KR102619381B1 - Manufacturing Methods for Highly Active Linear Low Density Polyethylene - Google Patents

Manufacturing Methods for Highly Active Linear Low Density Polyethylene Download PDF

Info

Publication number
KR102619381B1
KR102619381B1 KR1020230138187A KR20230138187A KR102619381B1 KR 102619381 B1 KR102619381 B1 KR 102619381B1 KR 1020230138187 A KR1020230138187 A KR 1020230138187A KR 20230138187 A KR20230138187 A KR 20230138187A KR 102619381 B1 KR102619381 B1 KR 102619381B1
Authority
KR
South Korea
Prior art keywords
density polyethylene
linear low
metallocene catalyst
polymerization
slurry
Prior art date
Application number
KR1020230138187A
Other languages
Korean (ko)
Inventor
이동환
김영환
조영돈
하윤선
손호진
하현수
Original Assignee
대한유화 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한유화 주식회사 filed Critical 대한유화 주식회사
Priority to KR1020230138187A priority Critical patent/KR102619381B1/en
Application granted granted Critical
Publication of KR102619381B1 publication Critical patent/KR102619381B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/08Low density, i.e. < 0.91 g/cm3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 헥산 슬러리 공법에서 선형 저밀도 폴리에틸렌을 높은 활성으로 제조하는 방법에 관한 것이다.
본 발명은 고활성 선형 저밀도 폴리에틸렌의 제조 방법은 (a) 고체 메틸알루미녹산과 메탈로센 착물을 탄소수 4 내지 14의 탄소원자를 갖는 탄화수소 용매 하에서 혼합하고, 에이징(aging)하여 메탈로센 촉매를 제조하는 단계; (b) 제조된 메탈로센 촉매의 지연 시간(Retention Time) 단축을 위하여, 메탈로센 촉매를 알킬알루미늄이 투입된 헥산에서 70~90℃ 및 1 bar 이하의 에틸렌 하에서 0.5~5분동안 반응시켜 활성화시키는 단계; (c) 활성화된 메탈로센 촉매, 탄소수 4 내지 14의 탄소원자를 갖는 탄화수소 용매, 알킬알루미늄, 수소, 대전방지제, 에틸렌 및 공단량체를 반응기에 투입하고, 용매 슬러리 중합을 실시하여 선형 저밀도 폴리에틸렌 슬러리를 제조하는 단계; 및 (d) 선형 저밀도 폴리에틸렌의 순도를 높이기 위하여 저분자 및 부반응물을 포함한 용매를 여과하여 제거하고, 선형 저밀도 폴리에틸렌을 분리 및 건조하는 단계를 포함한다.
The present invention relates to a method for producing linear low-density polyethylene with high activity in a hexane slurry process.
The present invention provides a method for producing highly active linear low-density polyethylene, which includes (a) mixing solid methylaluminoxane and a metallocene complex in a hydrocarbon solvent having 4 to 14 carbon atoms and aging to prepare a metallocene catalyst; steps; (b) In order to shorten the retention time of the prepared metallocene catalyst, the metallocene catalyst was activated by reacting in hexane containing alkylaluminum for 0.5 to 5 minutes at 70 to 90°C and ethylene below 1 bar. ordering step; (c) Activated metallocene catalyst, hydrocarbon solvent having 4 to 14 carbon atoms, alkylaluminum, hydrogen, antistatic agent, ethylene, and comonomer are added to the reactor, and solvent slurry polymerization is performed to produce a linear low-density polyethylene slurry. manufacturing step; and (d) removing solvents including low molecules and side reactants by filtration to increase the purity of the linear low-density polyethylene, and separating and drying the linear low-density polyethylene.

Description

고활성 선형 저밀도 폴리에틸렌의 제조 방법 {Manufacturing Methods for Highly Active Linear Low Density Polyethylene}{Manufacturing Methods for Highly Active Linear Low Density Polyethylene}

본 발명은 고활성 선형 저밀도 폴리에틸렌의 제조 방법에 관한 것으로, 더욱 상세하게는 헥산 슬러리 공법에서 선형 저밀도 폴리에틸렌을 높은 활성으로 제조하는 방법에 관한 것이다.The present invention relates to a method for producing highly active linear low-density polyethylene, and more specifically, to a method for producing linear low-density polyethylene with high activity using a hexane slurry method.

지글러나타 또는 메탈로센 촉매의 배위 중합으로 제조되는 폴리에틸렌은 밀도에 따라 크게 고밀도(HDPE, 0.94 g/cm3 이상), 중밀도(MDPE, 0.93~0.94 g/cm3), 선형 저밀도(LLDPE, 0.91~0.93 g/cm3), 초저밀도(VLDPE, 0.91 g/cm3 이하)로 분류할 수 있다.Polyethylene manufactured by coordination polymerization of Ziegler-Nata or metallocene catalysts is broadly classified into high density (HDPE, 0.94 g/cm 3 or more), medium density (MDPE, 0.93-0.94 g/cm 3 ), and linear low density (LLDPE, 0.94 g/cm 3 or more ) depending on density. It can be classified as 0.91~0.93 g/cm 3 ) and very low density (VLDPE, 0.91 g/cm 3 or less).

널리 알려진 바와 같이, 폴리에틸렌을 중합할 때 1-부텐, 1-헥센, 1-옥텐과 같은 α-올레핀을 공단량체로 투입하여 밀도가 낮은 폴리에틸렌을 제조할 수 있으나, 공단량체 함량이 많아 밀도가 낮은 중합체일수록 용매 가용 성분이 증가하므로, 특히 POE(Polyolefin elastomer)로 분류되는 밀도 0.88 이하의 중합체는 용액 공정 외에는 제조가 곤란하다.As is widely known, when polymerizing polyethylene, low-density polyethylene can be produced by adding α-olefins such as 1-butene, 1-hexene, and 1-octene as comonomers. However, low density polyethylene can be produced due to the high comonomer content. Since the solvent-soluble components increase as the polymer increases, it is difficult to manufacture polymers with a density of 0.88 or less, which are classified as POE (polyolefin elastomer), except through a solution process.

그러나 밀도 0.88~0.93 g/cm3 수준의 밀도를 가진 폴리에틸렌 중합체는 메탈로센 촉매를 이용한 중합 기술의 발전으로 기상 공정이나 슬러리 공정을 통해 상업적으로 일부 제조되고 있으며, 특히 일반적으로 폴리에틸렌의 중합은 70℃ 이상에서 수행하는 것과 비교하여 중합 온도를 최대한 낮춤으로써 높은 공단량체 함량의 폴리에틸렌을 제조할 수 있다. However, polyethylene polymers with a density of 0.88 to 0.93 g/cm 3 are being manufactured commercially through gas phase processes or slurry processes due to the development of polymerization technology using metallocene catalysts. In particular, polymerization of polyethylene generally takes 70 days. Polyethylene with a high comonomer content can be produced by lowering the polymerization temperature as much as possible compared to performing it at ℃ or higher.

그러나 중합 온도를 낮출수록 촉매 활성이 크게 저하되어 생산성이 감소하는 문제가 있으며, 특히 헥산 슬러리 공정에서는 공단량체 함량이 높을수록 용매 가용 성분의 생성이 많아 낮은 밀도의 폴리에틸렌을 제조하기가 더 어려운 실정이다.However, as the polymerization temperature is lowered, there is a problem that the catalyst activity decreases significantly and productivity decreases. In particular, in the hexane slurry process, the higher the comonomer content, the more solvent-soluble components are generated, making it more difficult to produce low-density polyethylene. .

한국공개특허 제1998-0703683호는 에틸렌과 소량의 C3∼C6의 알파올레핀을 입자 형태로 에틸렌 중합 반응 촉매의 존재 하에 슬러리 반응기에서 중합 반응시키므로써 에틸렌 공중합체를 제조하는 방법에 있어서, 상기 중합 반응을 프로판 희석제 중에서 80℃ 이상의 온도 하에 수행하며, 상기 촉매는 알루목산 화합물로 활성화된 메탈로센 촉매인 것을 특징으로 하는 방법을 개시하였다.Korean Patent Publication No. 1998-0703683 discloses a method for producing an ethylene copolymer by polymerizing ethylene and a small amount of C 3 -C 6 alpha-olefin in particle form in a slurry reactor in the presence of an ethylene polymerization reaction catalyst. A method was disclosed wherein the polymerization reaction is performed in a propane diluent at a temperature of 80° C. or higher, and the catalyst is a metallocene catalyst activated with an alumoxane compound.

이에, 본 발명자들은 상기 문제점을 해결하기 위하여 노력한 결과, 메탈로센 촉매의 활성 촉진 과정을 통해 촉매의 지연 시간(Retention Time)을 줄임으로써 CSTR 반응기를 이용한 헥산 슬러리 공법에서 밀도 0.91~0.93 g/cm3의 선형 저밀도 폴리에틸렌을 낮은 중합 온도에서도 높은 활성으로 제조할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors tried to solve the above problem, and as a result, the retention time of the catalyst was reduced through the process of promoting the activity of the metallocene catalyst, thereby achieving a density of 0.91 to 0.93 g/cm in the hexane slurry method using a CSTR reactor. After confirming that linear low-density polyethylene of 3 can be produced with high activity even at a low polymerization temperature, the present invention was completed.

