네슘 화합물 용액을 제조하는 단계;
상기 마그네슘 화합물 용액에 하기 화학식 1로 표시되는 내부전자공여체 화합물을 투입하는 단계; 및
상기 내부전자공여체 화합물을 포함하는 마그네슘 화합물 용액에 탄화수소 용매에 혼합된 전이금속 화합물을 투입시키는 단계;
를 포함하는 폴리올레핀 중합용 촉매의 제조방법:
[화학식 1]

(상기 화학식 1에서,
R1은 수소, 선형 또는 분지형의 (C1-C20)알킬기, (C2-C20)알케닐기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C1-C20)알킬실릴기, (C7-C20)알킬아릴기, 또는 헤테로원자를 포함하는 (C2-C20)알킬기이며;
R2는 수소이거나, 적어도 하나의 수소가 선형 또는 분지형의 (C1-C20)알킬기, 및 (C2-C20)알케닐기로부터 선택된 치환기로 치환되며;
X는 할로겐이며;
n은 0 내지 3의 정수이다).
Preparing a magnesium compound solution by dissolving the magnesium compound in an alcohol solvent;
Adding an internal electron donor compound represented by the following formula (1) to the magnesium compound solution; and
Adding a transition metal compound mixed in a hydrocarbon solvent to the magnesium compound solution containing the internal electron donor compound;
Method for producing a catalyst for polyolefin polymerization comprising:
[Formula 1]

(In Formula 1 above,
R 1 is hydrogen, a linear or branched (C 1 -C 20 )alkyl group, (C 2 -C 20 )alkenyl group, (C 3 -C 20 )cycloalkyl group, (C 6 -C 20 )aryl group, ( C 1 -C 20 )alkylsilyl group, (C 7 -C 20 )alkylaryl group, or (C 2 -C 20 )alkyl group containing heteroatoms;
R 2 is hydrogen, or at least one hydrogen is substituted with a substituent selected from linear or branched (C 1 -C 20 )alkyl groups, and (C 2 -C 20 )alkenyl groups;
X is halogen;
n is an integer from 0 to 3).
제1항 내지 제6항 중 어느 한 항의 촉매 조성물에 의해 제조된 촉매의 존재 하에, 올레핀계 단량체를 중합시키는 단계
를 포함하는, 폴리올레핀의 제조방법.
Polymerizing an olefinic monomer in the presence of a catalyst prepared by the catalyst composition of any one of claims 1 to 6.
Method for producing polyolefin, including.
KR1020180148929A 2018-11-27 2018-11-27 Catalyst composition for polymerization of polyolefin, preparing method of catalyst for polymerization of polyolefin and process for polymerization of polyolefin using the same KR102656050B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180148929A KR102656050B1 (en) 2018-11-27 2018-11-27 Catalyst composition for polymerization of polyolefin, preparing method of catalyst for polymerization of polyolefin and process for polymerization of polyolefin using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180148929A KR102656050B1 (en) 2018-11-27 2018-11-27 Catalyst composition for polymerization of polyolefin, preparing method of catalyst for polymerization of polyolefin and process for polymerization of polyolefin using the same

Publications (2)

Publication Number Publication Date
KR20200062930A KR20200062930A (en) 2020-06-04
KR102656050B1 true KR102656050B1 (en) 2024-04-11

Family

ID=71081028

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180148929A KR102656050B1 (en) 2018-11-27 2018-11-27 Catalyst composition for polymerization of polyolefin, preparing method of catalyst for polymerization of polyolefin and process for polymerization of polyolefin using the same

Country Status (1)

Country Link
KR (1) KR102656050B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230039016A (en) 2021-09-13 2023-03-21 현대자동차주식회사 Battery module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042400A1 (en) 2011-09-20 2013-03-28 東邦チタニウム株式会社 Solid catalyst component for polymerization of olefin, catalyst for polymerization of olefin, and method for producing olefin polymer
JP2013512995A (en) 2009-12-02 2013-04-18 ダウ グローバル テクノロジーズ エルエルシー Diatomic bridged dicarbonate compounds as internal donors in catalysts for the production of polypropylene