본 발명의 목적은 헥산 슬러리 공법에서 선형 저밀도 폴리에틸렌을 높은 활성으로 제조하는 방법을 제공하는데 있다.The purpose of the present invention is to provide a method for producing linear low-density polyethylene with high activity using a hexane slurry method.

상기 목적을 달성하기 위하여, 본 발명은 (a) 고체 메틸알루미녹산과 메탈로센 착물을 탄소수 4 내지 14의 탄소원자를 갖는 탄화수소 용매 하에서 혼합하고, 에이징(aging)하여 메탈로센 촉매를 제조하는 단계; (b) 제조된 메탈로센 촉매의 지연 시간(Retention Time) 단축을 위하여, 메탈로센 촉매를 알킬알루미늄이 투입된 헥산에서 70~90℃ 및 1 bar 이하의 에틸렌 하에서 0.5~5분동안 반응시켜 활성화시키는 단계; (c) 활성화된 메탈로센 촉매, 탄소수 4 내지 14의 탄소원자를 갖는 탄화수소 용매, 알킬알루미늄, 수소, 대전방지제, 에틸렌 및 공단량체를 반응기에 투입하고, 용매 슬러리 중합을 실시하여 선형 저밀도 폴리에틸렌 슬러리를 제조하는 단계; 및 (d) 용매를 여과하여 제거하고 선형 저밀도 폴리에틸렌을 분리 및 건조하는 단계를 포함하는 선형 저밀도 폴리에틸렌의 제조방법을 제공한다.In order to achieve the above object, the present invention includes the steps of (a) mixing solid methylaluminoxane and a metallocene complex in a hydrocarbon solvent having 4 to 14 carbon atoms and aging them to prepare a metallocene catalyst; ; (b) In order to shorten the retention time of the manufactured metallocene catalyst, the metallocene catalyst was activated by reacting in hexane containing alkylaluminum for 0.5 to 5 minutes at 70 to 90°C and ethylene below 1 bar. ordering step; (c) Activated metallocene catalyst, hydrocarbon solvent having 4 to 14 carbon atoms, alkylaluminum, hydrogen, antistatic agent, ethylene, and comonomer are added to the reactor, and solvent slurry polymerization is performed to produce a linear low-density polyethylene slurry. manufacturing step; and (d) removing the solvent by filtration and separating and drying the linear low-density polyethylene.

본 발명에 있어서, 상기 고체 메틸알루미녹산의 입경은 5~8㎛이고, 메탈로센 착물내의 전이금속과 고체 메틸알루미녹산의 알루미늄의 몰비는 1:10~1:1000인 것을 특징으로 한다.In the present invention, the particle size of the solid methylaluminoxane is 5 to 8㎛, and the molar ratio of the transition metal in the metallocene complex to the aluminum of the solid methylaluminoxane is 1:10 to 1:1000.

본 발명에 있어서, 상기 에이징(aging)은 72시간 이상 수행하는 것을 특징으로 한다.In the present invention, the aging is performed for more than 72 hours.

본 발명에 있어서, (c) 단계는 10~60℃의 온도 조건에서 에틸렌과 1종 이상의 공단량체를 투입하여 중합을 수행하며, 공단량체는 C3~C20의 선형, 분기형의 α-올레핀, 환형 올레핀, 비시클로알켄, 방향족 α-올레핀 단량체 및 그 유도체로 이루어진 군으로부터 선택된 하나 이상의 화합물인 것을 특징으로 한다.In the present invention, in step (c), polymerization is performed by adding ethylene and one or more comonomers at a temperature of 10 to 60°C, and the comonomers are linear and branched α-olefins with C 3 to C 20 . , characterized in that it is one or more compounds selected from the group consisting of cyclic olefins, bicycloalkenes, aromatic α-olefin monomers, and derivatives thereof.

본 발명에 있어서, 중합은 2단계로 나누어 실시할 수 있으며, 1단 반응으로 생성된 선형 저밀도 폴리에틸렌 슬러리의 MI(190℃, 2.16kg)는 0.1~100, 밀도는 0.92~0.94 g/cm3이고, 2단 반응에서 생성된 선형 저밀도 폴리에틸렌 슬러리의 MI(190℃, 21.6kg)는 0.01~10, 밀도는 0.90~0.92 g/cm3인 것을 특징으로 한다.In the present invention, polymerization can be carried out in two stages, and the MI (190°C, 2.16 kg) of the linear low-density polyethylene slurry produced in the first stage reaction is 0.1 to 100 and the density is 0.92 to 0.94 g/cm 3 . , The MI (190°C, 21.6 kg) of the linear low-density polyethylene slurry produced in the two-stage reaction is characterized as 0.01 to 10 and the density is 0.90 to 0.92 g/cm 3 .

본 발명은 헥산 슬러리 공법을 통해 밀도 0.91~0.93 g/cm3의 선형 저밀도 폴리에틸렌(LLDPE)을 높은 활성으로 제조할 수 있는 방법을 제공할 수 있다.The present invention can provide a method for producing linear low density polyethylene (LLDPE) with a density of 0.91 to 0.93 g/cm 3 with high activity through a hexane slurry method.

도 1은 중합 온도에 따른 중합 속도 및 촉매 활성 촉진 효과를 나타낸 도표이다. Figure 1 is a chart showing the effect of promoting polymerization rate and catalyst activity according to polymerization temperature.

본 발명에서는 메탈로센 촉매의 활성 촉진 과정을 통해 촉매의 지연 시간(Retention Time)을 줄이고 최대 중합 속도(Propagation Rate)에 빠르게 도달함으로써, 용매 슬러리 공법에서 밀도 0.91~0.93 g/cm3의 선형 저밀도 폴리에틸렌을 낮은 중합 온도에서도 높은 활성으로 제조할 수 있다는 것을 확인하고자 하였다. In the present invention, the retention time of the catalyst is reduced and the maximum polymerization rate is quickly reached through the process of promoting the activity of the metallocene catalyst, thereby producing a linear low density of 0.91 to 0.93 g/cm 3 in the solvent slurry method. We sought to confirm that polyethylene can be produced with high activity even at low polymerization temperatures.

본 발명에서는, 실리카 담체를 사용하지 않고, 고체 메틸알루미녹산과 메탈로센 착물을 혼합한 후, 에이징 단계를 거쳐 메탈로센 촉매를 제조하고, 메탈로센 촉매를 알킬알루미늄이 투입된 헥산에서 특정 온도 및 압력 조건에서 에틸렌과 반응시켜 활성화시킨 후, 10~60℃의 온도에서 헥산 슬러리 중합을 통하여 선형 저밀도 폴리에틸렌을 제조하였다. 즉, 낮은 중합 온도에서도 높은 활성으로 선형 저밀도 폴리에틸렌을 제조할 수 있다는 것을 확인할 수 있었다.In the present invention, without using a silica carrier, a metallocene catalyst is prepared by mixing solid methylaluminoxane and a metallocene complex, then going through an aging step, and heating the metallocene catalyst in hexane containing alkylaluminum at a specific temperature. After activation by reacting with ethylene under pressure conditions, linear low-density polyethylene was prepared through hexane slurry polymerization at a temperature of 10 to 60°C. In other words, it was confirmed that linear low-density polyethylene could be produced with high activity even at low polymerization temperatures.

따라서, 본 발명은 일 관점에서, 발명은 (a) 고체 메틸알루미녹산과 메탈로센 착물을 탄소수 4 내지 14의 탄소원자를 갖는 탄화수소 용매 하에서 혼합하고, 에이징(aging)하여 메탈로센 촉매를 제조하는 단계; (b) 제조된 메탈로센 촉매의 지연 시간(Retention Time) 단축을 위하여, 메탈로센 촉매를 알킬알루미늄이 투입된 헥산에서 70~90℃ 및 1 bar 이하의 에틸렌 하에서 0.5~5분동안 반응시켜 활성화시키는 단계; (c) 활성화된 메탈로센 촉매, 탄소수 4 내지 14의 탄소원자를 갖는 탄화수소 용매, 알킬알루미늄, 수소, 대전방지제, 에틸렌 및 공단량체를 반응기에 투입하고, 용매 슬러리 중합을 실시하여 선형 저밀도 폴리에틸렌 슬러리를 제조하는 단계; 및 (d) 제조한 슬러리에서 용매를 여과하여 제거하고, 선형 저밀도 폴리에틸렌을 분리 및 건조하는 단계를 포함하는 선형 저밀도 폴리에틸렌의 제조방법에 관한 것이다.Therefore, in one aspect, the present invention relates to (a) mixing solid methylaluminoxane and a metallocene complex in a hydrocarbon solvent having 4 to 14 carbon atoms and aging them to prepare a metallocene catalyst. step; (b) In order to shorten the retention time of the prepared metallocene catalyst, the metallocene catalyst was activated by reacting in hexane containing alkylaluminum for 0.5 to 5 minutes at 70 to 90°C and ethylene below 1 bar. ordering step; (c) Activated metallocene catalyst, hydrocarbon solvent having 4 to 14 carbon atoms, alkylaluminum, hydrogen, antistatic agent, ethylene, and comonomer are added to the reactor, and solvent slurry polymerization is performed to produce a linear low-density polyethylene slurry. manufacturing step; and (d) filtering and removing the solvent from the prepared slurry, and separating and drying the linear low-density polyethylene.

본 발명에 있어서, (a) 단계는 메탈로센 촉매를 제조하는 단계로서, 메탈로센 촉매 제조 시 사용되는 고체 메틸알루미녹산의 입경은 5~8㎛인 것을 특징으로 한다. 고체 메틸알루미녹산의의 입경이 너무 작으면 선형 저밀도 폴리에틸렌 중합시 반응열 제어가 어렵고, 정전기 문제로 모폴로지가 불량하여 오히려 활성이 저하되는 문제가 있고, 8㎛를 초과할 경우에는 활성이 매우 저조한 문제가 있다. In the present invention, step (a) is a step of preparing a metallocene catalyst, and the particle size of solid methylaluminoxane used in preparing the metallocene catalyst is 5 to 8 ㎛. If the particle size of solid methylaluminoxane is too small, it is difficult to control the heat of reaction during polymerization of linear low-density polyethylene, and the activity is reduced due to poor morphology due to static electricity issues. If it exceeds 8㎛, the activity is very low. there is.

본 발명에서 사용되는 메탈로센 화합물은 주기율표 4족의 전이금속(예: 티탄, 지르코늄, 하프늄)이 η5 결합을 생성하는 시클로펜타디에닐기, 치환된 시클로펜타디에닐기, 인데닐기, 치환된 인데닐기, 플로오레닐기, 치환된 플로오레닐기 중 두 개가 결합된 구조를 갖는다. 메탈로센 촉매의 예로는 비스(시클로펜타디에닐)지르코늄 디클로라이드, 비스(시클로펜타디에닐)지르코늄 메틸 클로라이드, 비스(시클로펜타디에닐)지르코늄 디메틸, 비스(메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(메틸시클로펜타디에닐)지르코늄 메틸 클로라이드, 비스(메틸시클로펜타디에닐)지르코늄 디메틸, 비스(에틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(에틸시클로펜타디에닐)지르코늄 메틸 클로라이드, 비스(에틸시클로펜타디에닐)지르코늄 디메틸, 비스(펜타메틸시클로라이드)지르코늄 디클로라이드, 비스(펜타메틸시클로펜타디에닐)지르코늄 메틸클로라이드, 비스(펜타메틸시클로펜타디에틸)지르코늄 디메틸, 비스(n-부틸-시클로펜타디에닐)지르코늄 디클로라이드, 비스(n-부틸-시클로펜타디에닐)지르코늄 메틸클로라이드, 비스(n-부틸-시클로펜타디에닐)지르코늄 디메틸, 비스(인데닐)지르코늄 디클로라이드, 비스(인데닐)지르코늄 메틸 클로라이드, 비스(인데닐)지르코늄 디메틸, 비스(2-메틸-인데닐)지르코늄 디클로라이드, 비스(2-메틸-인데닐)지르코늄 메틸 클로라이드, 비스(2-메틸-인데닐)지르코늄디메틸, 비스(2-페닐-인데닐)지르코늄 디클로라이드, 비스(2-페닐-인데닐)지르코늄메틸 클로라이드, 비스(2-페닐-인데닐)지르코늄 디메틸, 디메틸실릴비스(시클로펜타디에닐)지르코늄 디클로라이드, 디메틸실리비스(시클로펜타디에닐)지르코늄 메틸 클로라이드, 디메틸실릴비스(시클로라이펜타디에닐)지르코늄 디메틸, 디메틸실릴비스(인데닐)지르코늄 디클로라이드, 디메틸실리비스(인데닐)지르코늄 메틸 클로라이드, 디메틸실리비스(인데닐)지르코늄 디메틸, 디메틸실릴비스(2-메틸-인데닐)지르코늄 디클로라이드, 디메틸실릴비스(2-메틸-인데닐)지르코늄 메틸 클로라이드, 디메틸실릴비스(2-메틸-인데닐)지르코늄 디메틸, 디메틸실리비스(인데닐시클로펜타디에닐)지르코늄 디클로라이드, 디메틸실릴(인데닐시클로펜타디에닐)지르코늄 메틸클로라이드, 디메틸실릴(인데닐시클로펜카디에닐)지르코늄 디메틸, 디메틸실릴(플루오레닐시클로펜타디에닐)지르코늄디클로라이드, 디메틸실릴(플루오레닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 디메틸실릴(플루오레닐시클로펜타디에닐)지르코늄디메틸, 에틸렌비스(시클로펜타디에닐)지르코늄 디클로라이드, 에틸렌비스(시클로펜타디에닐)지르코늄 메틸 클로라이드, 에틸렌비스(시클로펜타디에닐)지르코늄디메틸, 에틸렌비스(인데닐)지르코늄 디클로라이드, 에틸렌비스(인데닐)지르코늄메틸 클로라이드, 에틸렌비스(인데닐)지르코늄 디메틸, 에틸렌비스(2-메틸-인데닐)지르코늄디클로라이드, 에틸렌비스(2-메틸-인데닐)지르코늄 메틸 클로라이드,에틸렌비스(2-메틸-인데닐)지르코늄디메틸, 에틸렌(인데닐시클로펜타디에닐)지르코늄디클로라이드, 에틸렌(인데닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 에닐렌(인데닐시클로펜타디에닐)지르코늄 디메틸, 에틸렌(플루오레닐시클로펜타디에닐)지르코늄 디클로라이드, 에틸렌(플루오레닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 에틸렌(클루오레닐시클로펜타디에닐)지르코늄 디메틸, 이소프로필비스(시클로펜타디에닐)지르코늄 디클로라이드, 이소프로필비스(시클로펜타디에닐)지르코늄 메틸클로라이드,이소프로필비스(시클로펜타디에닐)지르코늄 디메틸, 이소프로필비스(인데닐)지르코늄 디클로라이드, 이소프로필비스(인데닐)지르코늄 메틸 클로라이드, 이소프로필비스(인데닐)지르코늄 디메틸, 이소프로필비스(2-메틸-인데닐)지르코늄 디클로라이드, 이소프로필비스(2-메틸-인데닐)지르코늄 메틸 클로라이드, 이소프로필(2-메틸-인데닐)지르코늄 디메틸, 이소프로필(인데닐시클로펜타디에닐)지르코늄 디클로라이트, 이소프로필(인데닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 이소프로필(인데닐시클로펜타디에닐)지르코늄 디메틸, 이소프로필(플루오레닐시클로펜타디에닐)지르코늄 디클로라이드, 이소프로필(플루오레닐시클로펜타디에닐)지르코늄 메틸클로라이드 및 이소프로필(플루오레닐시클로펜타디에닐)지르코늄디메틸, rac-에틸렌비스(1-인데닐)지르코늄 디클로라이드, rac-에틸렌비스(1-인데닐)하프늄 디클로라이드, rac-에틸렌비스(1-테트라하이드로-인데닐)지르코늄 디클로라이드, rac-에틸렌비스(1-테트라하이드로-인데닐)하프늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-테트라하이드로벤즈인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-테트라하이드로벤즈인데닐)하프늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-테트라하이드로벤즈인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-테트라하이드로벤즈인데닐)하프늄 디클로라이드, rac-디메틸실란 디일비스(2-메틸-4,5-벤즈인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-4,5-벤즈인데닐)하프 늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-4,5-벤즈인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸- 4,5-벤즈인데닐)하프늄 디클로라이드, rac-디메틸실란디일비스(2-메틸- 5,6-시클로펜타디에닐인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)하프늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)하프늄 디클로라이드, rac-디메틸실릴비스(2-메틸-4-페닐인데닐)지르코늄 디클로라이드, 디에틸실릴비스(2-메틸-4-t-부틸페닐-인데닐)지르코늄 클로라이드, rac-디메틸실릴비스(2-메틸- 4-페닐인데닐)하프늄 디클로라이드, rac-디페닐실릴비스(2-메틸-4-페닐인데닐) 지르코늄 디클로라이드, rac-디페닐실릴비스(2-메틸-4-페닐인데닐)하프늄 디클로라이드 등을 예시할 수 있으나 이에 한정되지 않는다.The metallocene compound used in the present invention is a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, or a substituted indenyl group in which transition metals of group 4 of the periodic table (e.g., titanium, zirconium, hafnium) create an η5 bond. It has a structure in which two of , a fluorenyl group, and a substituted fluorenyl group are combined. Examples of metallocene catalysts include bis(cyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)zirconium methyl chloride, bis(cyclopentadienyl)zirconium dimethyl, and bis(methylcyclopentadienyl)zirconium dichloride. , bis(methylcyclopentadienyl)zirconium methyl chloride, bis(methylcyclopentadienyl)zirconium dimethyl, bis(ethylcyclopentadienyl)zirconium dichloride, bis(ethylcyclopentadienyl)zirconium methyl chloride, bis( Ethylcyclopentadienyl)zirconium dimethyl, bis(pentamethylcyclopentadienyl)zirconium dichloride, bis(pentamethylcyclopentadienyl)zirconium methyl chloride, bis(pentamethylcyclopentadiethyl)zirconium dimethyl, bis(n-butyl) -Cyclopentadienyl)zirconium dichloride, bis(n-butyl-cyclopentadienyl)zirconium methyl chloride, bis(n-butyl-cyclopentadienyl)zirconium dimethyl, bis(indenyl)zirconium dichloride, bis( Indenyl)zirconium methyl chloride, bis(indenyl)zirconium dimethyl, bis(2-methyl-indenyl)zirconium dichloride, bis(2-methyl-indenyl)zirconium methyl chloride, bis(2-methyl-indenyl) Zirconium dimethyl, bis(2-phenyl-indenyl)zirconium dichloride, bis(2-phenyl-indenyl)zirconium methyl chloride, bis(2-phenyl-indenyl)zirconium dimethyl, dimethylsilylbis(cyclopentadienyl) Zirconium dichloride, dimethylsilibis(cyclopentadienyl)zirconium methyl chloride, dimethylsilylbis(cyclopentadienyl)zirconium dimethyl, dimethylsilylbis(indenyl)zirconium dichloride, dimethylsilibis(indenyl)zirconium methyl Chloride, dimethylsilylbis(indenyl)zirconium dimethyl, dimethylsilylbis(2-methyl-indenyl)zirconium dichloride, dimethylsilylbis(2-methyl-indenyl)zirconium methyl chloride, dimethylsilylbis(2-methyl- Indenyl)zirconium dimethyl, dimethylsilibis(indenylcyclopentadienyl)zirconium dichloride, dimethylsilyl(indenylcyclopentadienyl)zirconium methyl chloride, dimethylsilyl(indenylcyclopentadienyl)zirconium dimethyl, dimethyl Silyl(fluorenylcyclopentadienyl)zirconium dichloride, dimethylsilyl(fluorenylcyclopentadienyl)zirconium methyl chloride, dimethylsilyl(fluorenylcyclopentadienyl)zirconium dimethyl, ethylenebis(cyclopentadienyl) )Zirconium dichloride, ethylenebis(cyclopentadienyl)zirconium methyl chloride, ethylenebis(cyclopentadienyl)zirconium dimethyl, ethylenebis(indenyl)zirconium dichloride, ethylenebis(indenyl)zirconium methyl chloride, ethylenebis (Indenyl)zirconium dimethyl, ethylenebis(2-methyl-indenyl)zirconium dichloride, ethylenebis(2-methyl-indenyl)zirconium methyl chloride, ethylenebis(2-methyl-indenyl)zirconium dimethyl, ethylene ( Indenylcyclopentadienyl)zirconium dichloride, Ethylene (indenylcyclopentadienyl)zirconium methyl chloride, Enylene (indenylcyclopentadienyl)zirconium dimethyl, Ethylene (fluorenylcyclopentadienyl)zirconium dichloride , Ethylene(fluorenylcyclopentadienyl)zirconium methyl chloride, Ethylene(fluorenylcyclopentadienyl)zirconium dimethyl, Isopropylbis(cyclopentadienyl)zirconium dichloride, Isopropylbis(cyclopentadienyl) Zirconium methyl chloride, isopropylbis(cyclopentadienyl)zirconium dimethyl, isopropylbis(indenyl)zirconium dichloride, isopropylbis(indenyl)zirconium methyl chloride, isopropylbis(indenyl)zirconium dimethyl, isopropyl Bis(2-methyl-indenyl)zirconium dichloride, isopropylbis(2-methyl-indenyl)zirconium methyl chloride, isopropyl(2-methyl-indenyl)zirconium dimethyl, isopropyl(indenylcyclopentadienyl) )Zirconium dichlorite, isopropyl(indenylcyclopentadienyl)zirconium methyl chloride, isopropyl(indenylcyclopentadienyl)zirconium dimethyl, isopropyl(fluorenylcyclopentadienyl)zirconium dichloride, isopropyl (Fluorenylcyclopentadienyl)zirconium methyl chloride and isopropyl(fluorenylcyclopentadienyl)zirconium dimethyl, rac-ethylenebis(1-indenyl)zirconium dichloride, rac-ethylenebis(1-indenyl) ) Hafnium dichloride, rac-ethylenebis(1-tetrahydro-indenyl)zirconium dichloride, rac-ethylenebis(1-tetrahydro-indenyl)hafnium dichloride, rac-dimethylsilanediylbis(2-methyl -Tetrahydrobenzidenyl)zirconium dichloride, rac-dimethylsilanediylbis(2-methyl-tetrahydrobenzidenyl)hafnium dichloride, rac-diphenylsilanediylbis(2-methyl-tetrahydrobenz) Nyl) zirconium dichloride, rac-diphenylsilane diylbis(2-methyl-tetrahydrobenzidenyl)hafnium dichloride, rac-dimethylsilane diylbis(2-methyl-4,5-benzidenyl)zirconium dichloride Chloride, rac-dimethylsilanediylbis(2-methyl-4,5-benzidenyl)hafnium dichloride, rac-diphenylsilanediylbis(2-methyl-4,5-benzidenyl)zirconium dichloride Chloride, rac-diphenylsilanediylbis(2-methyl-4,5-benzidenyl)hafnium dichloride, rac-dimethylsilanediylbis(2-methyl-5,6-cyclopentadienylindenyl) Zirconium dichloride, rac-dimethylsilanediylbis(2-methyl-5,6-cyclopentadienylindenyl)hafnium dichloride, rac-diphenylsilanediylbis(2-methyl-5,6-cyclopenta Dienylindyl)zirconium dichloride, rac-diphenylsilanediylbis(2-methyl-5,6-cyclopentadienylindenyl)hafnium dichloride, rac-dimethylsilylbis(2-methyl-4-phenyl indenyl)zirconium dichloride, diethylsilylbis(2-methyl-4-t-butylphenyl-indenyl)zirconium chloride, rac-dimethylsilylbis(2-methyl-4-phenylindenyl)hafnium dichloride, rac -Diphenylsilylbis(2-methyl-4-phenylindenyl)zirconium dichloride, rac-diphenylsilylbis(2-methyl-4-phenylindenyl)hafnium dichloride, etc., but are not limited thereto. .