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297022B2 (en) * 2013-02-27 2018-03-20 東邦チタニウム株式会社 Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
JPWO2016121551A1 (en) * 2015-01-30 2017-11-09 東邦チタニウム株式会社 Solid catalyst component for olefin polymerization, method for producing olefin polymerization catalyst, and method for producing olefin polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512995A (en) 2009-12-02 2013-04-18 ダウ グローバル テクノロジーズ エルエルシー Diatomic bridged dicarbonate compounds as internal donors in catalysts for the production of polypropylene
WO2013042400A1 (en) 2011-09-20 2013-03-28 東邦チタニウム株式会社 Solid catalyst component for polymerization of olefin, catalyst for polymerization of olefin, and method for producing olefin polymer

Also Published As

Publication number Publication date
KR20200062930A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
KR100531509B1 (en) Olefin polymerization catalyst component, its preparation and use
KR102329527B1 (en) Preparation of ultra high molecular weight polyethylene
US11332553B2 (en) Catalyst composition for polymerizing polyolefin, method for producing polyolefin, and polyolefin resin
KR102656050B1 (en) Catalyst composition for polymerization of polyolefin, preparing method of catalyst for polymerization of polyolefin and process for polymerization of polyolefin using the same
KR101735447B1 (en) method of preparing polyolefin nanocomposite including dispersed carbon support on the polyolefin and nanocomposite prepared thereby
KR20200115742A (en) Catalyst composition for polymerization of olefin, preparing method of the same, and process for polymerization of olefin using the same
KR100789236B1 (en) Preparation of polyolefin using magnesium supported Ziegler-Natta catalysts
KR102656051B1 (en) Catalyst composition for polymerization of polyolefin, preparing method of catalyst for polymerization of polyolefin and process for polymerization of polyolefin using the same
KR102156075B1 (en) Ziegler-Natta procatalyst compositions AND OLEFINE polymerization process
KR101433234B1 (en) Preparing method of catalystfor polymerization of polyolefinand process for polymerization of polyolefin using the same
KR102287922B1 (en) Method for producing catalyst composition for synthesis of high density polyolefin
KR20200060066A (en) Preparing method of catalyst for polymerization of polyolefin
KR102449998B1 (en) A method for producing a catalyst composition for polyethylene polymerization
KR102651366B1 (en) Preparing method of catalyst for polymerization of polyolefin
KR102467589B1 (en) Method for producing catalyst for polymerization of ethylene and method for producing polyethylene using the same
JP5830182B2 (en) Method for producing polyolefin synthesis catalyst and method for producing polyolefin using the same
KR102202546B1 (en) Catalyst composition for polymerization of olefin, preparing method of the same, and process for polymerization of olefin using the same
KR102160452B1 (en) Method for manufacturing catalyst composition for polymerization of olefin, catalyst composition for polymerization of olefin manufactured by the method and process for polymerization of olefin using the same
KR20210057441A (en) Preparation method of catalyst for polyethylene polymerization, catalyst prepared thereby and polymerization method of polyethylene
KR102619381B1 (en) Manufacturing Methods for Highly Active Linear Low Density Polyethylene
KR101715924B1 (en) Preparing method of catalyst for polymerization of olefin and process for polymerization of olefin using the same
KR102467604B1 (en) Method for producing supporting particle
KR101619406B1 (en) Preparing method of catalyst for polymerization of olefin and process for polymerization of olefin using the same
KR20210066217A (en) Catalyst for polymerization of polyolefin having excellent antistatic property and preparation method thereof
KR101835744B1 (en) Preparing method of catalyst for polymerization of polyethylene and process for polymerization of polyethylene using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right