상기 메탈로센 착물내의 전이금속과 고체 메틸알루미녹산의 알루미늄의 몰비는 1:10~1:1000인 것이 바람직하고, 더욱 바람직하게는 1:50~1:400인 것을 특징으로 한다. 상기 메탈로센 촉매내의 전이금속과 고체 메틸알루미녹산의 알루미늄의 몰비가 1:10~1:1000를 벗어날 경우에는 즉, 메탈로센 착물이 과도하게 첨가되면 메탈로센 사용량 대비 활성 증가량이 적어 제조 단가가 증가하고, 리칭 및 저분자량 중합체가 증가할 수 있으며, 고체 메틸알루미녹산이 과도하게 첨가되면 중합체의 모폴로지가 불량하고, 활성이 저조한 문제가 있다.The molar ratio between the transition metal in the metallocene complex and the aluminum in the solid methylaluminoxane is preferably 1:10 to 1:1000, and more preferably 1:50 to 1:400. If the molar ratio of the transition metal in the metallocene catalyst and the aluminum in the solid methylaluminoxane exceeds 1:10 to 1:1000, that is, if the metallocene complex is excessively added, the increase in activity is small compared to the amount of metallocene used. The unit cost increases, leaching and low molecular weight polymers may increase, and if solid methylaluminoxane is added excessively, the polymer has poor morphology and low activity.

본 발명에 있어서, 선형 저밀도 폴리에틸렌의 활성 및 모폴로지가 개선된 메탈로센 촉매를 제조하기 위하여, 메탈로센 촉매 제조시 담지 안정화 통한 에이징(aging)을 72시간 이상 수행하는 것이 바람직하며, 72시간 미만으로 수행할 경우, 선형 저밀도 폴리에틸렌의 활성이 충분히 향상되지 않으며, 72시간을 초과하여 수행한다 하여도 유사한 활성을 나타낸다. 에이징 과정은 15~30℃, 바람직하게는 별도의 열 에너지 조절없이 상온에서 진행하며, 온도를 너무 낮추거나 높이면 활성이 충분히 개선되지 못하거나 오히려 저하될 수 있다. 여기서 활성은 투입한 촉매 중량 대비 생성된 선형 저밀도 폴리에틸렌 중량을 의미한다.In the present invention, in order to prepare a metallocene catalyst with improved activity and morphology of linear low-density polyethylene, it is preferable to perform aging through support stabilization for 72 hours or more, and less than 72 hours when preparing the metallocene catalyst. When carried out, the activity of linear low density polyethylene is not sufficiently improved, and similar activity is shown even if carried out for more than 72 hours. The aging process is carried out at 15 to 30°C, preferably at room temperature without separate heat energy control. If the temperature is lowered or raised too much, the activity may not be sufficiently improved or may actually decrease. Here, activity refers to the weight of linear low-density polyethylene produced compared to the weight of catalyst introduced.

본 발명에 있어서, (b) 단계는 중합 시 낮은 온도에서 중합할 때 저하되는 중합 활성을 개선하기 위하여 메탈로센 촉매 활성화를 촉진시키는 단계로서, 메탈로센 촉매를 알킬알루미늄이 투입된 헥산에서 70~90℃ 및 1 bar 이하의 에틸렌 하에서 0.5~5분동안 반응시키는 것을 특징으로 한다.In the present invention, step (b) is a step of promoting the activation of the metallocene catalyst in order to improve the polymerization activity that decreases when polymerization is performed at a low temperature, and the metallocene catalyst is reacted in hexane containing alkyl aluminum at 70 ~ It is characterized by reacting for 0.5 to 5 minutes under ethylene at 90°C and 1 bar or less.

활성화 촉진 반응시 온도가 70~90℃를 벗어날 경우 활성이 충분히 향상되지 않거나 오히려 저하될 수 있다. 또한, 압력이 1 bar를 초과하거나 반응시간이 0.5~5분을 벗어날 경우, 활성이 충분히 향상되지 않거나 겉보기 밀도(Bulk Density)가 불량하고, Soluble Yield, Melt Index, Mn/Mw 등의 특성이 나빠지는 문제가 있다.If the temperature exceeds 70-90°C during the activation promotion reaction, the activity may not be sufficiently improved or may actually decrease. Additionally, if the pressure exceeds 1 bar or the reaction time exceeds 0.5 to 5 minutes, the activity is not sufficiently improved, the bulk density is poor, and properties such as soluble yield, melt index, and Mn/Mw deteriorate. There is a problem.

본 발명에 따라 제조된 메탈로센 촉매는 폴리에틸렌 중합 시 도 1과 같은 지연시간(Retention Time)을 갖는다. 지연시간이 짧을수록 촉매가 빠른 시간에 최대 중합 속도(Propagation Rate)에 도달할 수 있으며, 공정에서는 중합 체류 시간에 한계가 있고 촉매도 점차적으로 활성이 감소하므로 지연시간을 줄이면 활성 개선에 크게 기여할 수 있다.The metallocene catalyst prepared according to the present invention has a retention time as shown in Figure 1 during polyethylene polymerization. The shorter the delay time, the faster the catalyst can reach the maximum propagation rate. In the process, there is a limit to the polymerization residence time and the catalyst's activity gradually decreases, so reducing the delay time can greatly contribute to improving activity. there is.

도 1과 같이, 중합 온도가 낮을수록 지연 시간이 길고 활성이 감소하며, 중합 체류 시간이 짧을수록 이러한 차이는 커지게 된다. 따라서 비교적 낮은 온도에서 중합을 실시하는 본 발명에서는 중합 전에 고온에서 촉매 활성화 촉진 과정을 수행함으로써 촉매 지연 시간을 단축하고 활성을 유의미한 수준으로 개선할 수 있다.As shown in Figure 1, the lower the polymerization temperature, the longer the delay time and the lower the activity, and the shorter the polymerization residence time, the greater this difference. Therefore, in the present invention, where polymerization is performed at a relatively low temperature, the catalyst delay time can be shortened and the activity can be improved to a significant level by performing a catalyst activation promotion process at a high temperature before polymerization.

본 발명에 있어서, (c) 단계는 용매 슬러리 중합을 통하여 선형 저밀도 폴리에틸렌 슬러리를 제조하는 단계로서, 알킬알루미늄, 수소, 대전방지제, 에틸렌 및 1종 이상의 공단량체와 함께 본 중합 반응기에 투입하여 탄화 수소 용매 하에 슬러리 중합을 수행할 수 있다.In the present invention, step (c) is a step of preparing a linear low-density polyethylene slurry through solvent slurry polymerization, wherein alkylaluminum, hydrogen, antistatic agent, ethylene, and one or more comonomers are added to the polymerization reactor to produce hydrocarbon. Slurry polymerization can be performed under a solvent.

이 때 알킬알루미늄은 탄화 수소 용매 부피 대비 중량비 500 ppm 이하, 대전방지제는 탄화 수소 용매 부피 대비 중량비 200 ppm 이하이며, 중합 온도는 10~60℃, 중합 압력 15 bar 이하의 조건에서 수소로 분자량을 조절하는 것이 바람직하다.At this time, the alkylaluminum has a weight-to-volume of hydrocarbon solvent of 500 ppm or less, the antistatic agent has a weight-to-volume of hydrocarbon solvent of 200 ppm or less, and the molecular weight is adjusted with hydrogen under the conditions of polymerization temperature of 10~60℃ and polymerization pressure of 15 bar or less. It is desirable to do so.

본 발명에 있어서, 탄화 수소 용매로는 선형 알칸, 시클로 알칸, 톨루엔, 자이렌, 에틸 벤젠과 같은 알킬 방향족, 클로로 벤젠, 클로로 나프탈렌, 오르소디클로로 벤젠과 같은 할로겐화 방향족 용매 등을 이용할 수도 있으나, 노말 헥산을 사용하는 것이 가장 바람직하다.In the present invention, the hydrocarbon solvent may be linear alkanes, cycloalkanes, toluene, xylene, alkyl aromatics such as ethyl benzene, halogenated aromatic solvents such as chlorobenzene, chloronaphthalene, orthodichlorobenzene, etc., but normal It is most preferable to use hexane.

본 발명에 있어서, 알킬알루미늄은 헥산 및 원료 내 촉매 독 성분을 제거하기 위해 헥산 부피 대비 중량비 500ppm 이하로 투입하며, 과도하게 투입되면 오히려 촉매 활성이 저하되고 중합체의 무기물 함량이 증가하는 문제가 있다. 이 때 사용하는 알킬알루미늄으로는 디에틸알루미늄 클로라이드(DEAC), 에틸알루미늄 디클로라이드(EADC), 디노르말부틸알루미늄 클로라이드(DNBAC), 디이소부틸알루미늄 클로라이드(DIBAC), 에틸알루미늄 세스퀴클로라이드(EASC), 트리에틸알루미늄(TEA), 트리이소부틸알루미늄(TIBA), 트리노르말헥실알루미늄(TNHA), 트리노르말옥틸알루미늄(TNOA), 트리노르말데실알루미늄(TNDA), 메틸알루미녹산(MAO)으로 이루어진 군으로부터 선택된 적어도 어느 하나를 사용할 수 있으며, 바람직하게는 트리에틸알루미늄을 사용할 수 있으나 이에 제한되지 않는다.In the present invention, alkylaluminum is added at a weight ratio of 500 ppm or less to the volume of hexane in order to remove hexane and catalyst poison components in the raw materials. If added excessively, there is a problem that the catalyst activity decreases and the inorganic content of the polymer increases. The alkylaluminum used at this time is diethylaluminum chloride (DEAC), ethyl aluminum dichloride (EADC), dinormal butyl aluminum chloride (DNBAC), diisobutyl aluminum chloride (DIBAC), and ethyl aluminum sesquichloride (EASC). , from the group consisting of triethylaluminum (TEA), triisobutylaluminum (TIBA), trinormalhexyl aluminum (TNHA), trinormaloctylaluminum (TNOA), trinormaldecyl aluminum (TNDA), and methylaluminoxane (MAO). At least any one selected may be used, preferably triethylaluminum, but is not limited thereto.

본 발명에 있어서, 대전방지제는 정전기를 방지하기 위해 투입하며, 투입량이 과도하면 촉매 활성이 저하된다. 대전방지제로는 글라이세릴 스테아레이트, 글라이세릴 모노스테아레이트, 알킬아민, 에톡실화된 알킬아민, 알킬설폰에이트 및 글라이세릴 에스터로 이루어진 군으로부터 선택되는 하나 이상의 화합물 및 시중에 나와있는 제품인 등록상표 아모스탯(Armostat), 스탯세이프(Statsafe), 아트머(Atmer) 등이 사용될 수 있으나 이에 한정되는 것은 아니다.In the present invention, the antistatic agent is added to prevent static electricity, and if the amount added is excessive, the catalyst activity decreases. Antistatic agents include at least one compound selected from the group consisting of glyceryl stearate, glyceryl monostearate, alkylamine, ethoxylated alkylamine, alkylsulfonate, and glyceryl ester, as well as commercially available products such as registered Trademarks such as Armostat, Statsafe, and Atmer may be used, but are not limited thereto.

본 발명에 있어서, 공단량체는 C3~C20의 선형, 분기형의 α-올레핀, 환형 올레핀, 비시클로알켄, 방향족 α-올레핀 단량체 및 그 유도체 등을 예시할 수 있으나, 이에 한정되지는 않는다. In the present invention, the comonomer may include C 3 to C 20 linear and branched α-olefins, cyclic olefins, bicycloalkenes, aromatic α-olefin monomers and derivatives thereof, but is not limited thereto. .

본 발명에 있어서, 중합은 공단량체의 분포를 조절하기 위하여, 2단계로 나누어 실시할 수 있다. 1단 반응으로 생성된 선형 저밀도 폴리에틸렌 슬러리의 MI(190℃, 2.16kg)는 0.1~100, 밀도는 0.92~0.94 g/cm3이고, 2단 반응으로 생성된 선형 저밀도 폴리에틸렌 슬러리의 MI(190℃, 21.6kg)는 0.01~10, 밀도는 0.90~0.92 g/cm3인 것이 바람직하다.In the present invention, polymerization can be carried out in two stages to control the distribution of comonomers. The MI (190°C, 2.16 kg) of the linear low-density polyethylene slurry produced by the first-stage reaction is 0.1 to 100 and the density is 0.92-0.94 g/cm 3 , and the MI (190°C) of the linear low-density polyethylene slurry produced by the two-stage reaction is , 21.6kg) is preferably 0.01 to 10, and the density is preferably 0.90 to 0.92 g/cm 3 .

본 발명에 있어서, (d) 단계는 제조된 슬러리의 용매를 여과하여 제거하고, 선형 저밀도 폴리에틸렌을 분리 및 건조하는 것을 특징으로 한다. In the present invention, step (d) is characterized in that the solvent in the prepared slurry is removed by filtration, and the linear low-density polyethylene is separated and dried.

본 발명에서 여과된 용매는 중합단계에서 재사용할 수 있으므로 공정 비용을 저감시킬 수 있다.In the present invention, the filtered solvent can be reused in the polymerization step, thereby reducing process costs.

[실시예][Example]

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.

실시예 1: 메탈로센 촉매 및 헥산 슬러리 공법을 통한 선형 저밀도 폴리에틸렌 제조Example 1: Production of linear low-density polyethylene using metallocene catalyst and hexane slurry method

1-1: 메탈로센 촉매 제조1-1: Preparation of metallocene catalyst

질소 퍼지 하에서 수분이 완전히 제거된 1L 유리병에 마그네틱 바와 5.7㎛ 입경의 고체 메틸알루미녹산과 헥산을 넣어 분산시킨 후, 상온에서 rac-에틸렌비스(1-테트라하이드로-인데닐)지르코늄 디클로라이드 4g을 첨가하여 6시간 동안 반응시키고, 3일간 에이징하여 메탈로센 촉매를 제조하였다. 이때, 고체 메틸알루미녹산의 Al 및 rac-에틸렌비스(1-테트라하이드로-인데닐)지르코늄 디클로라이드의 Zr의 몰비, 즉, Al/Zr 몰비는 200이 되도록 사용하였다. After dispersing a magnetic bar and 5.7㎛ particle size solid methylaluminoxane and hexane in a 1L glass bottle from which moisture was completely removed under a nitrogen purge, 4g of rac-ethylenebis(1-tetrahydro-indenyl)zirconium dichloride was added at room temperature. It was added and reacted for 6 hours, and aged for 3 days to prepare a metallocene catalyst. At this time, the molar ratio of Al of solid methylaluminoxane and Zr of rac-ethylenebis(1-tetrahydro-indenyl)zirconium dichloride, that is, the Al/Zr molar ratio, was used to be 200.

1-2: 촉매 활성화 촉진1-2: Promote catalyst activation

질소 퍼지 하에서 수분이 완전히 제거된 200ml 유리병에 마그네틱 바와 헥산 100ml, 트리에틸알루미늄 50mg, 1-1에서 제조한 촉매 500mg를 순차적으로 투입한 후, 80℃로 승온하여 0.3bar의 에틸렌 하에서 3분간 교반하였다. 유리병을 식히고 감압한 후 즉시 1-3에 촉매를 투입하였다.A magnetic bar, 100 ml of hexane, 50 mg of triethyl aluminum, and 500 mg of the catalyst prepared in 1-1 were sequentially added to a 200 ml glass bottle from which moisture was completely removed under a nitrogen purge, then the temperature was raised to 80°C and stirred for 3 minutes under 0.3 bar of ethylene. did. After the glass bottle was cooled and the pressure was reduced, the catalyst was immediately added to 1-3.

1-3: 헥산 슬러리 중합을 통한 선형 저밀도 폴리에틸렌 슬러리 제조1-3: Preparation of linear low-density polyethylene slurry via hexane slurry polymerization

2L 오토클레이브 반응기를 질소로 충분히 치환한 후, 헥산 1L와 트리에틸알루미늄 200mg, 스탯세이프3000 10mg, 1-2에서 제조한 촉매 10mg를 투입하였다.After sufficiently replacing the 2L autoclave reactor with nitrogen, 1L of hexane, 200mg of triethyl aluminum, 10mg of StatSafe 3000, and 10mg of the catalyst prepared in 1-2 were added.

Mass Flow Controller를 사용하여 에틸렌을 분당 2.0L, 수소를 분당 2.0mL씩 투입하여 30℃에서 80분간 중합을 실시하면서, 동시에, 정량 펌프를 사용하여 1-Butene을 전체 단량체 대비 12wt% 비가 되도록 투입하여, 선형 저밀도 폴리에틸렌을 제조하였다. Using a Mass Flow Controller, polymerization was performed at 30°C for 80 minutes by injecting 2.0L of ethylene per minute and 2.0mL of hydrogen per minute. At the same time, using a metering pump, 1-Butene was added at a ratio of 12wt% compared to the total monomers. , linear low-density polyethylene was produced.

1-4: 용매 분리 건조를 통한 고순도의 선형 저밀도 폴리에틸렌 제조1-4: Preparation of high-purity linear low-density polyethylene through solvent separation and drying

중합 종료 후 미반응 가스를 제거하여 압력을 감소시킨 후 메탄올 100ml을 투입하였다. 슬러리를 여과하고 건조하여 선형 저밀도 폴리에틸렌을 수득하였다.After polymerization was completed, unreacted gas was removed, the pressure was reduced, and 100 ml of methanol was added. The slurry was filtered and dried to obtain linear low density polyethylene.

실시예 2: 메탈로센 촉매 및 헥산 슬러리 공법을 통한 선형 저밀도 폴리에틸렌 제조Example 2: Production of linear low-density polyethylene using metallocene catalyst and hexane slurry method

실시예 1-3에서 중합 온도를 50℃로, 1-Butene 투입 비를 10wt%로 조정하는 것을 제외하고는 실시예 1과 동일한 방법으로 선형 저밀도 폴리에틸렌을 수득하였다. Linear low-density polyethylene was obtained in the same manner as Example 1, except that in Examples 1-3, the polymerization temperature was adjusted to 50°C and the 1-Butene input ratio was adjusted to 10wt%.

실시예 3~4: 메탈로센 촉매 및 헥산 슬러리 공법을 통한 선형 저밀도 폴리에틸렌 제조Examples 3-4: Production of linear low-density polyethylene using metallocene catalyst and hexane slurry method

실시예 1-2의 촉매 활성화시 온도를 각각 70 및 90℃로 진행한 것을 제외하고는 실시예 1과 동일한 방법으로 선형 저밀도 폴리에틸렌을 수득하였다. Linear low-density polyethylene was obtained in the same manner as in Example 1, except that the catalyst activation temperature in Examples 1-2 was adjusted to 70 and 90° C., respectively.

실시예 5: 메탈로센 촉매 및 헥산 슬러리 공법을 통한 선형 저밀도 폴리에틸렌 제조Example 5: Production of linear low-density polyethylene using metallocene catalyst and hexane slurry method

실시예 1-1에서, 메탈로센 착물로 에틸렌비스(1-테트라하이드로-인데닐)지르코늄 디클로라이드 대신에 에틸렌비스(1-인데닐)지르코늄 디클로라이드 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 선형 저밀도 폴리에틸렌을 수득하였다. In Example 1-1, the same as Example 1 except that ethylenebis(1-indenyl)zirconium dichloride was used as the metallocene complex instead of ethylenebis(1-tetrahydro-indenyl)zirconium dichloride. Linear low-density polyethylene was obtained by this method.

비교예 1~3: 촉매 활성화 유무에 따른 선형 저밀도 폴리에틸렌 제조Comparative Examples 1 to 3: Production of linear low-density polyethylene with or without catalyst activation

실시예 1-2의 촉매 활성화를 진행하지 않고, 실시예 1-3에서 중합 온도를 각각 30/50/70℃로, 1-Butene 투입량을 각각 12/10/9 wt%로 조정한 것을 제외하고는 실시예 1과 동일한 방법으로 선형 저밀도 폴리에틸렌을 수득하였다. Except that the catalyst activation in Example 1-2 was not performed and the polymerization temperature was adjusted to 30/50/70°C and the 1-Butene input amount was adjusted to 12/10/9 wt% in Example 1-3, respectively. Linear low-density polyethylene was obtained in the same manner as in Example 1.

비교예 4~5: 촉매 활성화 조건에 따른 선형 저밀도 폴리에틸렌 제조Comparative Examples 4-5: Production of linear low-density polyethylene according to catalyst activation conditions

실시예 1-2의 촉매 활성화시 온도를 각각 50 및 100℃로 진행한 것을 제외하고는 실시예 1과 동일한 방법으로 선형 저밀도 폴리에틸렌을 수득하였다. Linear low-density polyethylene was obtained in the same manner as in Example 1, except that the catalyst activation temperature in Examples 1-2 was adjusted to 50 and 100°C, respectively.

비교예 6~7: 촉매 활성화 조건에 따른 선형 저밀도 폴리에틸렌 제조Comparative Examples 6-7: Production of linear low-density polyethylene according to catalyst activation conditions

실시예 1-2의 촉매 활성화시 80℃, 3bar 조건에서 10분간(비교예 6); 80℃, 0.3bar 조건에서 10분간(비교예 7) 진행한 것을 제외하고는 실시예 1과 동일한 방법으로 선형 저밀도 폴리에틸렌을 수득하였다. When activating the catalyst of Example 1-2, at 80°C and 3 bar for 10 minutes (Comparative Example 6); Linear low-density polyethylene was obtained in the same manner as in Example 1, except that the process was carried out at 80°C and 0.3 bar for 10 minutes (Comparative Example 7).

비교예 8: 고체 메틸알루미녹산 입경에 따른 선형 저밀도 폴리에틸렌 제조Comparative Example 8: Production of linear low-density polyethylene according to particle size of solid methylaluminoxane

실시예 1-1에서 입경이 9.2㎛인 고체 메틸알루미녹산을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 선형 저밀도 폴리에틸렌을 수득하였다.Linear low-density polyethylene was obtained in the same manner as in Example 1, except that solid methylaluminoxane with a particle size of 9.2 ㎛ was used in Example 1-1.

실험예 Experiment example

실시예 및 비교예의 중합 결과와 분석 결과를 표 1에 나타내었다.The polymerization results and analysis results of Examples and Comparative Examples are shown in Table 1.

(1) 촉매 활성: 투입한 촉매의 함량 (g) 대비 생성된 선형 저밀도 폴리에틸렌 중합체의 무게 (1) Catalytic activity: Weight of the produced linear low-density polyethylene polymer compared to the amount of catalyst introduced (g)

(2) Bulk Density (BD): 100mL 부피를 갖는 실린더에 파우더를 눈금까지 채워 넣은 후, 부피 당 파우더의 양을 계산하였다. (2) Bulk Density (BD): After filling a cylinder with a volume of 100 mL with powder up to the mark, the amount of powder per volume was calculated.

(3) Soluble Yield: 여과된 헥산의 총 질량(A)을 측정한 후, 일부를 취하여(B) 도가니에 투입하고 100℃의 오븐에 넣어 헥산을 모두 건조하였다. 건조 후 충분히 식힌 후 남은 중합체의 함량을 측정(C)하고, 중합된 PWD의 양(D)와 함께 아래 계산식으로 산출하였다.(3) Soluble Yield: After measuring the total mass (A) of the filtered hexane, a portion (B) was placed in a crucible and placed in an oven at 100°C to dry all the hexane. After drying and cooling sufficiently, the remaining polymer content was measured (C) and calculated using the formula below along with the amount of polymerized PWD (D).

Soluble Yield = [ (C) / (B) x (A)] / [ (C) + (D)] x 100 %Soluble Yield = [ (C) / (B) x (A)] / [ (C) + (D)] x 100%

(4) Melt Index: ASTM D1238 방법에 따라 190℃, 2.16kg의 하중 조건에서 분석을 실시하였다.(4) Melt Index: Analysis was conducted at 190°C and a load of 2.16 kg according to the ASTM D1238 method.

(5) Mw/Mn: 겔 투과 크로마토그래피(GPC, Gel Permeation Chromatography)를 이용하여 중합체의 중량평균분자량(Mw)와 수평균분자량(Mn)을 측정한 후, Mw를 Mn으로 나누어 분자량 분포(Mw/Mn)을 계산하였다.(5) Mw/Mn: Measure the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer using gel permeation chromatography (GPC), then divide Mw by Mn to determine the molecular weight distribution (Mw). /Mn) was calculated.

(6) Density: 압출하여 시트를 제작한 후, ASTM D1505에 따라 밀도를 분석하였다.(6) Density: After producing a sheet by extrusion, the density was analyzed according to ASTM D1505.

SampleSample 단계2
조건
Step 2
condition
단계3
중합 온도
Step 3
polymerization temperature
1-C4
Feed (wt%)
1-C 4
Feed (wt%)
Activity
(g/g)
Activity
(g/g)
Bulk Density (g/cm3)Bulk Density (g/cm 3 ) Soluble
Yield
(%)
Solubble
Yield
(%)
Melt
Index
(2.16kg)
Melt
Index
(2.16kg)
Mw/Mn
(GPC)
Mw/Mn
(GPC)
Density
(g/cm3)
Density
(g/ cm3 )
실시예 1Example 1 80℃80℃ 30℃30℃ 1212 7,3007,300 0.380.38 2.012.01 7.47.4 4.04.0 0.9200.920 실시예 2Example 2 80℃80℃ 50℃50℃ 1010 11,20011,200 0.360.36 3.513.51 3.63.6 3.43.4 0.9150.915 실시예 3Example 3 70℃70℃ 30℃30℃ 1212 5,6005,600 0.380.38 2.002.00 7.57.5 4.04.0 0.9220.922 실시예 4Example 4 90℃90℃ 30℃30℃ 1212 5,1005,100 0.360.36 2.102.10 7.47.4 4.04.0 0.9220.922 실시예 5Example 5 80℃80℃ 30℃30℃ 1212 8,2008,200 0.370.37 2.212.21 6.76.7 4.74.7 0.9210.921 비교예 1Comparative Example 1 미실시Not implemented 30℃30℃ 1212 1,4001,400 -- -- -- -- -- 비교예 2Comparative Example 2 미실시Not implemented 50℃50℃ 1010 4,6004,600 0.300.30 3.443.44 3.43.4 3.63.6 0.9180.918 비교예 3Comparative Example 3 미실시Not implemented 70℃70℃ 99 SwellingSwelling 4.54.5 3.73.7 0.9240.924 비교예 4Comparative Example 4 50℃50℃ 30℃30℃ 1212 3,6003,600 0.340.34 2.282.28 6.86.8 5.05.0 0.9200.920 비교예 5Comparative Example 5 100℃100℃ 30℃30℃ 1212 <1,000<1,000 -- -- -- -- -- 비교예 6Comparative Example 6 80℃
(10분/3bar)
80℃
(10 minutes/3bar)
30℃30℃ 1212 5,5005,500 0.250.25 3.103.10 1111 5.35.3 0.9260.926
비교예 7Comparative Example 7 80℃(10분/0.3bar)80℃ (10 minutes/0.3bar) 30℃30℃ 1212 4,1004,100 0.330.33 2.682.68 1010 4.84.8 0.9250.925 비교예 8Comparative Example 8 80℃80℃ 30℃30℃ 1212 4,3004,300 0.360.36 2.212.21 7.87.8 4.14.1 0.9210.921

표 1로부터, 실시예 1 ~ 5의 경우, 촉매 활성화를 실시하지 않은 비교예 1 및 2와 비교하여 낮은 중합 온도에서도 높은 활성으로 밀도 0.91~0.93g/cm3의 선형 저밀도 폴리에틸렌을 제조할 수 있었다. From Table 1, in the case of Examples 1 to 5, linear low density polyethylene with a density of 0.91 to 0.93 g/cm 3 could be manufactured with high activity even at a low polymerization temperature compared to Comparative Examples 1 and 2 without catalyst activation. .

비교예 3은 일반적인 PE 중합과 같이 70℃ 이상의 중합 온도에서 LLDPE를 중합하는 경우 팽윤(Swelling) 현상이 발생함을 알 수 있었다.In Comparative Example 3, it was found that, like general PE polymerization, a swelling phenomenon occurred when LLDPE was polymerized at a polymerization temperature of 70°C or higher.

비교예 4~5에서 촉매 활성화 단계의 온도가 너무 낮거나 높은 경우 활성이 충분히 향상되지 않거나 오히려 저하됨을 확인하였다.In Comparative Examples 4 to 5, it was confirmed that when the temperature of the catalyst activation step was too low or too high, the activity was not sufficiently improved or rather decreased.

비교예 6~7에서 촉매 활성화 단계의 시간, 압력 조건이 적합하지 않은 경우에는 활성이 충분히 향상되지 않거나 겉보기 밀도(Bulk Density)가 불량하고, Soluble Yield, Melt Index 및 Mn/Mw 값이 증가하는 문제가 있었다.In Comparative Examples 6 to 7, if the time and pressure conditions of the catalyst activation step are not appropriate, the activity is not sufficiently improved, the bulk density is poor, and the Soluble Yield, Melt Index, and Mn/Mw values increase. There was.

비교예 8에서 촉매 입경이 적합하지 않은 경우 활성이 저조한 것을 확인하였다.In Comparative Example 8, it was confirmed that the activity was low when the catalyst particle size was not appropriate.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. will be. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (5)

(a) 고체 메틸알루미녹산과 메탈로센 착물을 탄소수 4 내지 14의 탄소원자를 갖는 탄화수소 용매 하에서 혼합하고, 에이징(aging)하여 메탈로센 촉매를 제조하는 단계;
(b) 제조된 메탈로센 촉매의 지연 시간(Retention Time) 단축을 위하여, 메탈로센 촉매를 알킬알루미늄이 투입된 헥산에서 70~90℃ 및 1 bar 이하의 에틸렌 하에서 0.5~5분동안 반응시켜 활성화시키는 단계;
(c) 활성화된 메탈로센 촉매, 탄소수 4 내지 14의 탄소원자를 갖는 탄화수소 용매, 알킬알루미늄, 수소, 대전방지제, 에틸렌 및 공단량체를 반응기에 투입하고, 용매 슬러리 중합을 실시하여 선형 저밀도 폴리에틸렌 슬러리를 제조하는 단계; 및
(d) 제조한 슬러리에서 용매를 여과하여 제거하고, 선형 저밀도 폴리에틸렌을 분리 및 건조하는 단계를 포함하는 선형 저밀도 폴리에틸렌의 제조방법.
(a) mixing solid methylaluminoxane and a metallocene complex in a hydrocarbon solvent having 4 to 14 carbon atoms and aging them to prepare a metallocene catalyst;
(b) In order to shorten the retention time of the manufactured metallocene catalyst, the metallocene catalyst was activated by reacting in hexane containing alkylaluminum for 0.5 to 5 minutes at 70 to 90°C and ethylene below 1 bar. ordering step;
(c) Activated metallocene catalyst, hydrocarbon solvent having 4 to 14 carbon atoms, alkylaluminum, hydrogen, antistatic agent, ethylene, and comonomer are added to the reactor, and solvent slurry polymerization is performed to produce a linear low-density polyethylene slurry. manufacturing step; and
(d) A method for producing linear low-density polyethylene, comprising the steps of filtering and removing the solvent from the prepared slurry, and separating and drying the linear low-density polyethylene.
제1항에 있어서, 상기 고체 메틸알루미녹산의 입경은 5~8㎛이고, 메탈로센 착물내의 전이금속과 고체 메틸알루미녹산의 알루미늄의 몰비는 1:10~1:1000인 것을 특징으로 하는 선형 저밀도 폴리에틸렌의 제조방법.
The linear method of claim 1, wherein the particle size of the solid methylaluminoxane is 5 to 8㎛, and the molar ratio of the transition metal in the metallocene complex to aluminum in the solid methylaluminoxane is 1:10 to 1:1000. Method for producing low-density polyethylene.
제1항에 있어서, 상기 에이징(aging)은 72시간 이상 수행하는 것을 특징으로 하는 선형 저밀도 폴리에틸렌의 제조방법.
The method of claim 1, wherein the aging is performed for 72 hours or more.
제1항에 있어서, (c) 단계는 10~60℃의 온도 조건에서 에틸렌과 1종 이상의 공단량체를 투입하여 중합을 수행하며, 공단량체는 C3~C20의 선형, 분기형의 α-올레핀, 환형 올레핀, 비시클로알켄, 방향족 α-올레핀 단량체 및 그 유도체로 이루어진 군으로부터 선택된 하나 이상의 화합물인 것을 특징으로 하는 선형 저밀도 폴리에틸렌의 제조방법.
The method of claim 1, wherein in step (c), polymerization is performed by adding ethylene and one or more comonomers at a temperature of 10 to 60°C, and the comonomers are C 3 to C 20 linear, branched α- A method for producing linear low-density polyethylene, characterized in that it is one or more compounds selected from the group consisting of olefins, cyclic olefins, bicycloalkenes, aromatic α-olefin monomers, and derivatives thereof.
제4항에 있어서, 중합은 2단계로 나누어 실시할 수 있으며, 1단 반응으로 생성된 선형 저밀도 폴리에틸렌 슬러리의 MI(190℃, 2.16kg)는 0.1~100, 밀도는 0.92~0.94 g/cm3이고, 2단 반응으로 생성된 선형 저밀도 폴리에틸렌 슬러리의 MI(190℃, 21.6kg)는 0.01~10, 밀도는 0.90~0.92 g/cm3인 것을 특징으로 하는 선형 저밀도 폴리에틸렌의 제조방법.

According to claim 4, the polymerization can be carried out in two stages, and the MI (190°C, 2.16 kg) of the linear low-density polyethylene slurry produced in the first stage reaction is 0.1 to 100 and the density is 0.92 to 0.94 g/cm 3 A method for producing linear low-density polyethylene, characterized in that the MI (190°C, 21.6 kg) of the linear low-density polyethylene slurry produced by the two-stage reaction is 0.01 to 10 and the density is 0.90 to 0.92 g/cm 3 .

KR1020230138187A 2023-10-17 2023-10-17 Manufacturing Methods for Highly Active Linear Low Density Polyethylene KR102619381B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230138187A KR102619381B1 (en) 2023-10-17 2023-10-17 Manufacturing Methods for Highly Active Linear Low Density Polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230138187A KR102619381B1 (en) 2023-10-17 2023-10-17 Manufacturing Methods for Highly Active Linear Low Density Polyethylene

Publications (1)

Publication Number Publication Date
KR102619381B1 true KR102619381B1 (en) 2023-12-29

Family

ID=89333972

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230138187A KR102619381B1 (en) 2023-10-17 2023-10-17 Manufacturing Methods for Highly Active Linear Low Density Polyethylene

Country Status (1)

Country Link
KR (1) KR102619381B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990029422A (en) * 1997-09-03 1999-04-26 사또 아끼오 Solid phase aluminoxane for catalyst carrier, solid phase aluminoxane for catalyst carrier, and use thereof
KR20140117040A (en) * 2013-03-26 2014-10-07 삼성토탈 주식회사 Linear low density polyethylene resin with excellent processability
KR20180038774A (en) * 2016-10-07 2018-04-17 대한유화 주식회사 Polyethylene resin for separator of secondary battery using metallocene catalyst and preparation method thereof
KR20180038729A (en) * 2016-10-07 2018-04-17 대한유화 주식회사 Preparation method of metallocene catalyst for slurry process and preparation method of polyethylene copolymer for water pipe using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990029422A (en) * 1997-09-03 1999-04-26 사또 아끼오 Solid phase aluminoxane for catalyst carrier, solid phase aluminoxane for catalyst carrier, and use thereof
KR20140117040A (en) * 2013-03-26 2014-10-07 삼성토탈 주식회사 Linear low density polyethylene resin with excellent processability
KR20180038774A (en) * 2016-10-07 2018-04-17 대한유화 주식회사 Polyethylene resin for separator of secondary battery using metallocene catalyst and preparation method thereof
KR20180038729A (en) * 2016-10-07 2018-04-17 대한유화 주식회사 Preparation method of metallocene catalyst for slurry process and preparation method of polyethylene copolymer for water pipe using the same

Similar Documents

Publication Publication Date Title
EP3031832B1 (en) Method for preparing polyolefin
US20040214953A1 (en) Polyethylene composition and process for producing same
EP2044131B1 (en) Fluorenyl catalyst compositions and olefin polymerization process
US11332553B2 (en) Catalyst composition for polymerizing polyolefin, method for producing polyolefin, and polyolefin resin
US6420298B1 (en) Metallocene catalyst compositions, processes for making polyolefin resins using such catalyst compositions, and products produced thereby
US7084221B2 (en) Polymerization catalyst system containing polyether-modified aluminoxane
US20050203260A1 (en) Catalyst composition for polymerization of olefins and polymerization process using the same
EP1114069B1 (en) A method for preparing a supported catalyst system and its use in a polymerization process
EP1448633B1 (en) Two-step polymerization process
US8298977B2 (en) Metallocene catalyst components supported on activating supports
EP4047025A1 (en) Method for preparing olefin polymerization hybrid catalyst, olefin polymerization hybrid catalyst, and olefin-based polymer
US20020177675A1 (en) Ethylene polymerization process
US8524627B2 (en) Activating supports with controlled distribution of OH groups
KR102619381B1 (en) Manufacturing Methods for Highly Active Linear Low Density Polyethylene
EP4249531A1 (en) Olefin-based polymer, film prepared therefrom, and preparation methods therefor
EP4249530A1 (en) Olefin-based polymer, film prepared therefrom, and preparation methods therefor
KR20200077888A (en) Process for preparing a catalyst for polymerizing an olefin, catalyst for polymerizing an olefin, and polyolefin
JP2007504293A (en) Highly stereoregular polybutylene polymer and process for preparing it with high activity
KR101926229B1 (en) Preparation method of metallocene catalyst for slurry process and preparation method of polyethylene copolymer for water pipe using the same
KR102624224B1 (en) Polypropylene and Preparing Method thereof
US6384161B1 (en) Method and catalyst system for producing polyolefins with broadened molecular weight distributions
US20240132639A1 (en) Olefin-based polymer, film prepared therefrom, and preparation methods therefor
KR101849475B1 (en) Ethylene-Olefin Copolymer
KR20230102135A (en) A novel transition metal complexes, a transition metal catalyst composition comprising the same, and a method for preparing a copolymer of ethylene and α-olefin using the same
EP4286418A1 (en) Ethylene polymer and preparation method therefor

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant