KR102649855B1 - A novel yeast strain producing mucic acid by fermenting galacturonic acid - Google Patents

A novel yeast strain producing mucic acid by fermenting galacturonic acid Download PDF

Info

Publication number
KR102649855B1
KR102649855B1 KR1020210123042A KR20210123042A KR102649855B1 KR 102649855 B1 KR102649855 B1 KR 102649855B1 KR 1020210123042 A KR1020210123042 A KR 1020210123042A KR 20210123042 A KR20210123042 A KR 20210123042A KR 102649855 B1 KR102649855 B1 KR 102649855B1
Authority
KR
South Korea
Prior art keywords
acid
strain
mucic acid
saccharomyces cerevisiae
udh
Prior art date
Application number
KR1020210123042A
Other languages
Korean (ko)
Other versions
KR20220036359A (en
Inventor
김수린
박희영
장병관
정덕열
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to PCT/KR2021/012620 priority Critical patent/WO2022060098A1/en
Publication of KR20220036359A publication Critical patent/KR20220036359A/en
Application granted granted Critical
Publication of KR102649855B1 publication Critical patent/KR102649855B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 갈락투론산을 발효하여 뮤식산(mucic acid)을 생산하는 신규 효모 균주 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주 및 이를 이용하여 뮤식산(mucic acid)의 생산을 증대시키는 최적의 배양 방법에 관한 것으로, 본 발명의 상기 균주는 기존의 균주보다 갈락투론산의 소비율 및 뮤식산(mucic acid)의 생산능이 향상된 것으로서, 바이오매스로서의 뮤식산(mucic acid)의 생산능이 크게 향상된 특징을 가진다. The present invention provides a novel yeast strain, Saccharomyces cerevisiae , which produces mucic acid by fermenting galacturonic acid, and an optimal method for increasing the production of mucic acid using the same. Regarding the culture method, the strain of the present invention has an improved consumption rate of galacturonic acid and an improved production capacity of mucic acid compared to existing strains, and has a significantly improved production capacity of mucic acid as biomass. have

Description

갈락투론산을 발효하여 뮤식산을 생산하는 신규 효모 균주{A novel yeast strain producing mucic acid by fermenting galacturonic acid}A novel yeast strain producing mucic acid by fermenting galacturonic acid}

본 발명은 갈락투론산(galacturonic acid)을 발효하여 뮤식산(meso-galactarate; mucic acid)을 생산하는 신규 효모 균주 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주 및 이를 이용하여 뮤식산(mucic acid)의 생산을 증대시키는 최적의 배양 방법에 관한 것이다.The present invention relates to a new yeast strain, Saccharomyces cerevisiae , which produces meso-galactarate (mucic acid) by fermenting galacturonic acid, and to producing mucic acid using the same. ) is about the optimal culture method to increase the production of.

뮤식산(mucic acid)은 화학, 제약, 화장품, 식품산업에서 널리 사용되는 화학물질로 알려져있다. 화학 및 화장품 산업에서 뮤식산(mucic acid)은 나일론 및 PEF 생산의 전구체로 사용되며, 식품 산업에서는 셀프 라이징 밀가루, 향미제 등에 사용된다. 이러한 상업적 쓰임에도 불구하고 뮤식산(mucic acid)은 갈락토스의 질산산화 또는 D-갈락투론산의 전기 산화에 의해 생산되기에 건강과 환경에 대한 관심과 함께 생물학적 기반의 생산방법에 대한 요구가 증가되고 있다.Mucic acid is known as a chemical substance widely used in the chemical, pharmaceutical, cosmetics, and food industries. In the chemical and cosmetic industries, mucic acid is used as a precursor for the production of nylon and PEF, and in the food industry it is used in self-rising flour, flavoring agents, etc. Despite these commercial uses, mucic acid is produced by nitric acid oxidation of galactose or electrooxidation of D-galacturonic acid, and the demand for biologically based production methods is increasing along with concerns about health and the environment. there is.

특히, 뮤식산(mucic acid)의 기질인 갈락투론산(galacturonic acid)은 펙틴의 주요 성분이며 주로 감귤 껍질 폐기물(CPW) 및 사탕무 펄프와 같은 펙틴이 풍부한 바이오매스에 함유되어 있다. 특히, 전세계적으로 매년 최소 1천만 톤의 감귤 껍질 폐기물이 발생되는 것으로 추정되고 이를 처리하는데 재정적 부담이 상당하므로 발효를 통한 생물학적 전환과 같은 순환 경제 모델을 구축 할 필요가 있다.In particular, galacturonic acid, the substrate of mucic acid, is the main component of pectin and is mainly contained in pectin-rich biomass such as citrus peel waste (CPW) and sugar beet pulp. In particular, it is estimated that at least 10 million tons of citrus peel waste is generated every year worldwide, and the financial burden of disposing of it is significant, so there is a need to build a circular economy model such as biological conversion through fermentation.

우리나라 또한 연간 약 50만톤의 감귤류를 생산하고있으며 가공공정을 통해 약 6만톤의 감귤박(citrus peel waste)이 발생하고 있으며 약 5만톤이 비상품과로 버려지는 등 환경적·경제적인 문제가 발생하고 있지만, 아직 차세대 바이오매스를 활용할 수 있는 효과적인 대책이 마련되어 있지 않은 실정이다.Korea also produces about 500,000 tons of citrus fruits annually, and about 60,000 tons of citrus peel waste is generated through the processing process, and about 50,000 tons are discarded as non-commodity fruits, causing environmental and economic problems. However, effective measures to utilize next-generation biomass are not yet in place.

한편, 사카로마이세스 세레비지애(Saccharomyces cerevisiae)는 GRAS 미생물로 알려져 있으며, 유기산 내성이 높고 NADH와 같은 보조인자의 공급이 용이하다. 이전 연구에서 조작된 사카로마이세스 세레비지애(Saccharomyces cerevisiae)에 의해 뮤식산(mucic acid)이 생산되었지만 매우 낮은 생산율을 갖는 한계를 보였다.Meanwhile, Saccharomyces cerevisiae is known as a GRAS microorganism, has high organic acid tolerance, and is easy to supply cofactors such as NADH. In a previous study, mucic acid was produced by engineered Saccharomyces cerevisiae , but it was limited by a very low production rate.

이에 본 발명자들은 갈락투론산을 발효하여 바이오연료를 생산하는 신규 균주를 연구하던 중에 사카로마이세스 세레비지애(Saccharomyces cerevisiae)에 3개의 서로 다른 박테리아로부터 각각의 udh 유전자를 도입하여 뮤식산(mucic acid)을 생산할 수 있는 균주를 개발하였고, 그 결과 바이오연료로 활용 가능한 뮤식산(mucic acid)의 생산량이 크게 증가되는 점을 발견하여, 본 발명을 완성하게 되었다.Accordingly, while researching a new strain that produces biofuel by fermenting galacturonic acid, the present inventors introduced udh genes from three different bacteria into Saccharomyces cerevisiae to produce mucic acid. A strain capable of producing acid was developed, and as a result, it was discovered that the production of mucic acid, which can be used as biofuel, was greatly increased, leading to the completion of the present invention.

KR-10-2017-009521KR-10-2017-009521

본 발명의 목적은 갈락투론산(galacturonic acid)을 발효하여 뮤식산(mucic acid)의 생산능을 가지는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)에 균주를 제공하는 것으로, 본 발명의 사카로마이세스 세레비지애 균주는 우수한 뮤식산(mucic acid) 생산능을 가지므로, 감귤껍질폐기물 처리 및 바이오연료 산업에 활용될 수 있다.The purpose of the present invention is to provide a strain of Saccharomyces cerevisiae that has the ability to produce mucic acid by fermenting galacturonic acid, and the Saccharomyces cerevisiae of the present invention Because the Seth cerevisiae strain has excellent mucic acid production ability, it can be used in citrus peel waste treatment and biofuel industries.

상기 목적을 달성하기 위하여, 본 발명은 기탁번호 KCTC 14701BP로 이루어진 것인, 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주를 제공한다.In order to achieve the above object, the present invention provides a Saccharomyces cerevisiae strain consisting of accession number KCTC 14701BP.

본 발명의 일 실시예에 있어서, “균주”는 서열번호 2로 이루어진 codon optimization된 Ps-udh 유전자를 도입한 것을 특징으로 한다.In one embodiment of the present invention, the “strain” is characterized by introducing a codon optimized Ps-udh gene consisting of SEQ ID NO: 2.

본 발명의 일 실시예에 있어서, “균주”는 뮤식산(mucic acid) 생산능이 향상된 것을 특징으로 하나 이에 한정되는 것은 아니다.In one embodiment of the present invention, the “strain” is characterized by improved mucic acid production ability, but is not limited thereto.

본 발명의 일 실시예에 있어서, “균주”는 갈락투론산(galacturonic acid) 소비량이 향상된 것을 특징으로 하나 이에 한정되는 것은 아니다.In one embodiment of the present invention, the “strain” is characterized by improved galacturonic acid consumption, but is not limited thereto.

본 발명의 일 실시예에 있어서, “균주”는 codon optimization된 Ps-udh 유전자를 도입에 따라 NAD+를 공급해주는 것을 특징으로 하나 이에 한정되는 것은 아니다.In one embodiment of the present invention, the “strain” is characterized by supplying NAD+ upon introduction of a codon optimized Ps-udh gene, but is not limited thereto.

또한 본 발명은 제1항 내지 제5항 중 어느 한 항의 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주를 배지에서 발효하는 1단계; 상기 1 단계에서 1 내지 20 g/L 효모추출물(yeast extract), 2 내지 40 g/L 펩톤(peptone), 10 내지 100g/L 자일로스 및 5 내지 100g/L의 펙틴(pectin)을 첨가하는 2단계; 및 상기 배지 또는 상기 균주로부터 뮤식산(mucic acid)을 회수하는 3단계를 포함하는 뮤식산(mucic acid) 생산 방법에 관한 것이다.In addition, the present invention includes a first step of fermenting the Saccharomyces cerevisiae strain of any one of claims 1 to 5 in a medium; In step 1, 1 to 20 g/L yeast extract, 2 to 40 g/L peptone, 10 to 100 g/L xylose, and 5 to 100 g/L pectin are added. step; and a method for producing mucic acid, including three steps of recovering mucic acid from the medium or the strain.

본 발명의 일 실시예에 있어서, “펙틴(pectin)은 열수 전처리 방법으로 처리된 감귤 껍질 폐기물인 것을 특징으로 하나 이에 한정되는 것은 아니다.In one embodiment of the present invention, “pectin” is characterized as being citrus peel waste treated by a hydrothermal pretreatment method, but is not limited thereto.

본 발명은 갈락투론산(galacturonic acid)의 발효능이 향상된 효모 균주인 형질 전환된 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주 및 이의 용도에 대한 것으로서, 본 발명의 상기 균주 및 배양 방법에 따르면 기존의 균주에 비하여 현저하게 뮤식산(mucic acid)의 생산량이 증가되며, 상기 뮤식산(mucic acid)을 바이오연료 등 다양한 산업 분야에 활용할 수 있다.The present invention relates to a transformed Saccharomyces cerevisiae strain, which is a yeast strain with improved galacturonic acid fermentation ability, and its use. According to the strain and culture method of the present invention, Compared to existing strains, the production of mucic acid is significantly increased, and the mucic acid can be used in various industrial fields such as biofuel.

도 1은 udh가 도입된 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주의 갈락투론산을 뮤식산(mucic acid)으로 전환시키는 세포 내 대사경로를 나타낸 모식도이다.
도 2는 3종류의 서로 다른 곰팡이 유래 udh 유전자를 도입한 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주의 세포 농도별 갈락투론산 소비량과 뮤식산(mucic acid) 생산량을 비교한 결과에 대한 도이다.
도 3은 codon optimization 된 Ps-udh 유전자를 도입한 사카로마이세스 세레비지애(Saccharomyces cerevisiae) Ps-udh* 균주의 질소 농도 및 자일로스 농도별 펙틴 유래 갈락투론산 소비량과 뮤식산(mucic acid) 생산량을 비교한 결과에 대한 도이다.
도 4는 codon optimization 된 Ps-udh 유전자를 도입한 사카로마이세스 세레비지애(Saccharomyces cerevisiae) Ps-udh* 균주의 전수처리 방법 차이에 따른 감귤 껍질 폐기물 유래 갈락투론산 소비량과 뮤식산(mucic acid) 생산량을 비교한 결과에 대한 도이다.
Figure 1 is a schematic diagram showing the intracellular metabolic pathway that converts galacturonic acid to mucic acid in the Saccharomyces cerevisiae strain into which udh has been introduced.
Figure 2 shows the results of comparing galacturonic acid consumption and mucic acid production by cell concentration of Saccharomyces cerevisiae strains into which three types of udh genes derived from different fungi were introduced. am.
Figure 3 shows pectin-derived galacturonic acid consumption and mucic acid according to nitrogen concentration and xylose concentration of Saccharomyces cerevisiae Ps-udh* strain into which the codon optimized Ps-udh gene was introduced. This diagram shows the results of comparing production volumes.
Figure 4 shows galacturonic acid consumption and mucic acid derived from citrus peel waste according to differences in water treatment methods of the Saccharomyces cerevisiae Ps-udh* strain into which the codon optimized Ps-udh gene was introduced. ) This diagram shows the results of comparing production volumes.

이하, 첨부된 도면을 참조하여 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현 예는 본 발명에 대한 예시로 제시되는 것으로, 당업자에게 주지 저명한 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있고, 이에 의해 본 발명이 제한되지는 않는다. 본 발명은 후술하는 특허 청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다.Hereinafter, the present invention will be described in detail through embodiments of the present invention with reference to the attached drawings. However, the following implementation examples are provided as examples of the present invention, and if it is judged that a detailed description of a technology or configuration well known to those skilled in the art may unnecessarily obscure the gist of the present invention, the detailed description may be omitted. , the present invention is not limited thereby. The present invention is capable of various modifications and applications within the description of the patent claims described below and the scope of equivalents interpreted therefrom.

또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시 예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In addition, the terminology used in this specification is a term used to appropriately express preferred embodiments of the present invention, and may vary depending on the intention of the user or operator or the customs of the field to which the present invention belongs. Therefore, definitions of these terms should be made based on the content throughout this specification. Throughout the specification, when it is said that a part “includes” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.

일 측면에서, 본 발명은 기탁번호 KCTC 14701BP로 이루어진 것인, 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주에 대한 것이다.In one aspect, the present invention relates to a Saccharomyces cerevisiae strain consisting of accession number KCTC 14701BP.

본 발명의 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주는 유기산이나 열 등의 다양한 스트레스에 내성이 높은 GRAS형 효모이나 natively 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주는 자일로스(xylose) 및 아라비노스(L-arabinose), 갈락투론산(galacturonic acid)은 대사를 하지 못하기 때문에 균주 개량이 필요하다.The Saccharomyces cerevisiae strain of the present invention is a GRAS-type yeast with high tolerance to various stresses such as organic acids and heat, but the natively Saccharomyces cerevisiae strain is xylose. And arabinose (L-arabinose) and galacturonic acid cannot be metabolized, so strain improvement is necessary.

이에 본 발명자들은 codon optimization된 Ps-udh 유전자를 도입한 재조합 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주를 확립하였다.Accordingly, the present inventors established a recombinant Saccharomyces cerevisiae strain into which a codon optimized Ps-udh gene was introduced.

이하 균주 확립 방법과 배양에 따른 뮤식산(mucic acid) 생산 방법은 실시예를 통해 보다 구체적으로 설명한다.Hereinafter, the strain establishment method and the mucic acid production method according to culture will be described in more detail through examples.

<실시예 1> 재료 및 방법<Example 1> Materials and methods

<1-1> Cas9 기반 게놈 편집에 의한 스트레인 구축<1-1> Strain construction by Cas9-based genome editing

모든 균주는 CRISPR-Cas9 시스템을 사용하여 구축되었다(Jeong et al., 2020b). 본 연구에 사용된 가이드 RNA(gRNA) 플라스미드는 표 2에 나열되어 있으며, 고속 클로닝 방법(Li et al., 2011)으로 제작되었다. 생성된 가이드 RNA(cg#1)의 23개 뉴클레오타이드(unique 20 bp + NGG)는 Sequence Manipulation Suite(http://www.bioinformatics.org/sms2)를 통해 설계되었으며, GGGenome으로 off-target은 식별했다. 사카로마이세스 세레비지애(Saccharomyces cerevisiae) S288C 게놈을 참조하여 GGGenome 검색 엔진(https://gggenome.dbcls.jp/sacCer3/)을 통해 식벽했다. 마지막으로, cg#1 서열은 5'-GTACACCTACCCGTCACCGG AGG로 선택되었다. pRS42H-cg#1 gRNA 플라스미드를 제작하기 위해 주형 플라스미드인 pRS42H-INT#4 gRNA 플라스미드(Jeong et al., 2020b)를 프라이머 Kim191/Kim192로 PCR 증폭하였다(표 2 및 표 3). 그런 다음 PCR 산물을 DpnI로 처리하여 E. coli TOP10을 형질전환하는데 사용하였다. 형질전환체는 LBA 한천 플레이트에서 선택되었다. cg#1 서열은 T3 프로모터에 대한 범용 프라이머를 사용하여 Sanger 시퀀싱에 의해 확인된다(표 2 참조).All strains were constructed using the CRISPR-Cas9 system (Jeong et al., 2020b). The guide RNA (gRNA) plasmids used in this study are listed in Table 2 and were produced by high-speed cloning method (Li et al., 2011). The 23 nucleotides (unique 20 bp + NGG) of the generated guide RNA (cg#1) were designed through Sequence Manipulation Suite (http://www.bioinformatics.org/sms2), and off-targets were identified using GGGenome. . The Saccharomyces cerevisiae S288C genome was referenced and searched using the GGGenome search engine (https://gggenome.dbcls.jp/sacCer3/). Finally, the cg#1 sequence was selected as 5'-GTACACCTACCCGTCACCGG AGG. To construct the pRS42H-cg#1 gRNA plasmid, the template plasmid, pRS42H-INT#4 gRNA plasmid (Jeong et al., 2020b), was PCR amplified with primers Kim191/Kim192 (Tables 2 and 3). Then, the PCR product was treated with DpnI and used to transform E. coli TOP10. Transformants were selected on LBA agar plates. The cg#1 sequence is confirmed by Sanger sequencing using universal primers for the T3 promoter (see Table 2).

Donor DNA 단편(Donor DNA fragments)은 표 3에 열거된 프라이머를 사용하여 중합효소 연쇄 반응(Polymerase Chain Reaction, PCR)을 통해 제작하였다. 각 donor DNA 단편들이 생체 내 조립 및 염색체 내 도입되기 위하여 donor DNA 단편의 양쪽에 각각 20-40 bp 길이의 염색체 염기서열로 구축하여 상동 재조합이 일어나도록 유도하였다. L-arabinose 경로 발현 카세트(int#7::PFBA1-lad1-TFBA1-PPGK1-alx1-TCYC1)에 대한 공여자 DNA를 사카로마이세스 세레비지애(Saccharomyces cerevisiae) YE9 균주(Jeong et al., 2020b) 게놈으로부터 Kim490/Kim491 프라이머가 있는 주형 DNA 및 통합된 유전자간 영역 #7(int#7)으로 PCR 증폭하였다. udh 유전자 발현을 위해 먼저 발현 카세트(PCCW12-cg#1-TTDH3)에 대한 2개의 공여자 DNA(PCCW12 및 TTDH3)를 각각 Kim379/Kim1199 및 Kim1200/Kim396 프라이머로 PCR 증폭하고, 유전자간 영역 #4(int#4)에 통합되었다. Agrobacterium tumefaciens GV3101(Atudh), Pseudomonas putida ATCC12633(Ppudh), Pseudomonas syringae KACC15103(Psudh)로부터 유래한 udh 유전자와 최적화된 합성 코돈 Psudh*(Psudh-amplified*)은 Kim677/Kim758, Kim675/Kim757, Kim673/Kim756 및 Kim686/Kim759 프라이머를 각각 이용하고 발현 카세트(int#4::PCCW12-cg#1-TTDH3)의 cg#1 영역에 통합하여 PCR 증폭을 수행하였고 그 결과 At-udh, Pp-udh, Ps-udh 및 Ps-udh* 균주를 생성하였다. 올바른 조립 및 통합은 kim322/Kim323 프라이머를 사용한 효모 콜로니 PCR에 의해 확인되었다. 마지막으로, 이전 연구에서와 같이 효모 형질전환을 수행하였다(Jeong et al., 2020b).)Donor DNA fragments were produced through polymerase chain reaction (PCR) using the primers listed in Table 3. In order for each donor DNA fragment to be assembled in vivo and introduced into the chromosome, a chromosome base sequence of 20-40 bp in length was constructed on both sides of the donor DNA fragment to induce homologous recombination. Donor DNA for the L-arabinose pathway expression cassette (int#7::PFBA1-lad1-TFBA1-PPGK1-alx1-TCYC1) was obtained from Saccharomyces cerevisiae YE9 strain (Jeong et al., 2020b). PCR amplification was performed from the genome with template DNA and integrated intergenic region #7 (int#7) with Kim490/Kim491 primers. For udh gene expression, first, two donor DNAs (PCCW12 and TTDH3) for the expression cassette (PCCW12-cg#1-TTDH3) were PCR amplified with primers Kim379/Kim1199 and Kim1200/Kim396, respectively, and intergenic region #4 (int Integrated into #4). The udh genes derived from Agrobacterium tumefaciens GV3101 (Atudh), Pseudomonas putida ATCC12633 (Ppudh), and Pseudomonas syringae KACC15103 (Psudh) and the optimized synthetic codon Psudh* (Psudh-amplified*) are Kim677/Kim758, Kim675/Kim757, Kim673/Kim7 56 and Kim686/Kim759 primers were used respectively and integrated into the cg#1 region of the expression cassette (int#4::PCCW12-cg#1-TTDH3) to perform PCR amplification, resulting in At-udh, Pp-udh, Ps- udh and Ps-udh* strains were generated. Correct assembly and integration was confirmed by yeast colony PCR using kim322/Kim323 primers. Finally, yeast transformation was performed as in a previous study (Jeong et al., 2020b).

즉, 삽입된 udh 유전자는 Pseudomonas syringae KACC15103 (Psudh), Pseudomonas putida ATCC12633 (Ppudh), Agrobacterium tumefaciens GV3101 (Atudh)이며 Psudh* 는 codon-optimized Psudh gene 에 해당한다(표 1 참조). 또한 Psudh 및 Psudh*의 염기서열은 표 4에 해당한다.That is, the inserted udh genes are Pseudomonas syringae KACC15103 (Psudh), Pseudomonas putida ATCC12633 (Ppudh), and Agrobacterium tumefaciens GV3101 (Atudh), and Psudh* corresponds to the codon-optimized Psudh gene (see Table 1). Additionally, the base sequences of Psudh and Psudh* correspond to Table 4.

균주
(Saccharomyces cerevisiae)
strain
(Saccharomyces cerevisiae)
관련된 유전자형의 설명Description of relevant genotypes 인용문헌cited literature
D452-2D452-2 Wild-type; Matα leu2 his3 ura3Wild-type; Matα leu2 his3 ura3 (Hosaka et al., 1992)(Hosaka et al., 1992) DY02DY02 Xylose utilizing-engineered strainXylose utilizing-engineered strain (Jeong et al., 2020a)(Jeong et al., 2020a) DY23DY23 Xylose and L-arabinose utilizing-engineered strain;
DY02 int#7::PFBA1-lad1-TFBA1-PPGK1-alx1-TCYC1 int#4::PCCW12-cg#1*-TTDH3
Xylose and L-arabinose utilizing-engineered strain;
DY02 int#7::PFBA1-lad1-TFBA1-PPGK1-alx1-TCYC1 int#4::PCCW12-cg#1*-TTDH3
This studyThis study
At-udhAt-udh DY23 int#4::PCCW12-Atudh-TTDH3DY23 int#4::PCCW12-Atudh-TTDH3 This studyThis study Pp-udhPp-udh DY23 int#4::PCCW12-Ppudh-TTDH3DY23 int#4::PCCW12-Ppudh-TTDH3 This studyThis study Ps-udhPs-udh DY23 int#4::PCCW12-Psudh-TTDH3DY23 int#4::PCCW12-Psudh-TTDH3 This studyThis study Ps-udh*Ps-udh* DY23 int#4::PCCW12-Psudh*-TTDH3DY23 int#4::PCCW12-Psudh*-TTDH3 This studyThis study δPs-udh*δPs-udh* Ps-udh* leu2::LEU2-pYS-δPsudh*Ps-udh* leu2::LEU2-pYS-δPsudh* This studyThis study

PlasmidsPlasmids 관련된 플라스미드의 설명Description of relevant plasmids 인용문헌cited literature pRS41N-Cas9pRS41N-Cas9 pRS41N plasmid with a natNT marker and Cas9pRS41N plasmid with a natNT marker and Cas9 (Kim et al., 2015)(Kim et al., 2015) pRS42H-INT#4pRS42H-INT#4 pRS42H plasmid with a hph marker and gRNA block containing 23-bp near ASF1 sequencepRS42H plasmid with a hph marker and gRNA block containing 23-bp near ASF1 sequence (Jeong et al., 2020b)(Jeong et al., 2020b) pRS42H-INT#7 pRS42H-INT#7 pRS42H plasmid with a hph marker and gRNA block containing 23-bp near YGR190C sequencepRS42H plasmid with a hph marker and gRNA block containing 23-bp near YGR190C sequence (Jeong et al., 2020b)(Jeong et al., 2020b) pRS42H-cg#1pRS42H-cg#1 pRS42H plasmid with a hph marker and gRNA block containing 23-bp sequence (5’-GTACACCTACCCGTCACCGG AGG)pRS42H plasmid with a hph marker and gRNA block containing 23-bp sequence (5’-GTACACCTACCCGTCACCGG AGG) This studyThis study pYS-δPsudh*pYS-δPsudh* pRS305 PTDH3-Psudh*-TTDH3pRS305 PTDH3-Psudh*-TTDH3 This studyThis study

PrimersPrimers Sequences (5’-)Sequences (5’-) DescriptionDescription Kim191Kim191 CACCTACCCGTCACCGG GTTTTAGAGCTAGAAATAGCAAGCACCTACCCGTCACCCG GTTTTAGAGCTAGAAATAGCAAG FC_cg#1-FFC_cg#1-F Kim192Kim192 CGGTGACGGGTAGGTGTAC GATCATTTATCTTTCACTGCGCGGTGACGGGTAGGTGTAC GATCATTTATCTTTCACTGCG FC_cg#1-RFC_cg#1-R Kim490Kim490 GGCACTAGGAGCATTTGTCGGGCACTAGGAGCATTTGTCG Donor_INT#7_FDonor_INT#7_F Kim491Kim491 GTCCCTTAGGGTGCGTATAATG GTCCCTTAGGGTGCGTATAATG Donor_INT#7_RDonor_INT#7_R Kim379Kim379 TTCCTCGGGCAGAGAAACTCGCAGGCAACTTG CACGCAAAAGAAAACCTTTTCCTCGGGCAGAGAAACTCGCAGGCAACTTG CACGCAAAAGAAAACCTT Donor_CCW12p_FDonor_CCW12p_F Kim1199Kim1199 CCTCCGGTGACGGGTAGGTGTAC TATTGATATAGTGTTTAAGCGAATCCTCCGGTGACGGGTAGGTGTAC TATTGATATAGTGTTTAAGCGAAT Donor_CCW12p_RDonor_CCW12p_R Kim1120Kim1120 GTACACCTACCCGTCACCGGAGG GTGAATTTACTTTAAATCTTGCGTACACCTACCCGTCACCGGAGG GTGAATTTACTTTAAATCTTGC Donor_TDH3t_FDonor_TDH3t_F Kim396Kim396 CCTCTGTGAGGGCCGATTATGCAGGCCTAGA ATCCTGGCGGAAAAAATTCCCTCTGTGAGGGCCGATTATGCAGGCCTAGA ATCCTGGCGGAAAAAATTC Donor_TDH3t_RDonor_TDH3t_R Kim677Kim677 TCATTCGCTTAAACACTATATCAATAAAAA ATGAAACGGCTTCTTGTTACCTCATTCGCTTAAACACTATATCAATAAAAA ATGAAACGGCTTCTTGTTACC Donor_Atudh_FDonor_Atudh_F Kim758Kim758 ATTTAAATGCAAGATTTAAAGTAAATTCACTCA TCAGCTCTGTTTGAAGATCGATTTAAATGCAAGATTTAAAGTAAATTCACTCA TCAGCTCTGTTTGAAGATCG Donor_Atudh_RDonor_Atudh_R Kim675Kim675 TCATTCGCTTAAACACTATATCAATAAAAA ATGACCACTACCCCCTTCTCATTCGCTTAAACACTATATCAATAAAAA ATGACCACTACCCCCTTC Donor_Ppudh_FDonor_Ppudh_F Kim757Kim757 ATTTAAATGCAAGATTTAAAGTAAATTCACTCA TCAGTTGAACGGGCCGATTTAAATGCAAGATTTAAAGTAAATTCACTCA TCAGTTGAACGGGCCG Donor_Ppudh_RDonor_Ppudh_R Kim673Kim673 TCATTCGCTTAAACACTATATCAATAAAAA ATGGCATCGGCTCATACCTCATTCGCTTAAACACTATATCAATAAAAA ATGGCATCGGCTCATACC Donor_Psudh_FDonor_Psudh_F Kim756Kim756 ATTTAAATGCAAGATTTAAAGTAAATTCACTTA TTATTTATCGCCGAACGGTCATTTAAATGCAAGATTTAAAGTAAATTCACTTA TTATTTATCGCCGAACGGTC Donor_Psudh_RDonor_Psudh_R Kim686Kim686 TCATTCGCTTAAACACTATATCAATAAAAA ATGGCTTCTGCTCACACTCATTCGCTTAAACACTATATCAATAAAAA ATGGCTTTCTGCTCACAC Donor_Psudh*_FDonor_Psudh*_F Kim759Kim759 ATTTAAATGCAAGATTTAAAGTAAATTCACTTA TTACTTGTCACCGAATGGACATTTAAATGCAAGATTTAAAGTAAATTCACTTA TTACTTGTCACCGAATGGAC Donor_Psudh*_RDonor_Psudh*_R Kim322Kim322 GCGCATCTATTTGCCGTCGCGCATCTATTTGCCGTC Conf_INT#4_FConf_INT#4_F Kim323Kim323 TCACGACACACCTCACTGTCACGACACACCTCACTG Conf_INT#4_RConf_INT#4_R Kim549Kim549 GCATCCTTTGCCTCCGTTC GCATCCTTTGCCTCTCGTTC Seq_CCW12p_FSeq_CCW12p_F Kim1119Kim1119 GTGGTGTCTCCGTTGAAAGAGTGGTGTCTCTCGTTGAAAGA qPCR_Psudh*_FqPCR_Psudh*_F Kim1120Kim1120 CGTGGTTAGAAGAAGCGAAGACGGTGGTTAGAAGAAGCGAAGA qPCR_Psudh*_RqPCR_Psudh*_R gRNAgRNA guide RNA and PAM sequences (5’-)guide RNA and PAM sequences (5’-) ReferencesReferences INT#4INT#4 CTCTCGAAGTGGTCACGTGC GGGCTCTCGAAGGTGGTCACGTGC GGG (Jeong et al., 2020b)(Jeong et al., 2020b) INT#7INT#7 GATACTTATCATTAAGAAAA TGGGATACTTATCATTAAGAAAA TGG (Jeong et al., 2020b)(Jeong et al., 2020b) cg#1cg#1 GTACACCTACCCGTCACCGG AGGGTACACCTACCCGTCACCGG AGG This studyThis study

서열번호sequence number 염기서열 (5’-)Base sequence (5’-) Psudh
(Wild-type Psudh)
Psudh
(Wild-type Psudh )
1One ATGGCATCGGCTCATACCACTCAAACTCCCTTCAATCGCCTCCTGCTGACCGGTGCTGCAGGCGGCCTGGGCAAGGTATTGCGCGAGACATTGCGCCCTTACTCACACATTCTGCGACTCTCTGATATCGCCGAGATGGCGCCCGCGGTCGGCGACCATGAAGAAGTGCAGGTCTGCGATCTGGCGGACAAAGACGCCGTACACCGTCTGGTCGAAGGCGTGGACGCCATTCTGCATTTTGGCGGCGTGTCGGTCGAACGGCCTTTCGAGGAAATCCTCGGCGCTAATATCTGCGGCGTGTTCCATATCTACGAGGCCGCCCGCCGGCATGGCGTGAAACGCGTGATCTTCGCCAGCTCCAACCATGTGATCGGTTTCTACAAGCAGAACGAAACCATCGACGCGCACTCCCCGCGCCGCCCGGACAGCTACTATGGTTTGTCCAAGTCCTACGGCGAAGACATGGCCAGCTTCTACTTTGATCGTTACGGCATCGAAACCGTCAGCATCCGCATCGGCTCATCGTTCCCTGAACCACAGAACCGCAGAATGATGAGCACCTGGCTGAGCTTCGATGACCTGACCCGGTTGCTCGAGCGCGCCCTGTACACGCCGGACGTCGGCCACACCGTGGTGTATGGCGTGTCGGACAACAAGACCGTGTGGTGGGACAACCGCTTTGCCAGCAAACTGGACTACGCCCCTAAAGACAGCTCGGAGGTCTTCCGCGCCAAGGTCGACGCCCAGCCAATGCCGGCGGACGACGACCCGGCAATGGTTTACCAGGGCGGTGCGTTTGTAGCGTCCGGACCGTTCGGCGATAAATAAATGGCATCGGCTCATACCACTCAAACTCCCTTCAATCGCCTCCTGCTGACCGGTGCTGCAGGCGGCCTGGGCAAGGTATTGCGCGAGACATTGCGCCCTTACTCACACATTCTGCGACTCTCTGATATCGCCGAGATGGCGCCCGCGGTCGGCGACCATGAAGAAGTGCAGGTCTGCGATCTGGCGGACAAAGACGCCGTACACCGTCTGGTCGAAGGCGTGGACGCCATTCTGCATTTTGGCGGCGTGTCGGTCGAACGG CCTTTCGAGGAAATCCTCGGCGCTAATATCTGCGGCGTGTTCCATATCTACGAGGCCGCCCGCCGGCATGGCGTGAAACGCGTGATCTTCGCCAGCTCCAACCATGTGATCGGTTTCTACAAGCAGAACGAAACCATCGACGCGCACTCCCCGCGCCGCCCGGACAGCTACTATGGTTTGTCCAAGTCCTACGGCGAAGACATGGCCAGCTTCTACTTTGATCGTTACGGCATCGAAACCGTCAGCATCCGCATCGGCT CGTTCCCTGAACCACAGAACCGCAGAATGATGAGCACCTGGCTGAGCTTCGATGACCTGACCCGGTTGCTCGAGCGCGCCCTGTACACGCCGGACGTCGGCCACACCGTGGTGTATGGCGTGTCGGACAACAAGACCGTGTGGTGGGACAACCGCTTTGCCAGCAAACTGGACTACGCCCCTAAAGACAGCTCGGAGGTCTTCCGCGCCAAGGTCGACGCCCAGCCAATGCCGGGCGGACGACGACCCGGCAATGGTTTA CCAGGGCGGGTGCGTTTGTAGCGTCCGGACCGTTCGGCGATAAATAA
Psudh*
(Codon-optimized Psudh)
Psudh*
(Codon-optimized Psudh )
22 ATGGCTTCTGCTCACACTACTCAAACTCCATTCAACAGATTGTTGTTGACTGGTGCTGCTGGTGGTTTGGGTAAGGTTTTGAGAGAAACTTTGAGACCATACTCTCACATCTTGAGATTGTCTGACATCGCTGAAATGGCTCCAGCTGTTGGTGACCACGAAGAAGTTCAAGTTTGTGACTTGGCTGACAAGGACGCTGTTCACAGATTGGTTGAAGGTGTTGACGCTATCTTGCACTTCGGTGGTGTCTCCGTTGAAAGACCATTCGAAGAAATCTTGGGTGCTAACATCTGTGGTGTTTTCCACATCTACGAAGCTGCTAGAAGACACGGTGTTAAGAGAGTTATCTTCGCTTCTTCTAACCACGTTATCGGTTTCTACAAACAAAATGAAACTATCGACGCTCACTCTCCAAGAAGACCAGACTCTTACTACGGTTTGTCTAAGTCTTACGGTGAAGACATGGCTTCTTTCTACTTCGACAGATACGGTATCGAAACTGTTTCTATCAGAATCGGTTCTTCTTTCCCAGAACCACAAAACAGAAGAATGATGTCTACTTGGTTGTCTTTCGACGACTTGACTAGATTGTTGGAAAGAGCTTTGTACACTCCAGACGTTGGTCACACTGTTGTTTACGGTGTTTCTGACAACAAGACTGTTTGGTGGGACAACAGATTCGCTTCTAAGTTGGACTACGCTCCAAAGGACTCTTCTGAAGTTTTCAGAGCTAAGGTTGACGCTCAACCAATGCCAGCTGACGACGACCCAGCTATGGTTTACCAAGGTGGTGCTTTCGTTGCTTCTGGTCCATTCGGTGACAAGTAAATGGCTTCTGCTCACACTACTCAAACTCCATTCAACAGATTGTTGTTGACTGGTGCTGCTGGTGGTTTGGGTAAGGTTTTGAGAGAAACTTTGAGACCATACTCTCACATCTTGAGATTGTCTGACATCGCTGAAATGGCTCCAGCTGTTGGTGACCACGAAGAAGTTCAAGTTTGTGACTTGGCTGACAAGGACGCTGTTCACAGATTGGTTGAAGGTGTTGACGCTATCTTGCACTTCGGTGGTGTCTCCGTTGAAAG ACCATTCGAAGAAATCTTGGGTGCTAACATCTGTGGTGTTTTCCACATCTACGAAGCTGCTAGAAGACACGGTGTTAAGAGAGTTATCTTCGCTTCTTCTAACCACGTTATCGGTTTCTACAAACAAAATGAAACTATCGACGCTCACTCTCCAAGAAGACCAGACTCTTACTACGGTTTGTCTAAGTCTTACGGTGAAGACATGGCTTCTTTCTACTTCGACAGATACGGTATCGAAACTGTTTCTATCAGAATCGGTTCT TCTTTCCCAGAACCACAAAACAGAAGAATGATGTCTACTTGGTTGTCTTTCGACGACTTGACTAGATTGTTGGAAAGAGCTTTGTACACTCCAGACGTTGGTCACACTGTTGTTTACGGTGTTTCTGACAACAAGACTGTTTGGTGGGACAACAGATTCGCTTCTAAGTTGGACTACGCTCCAAAGGACTCTTCTGAAGTTTTCAGAGCTAAGGTTGACGCTCAACCAATGCCAGCTGACGACGACCCAGCTATGGTTTACCAAGG TGGTGCTTTCGTTGCTTCTGGTCCATTCGGTGACAAGTAA

<1-2> 배양 조건 및 플라스크 발효<1-2> Culture conditions and flask fermentation

이 연구에 사용된 재조합 효모 균주 및 플라스미드는 표 1 및 표 2에 나열되어 있다. S. cerevisiae는 20g/L를 함유하는 효모 추출물-펩톤(YP) 배지(10g/L 효모 추출물, 20g/L 펩톤)에서 30℃ 조건으로 발효시켰다. 효모 형질전환에 사용된 배지는 항생제(100㎍/mL nourseothricin sulfate, 300㎍/mL hygromycin B)가 보충된 YPD 한천 플레이트였습니다. Escherichia coli TOP10(Invitrogen, Carlsbad, CA, USA)을 사용하여 플라스미드 DNA를 증폭했다. Escherichia coli는 37℃에서 100㎍/mL 암피실린(LBA)이 첨가된 Luria-Bertani 배지(5g/L 효모 추출물, 10g/L 트립톤, 10g/L NaCl)에서 배양하였다.Recombinant yeast strains and plasmids used in this study are listed in Tables 1 and 2. S. cerevisiae was fermented at 30°C in yeast extract-peptone (YP) medium containing 20 g/L (10 g/L yeast extract, 20 g/L peptone). The medium used for yeast transformation was YPD agar plates supplemented with antibiotics (100 μg/mL nourseothricin sulfate, 300 μg/mL hygromycin B). Plasmid DNA was amplified using Escherichia coli TOP10 (Invitrogen, Carlsbad, CA, USA). Escherichia coli was cultured in Luria-Bertani medium (5 g/L yeast extract, 10 g/L tryptone, 10 g/L NaCl) supplemented with 100 μg/mL ampicillin (LBA) at 37°C.

250 rpm으로 20 g/L의 포도당을 포함하는 YP 배지에서 24시간 동안 전배양한 후, 효모 세포를 3,134 xg, 4℃에서 10분간 원심분리하여 수확하고, 증류수로 세척하였다. 초기 세포 농도를 600 nm에서의 광학 밀도(OD600) 1.0, 20.0 또는 50.0(OD600 1.0 = 0.5 g의 건조 세포/L)으로 조정하고, 세포 펠렛을 20 g/L D-갈락투론산 및 자일로스 40 g/L을 기질로서 포함하는 10 mL의 YP 배지에 접종하였다. 본 배양은 산소 조건(Oxygen-limited, 130 rpm; Oxygen, 250 rpm) 하에 50mL 삼각 플라스크에 두 가지 온도(30 또는 35℃)에서 수행하였다. 펙틴 발효는 다양한 펙틴(0, 2.5, 5.0, 7.5, 10.0%(w/w)) 및 자일로스를 기질로 함유하는 YP 배지에서 수행하였고 모든 실험은 생물학적 삼중으로 수행되었다.After preculturing for 24 hours in YP medium containing 20 g/L of glucose at 250 rpm, yeast cells were harvested by centrifugation at 3,134 xg for 10 minutes at 4°C and washed with distilled water. Adjust the initial cell concentration to an optical density at 600 nm (OD600) of 1.0, 20.0 or 50.0 (OD600 1.0 = 0.5 g of dry cells/L) and cell pellet in 20 g/L D-galacturonic acid and xylose 40. g/L was inoculated into 10 mL of YP medium containing the substrate. This culture was performed at two temperatures (30 or 35°C) in a 50 mL Erlenmeyer flask under oxygen conditions (Oxygen-limited, 130 rpm; Oxygen, 250 rpm). Pectin fermentation was performed in YP medium containing various pectins (0, 2.5, 5.0, 7.5, 10.0% (w/w)) and xylose as substrates, and all experiments were performed in biological triplicate.

<1-3> 고성능 액체 크로마토그래피(High Performance Liqui Chromatography, HPLC)를 활용한 성분 분석<1-3> Ingredient analysis using High Performance Liqui Chromatography (HPLC)

포도당, 자일로스, D-갈락투론산, 뮤식산(mucic acid), 에탄올의 정량은 RI 검출기와 고성능 액체 크로마토크래피(HPLC 1260 series, Agilent Technologies, USA)를 사용해 분석하였다. 구체적으로, 컬럼을 0.005N H2SO4로 0.6mL/min 및 50℃에서 용리시켰고 분석을 위해 배양액을 뮤식산(mucic acid) 농도가 3g/L 이하로 희석하여, pH 7.0 이상으로 조절하기위해 7.5N NaOH를 섞어 5분간 혼합하였다.The quantification of glucose, xylose, D-galacturonic acid, mucic acid, and ethanol was analyzed using an RI detector and high-performance liquid chromatography (HPLC 1260 series, Agilent Technologies, USA). Specifically, the column was eluted with 0.005NH 2 SO 4 at 0.6 mL/min and 50°C, and for analysis, the culture medium was diluted to a mucic acid concentration of 3 g/L or less, and adjusted to pH 7.0 or higher at 7.5. N NaOH was added and mixed for 5 minutes.

<실시예 2> 뮤식산 생산 능력 확인<Example 2> Confirmation of mucic acid production capacity

Agrobacterium tumefaciens (At-udh), Pseudomoans putida (Ps-udh), Pseudomonas syringae (Ps-udh) 이렇게 3종류의 서로 다른 곰팡이 유래 udh 유전자를 효모에서 발현하여 갈락투론산(galacturonic acid) 소비량과 뮤식산(mucic acid)생산량을 비교했다. 96 h 동안의 갈락투론산(galacturonic acid) 소비량을 비교했을 때, Ps-udh 를 발현한 균주에서 가장 많은 양의 갈락투론산(galacturonic acid)가 뮤식산(mucic acid)로 전환되었다. Galacturonic acid consumption and music acid ( mucic acid) production was compared. When comparing galacturonic acid consumption over 96 h, the largest amount of galacturonic acid was converted to mucic acid in the strain expressing Ps-udh.

또한 세포의 농도를 0.5 g/L에서 25 g/L로 높여 발효한 결과 발효 속도가 2배 이상 빨라지는 것을 볼 수 있었고, codon optimization된 Ps-udh* 유전자를 발현했을 때, 가장 많은 양의 뮤식산(mucic acid)를 생산했다. 이 때, 20 g/L 갈락투론산(galacturonic acid) 모든 양이 소비되어 21.8 g/L의 뮤식산(mucic acid)를 생산함으로써 생산수율은 1.1 g/g으로 이론수율과 일치했고, 생산성은 0.61 g/L-h으로 지금까지 보고된 결과들 중 가장 높았다(표 5 및 표 6 참조).In addition, as a result of fermentation by increasing the cell concentration from 0.5 g/L to 25 g/L, the fermentation speed was seen to be more than twice as fast, and when the codon optimized Ps-udh* gene was expressed, the largest amount of mu was produced. Produced mucic acid. At this time, all 20 g/L galacturonic acid was consumed to produce 21.8 g/L mucic acid, so the production yield was 1.1 g/g, which was consistent with the theoretical yield, and the productivity was 0.61. It was the highest among the results reported so far in g/L-h (see Table 5 and Table 6).

StrainStrain Initial cell
(g DCW/L)
Initial cell
(gDCW/L)
Xylose
consumed
(g/L)
Xylose
Consumed
(g/L)
galUA
consumed
(g/L)
galUA
Consumed
(g/L)
mucic acidmucic acid
Produced
(g/L)
Produced
(g/L)
Yield
(g/g galUA)
Yield
(g/g galUA)
Volumetric productivity
(g/L-h)
Volumetric productivity
(g/Lh)
Specific productivity
(g/g DCW-h)
Specific productivity
(g/g DCW-h)
ControlControl 0.50.5 35.4 ± 0.135.4 ± 0.1 5.8 ± 0.15.8 ± 0.1 n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. At-udhAt-udh 37.0 ± 0.337.0 ± 0.3 10.5 ± 0.810.5 ± 0.8 11.1 ± 0.511.1 ± 0.5 1.02 ± 0.081.02 ± 0.08 0.15 ± 0.010.15 ± 0.01 0.04 ± 0.010.04 ± 0.01 Pp-udhPp-udh 37.2 ± 0.337.2 ± 0.3 11.8 ± 0.711.8 ± 0.7 12.7 ± 0.812.7 ± 0.8 1.04 ± 0.091.04 ± 0.09 0.18 ± 0.010.18 ± 0.01 0.04 ± 0.000.04 ± 0.00 Ps-udhPs-udh 37.2 ± 0.337.2 ± 0.3 12.7 ± 0.212.7 ± 0.2 13.6 ± 0.213.6 ± 0.2 1.05 ± 0.021.05 ± 0.02 0.19 ± 0.000.19 ± 0.00 0.04 ± 0.000.04 ± 0.00 ControlControl 25.025.0 34.5 ± 0.134.5 ± 0.1 9.4 ± 0.69.4 ± 0.6 n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. At-udhAt-udh 34.0 ± 0.134.0 ± 0.1 18.0 ± 0.618.0 ± 0.6 18.8 ± 0.018.8 ± 0.0 1.05 ± 0.001.05 ± 0.00 0.52 ± 0.000.52 ± 0.00 0.02 ± 0.000.02 ± 0.00 Pp-udhPp-udh 34.0 ± 0.134.0 ± 0.1 17.5 ± 0.417.5 ± 0.4 17.9 ± 0.017.9 ± 0.0 1.04 ± 0.001.04 ± 0.00 0.50 ± 0.000.50 ± 0.00 0.02 ± 0.000.02 ± 0.00 Ps-udhPs-udh 33.8 ± 0.133.8 ± 0.1 17.7 ± 0.117.7 ± 0.1 17.3 ± 0.017.3 ± 0.0 0.98 ± 0.000.98 ± 0.00 0.48 ± 0.000.48 ± 0.00 0.02 ± 0.000.02 ± 0.00 Ps-udh*Ps-udh* 34.3 ± 0.334.3 ± 0.3 20.3 ± 0.320.3 ± 0.3 21.8 ± 0.021.8 ± 0.0 1.08 ± 0.001.08 ± 0.00 0.61 ± 0.000.61 ± 0.00 0.02 ± 0.000.02 ± 0.00

Production hostProduction host udh geneudh gene GenotypeGenotype Fermentation conditionsFermentation conditions Substrates (g/L)Substrates (g/L) Time (h)Time (h) mucic acid produced
(g/L)
mucic acid produced
(g/L)
mucic acid yield (g/g)mucic acid yield (g/g) ReferenceReference
Escherichia coli BL21(DE3)Escherichia coli BL21(DE3) AtAt ΔuxaC ΔgarDΔuxaC ΔgarD minimal
37℃, 250 rpm
minimal
37℃, 250rpm
10 galUA,
10Glu
10Ara
10 galUA,
10Glu
10Ara
4848 10.310.3 1.051.05 (Zhang et al., 2016)(Zhang et al., 2016)
Trichoderma reesei QM6aTrichoderma reesei QM6a At*At* Δgar1Δgar1 minimal (pH 5.0)
30℃,200rpm
minimal (pH 5.0)
30℃, 200rpm
17 galUA
2 Glu
17 galUA
2 Glu
211211 12.112.1 0.860.86 (Mojzita et al., 2010)(Mojzita et al., 2010)
Aspergillus niger ATCC1015Aspergillus niger ATCC1015 At*At* ΔgaaAΔgaaA minimal (pH 5.0)
30℃,200rpm
minimal (pH 5.0)
30℃, 200rpm
17 galUA
2 Glu
17 galUA
2 Glu
211211 0.70.7 0.080.08 (Mojzita et al., 2010)(Mojzita et al., 2010)
Aspergillus niger ATCC1015Aspergillus niger ATCC1015 At*At* ΔgaaA Δ39114ΔgaaA Δ39114 complex (pH 5.0)
30℃, 250 rpm
complex (pH 5.0)
30℃, 250rpm
20 galUA20 galUA 120120 4.04.0 1.081.08 (Kuivanen et al., 2016)(Kuivanen et al., 2016)
Trichoderma reesei VTT
D-161646
Trichoderma reesei VTT
D-161646
At*At* Δgar1Δgar1 complex (pH 4.0)
35℃, 400 rpm, 0.5 vvm
complex (pH 4.0)
35℃, 400rpm, 0.5vvm
2.9% pectin
14 Lac
2.9% pectin
14 Lac
185185 21.021.0 1.101.10 (Paasikallio et al., 2017)(Paasikallio et al., 2017)
Trichoderma sp. LF328 T2Trichoderma sp. LF328 T2 At*At* Δgar2Δgar2 complex (pH 5.5)
28℃, 800 rpm microplate
complex (pH 5.5)
28℃, 800 rpm microplate
8 galUA
10 Lac
8 galUA
10 Lac
168168 8.08.0 1.201.20 (Vidgren et al., 2020)(Vidgren et al., 2020)
Coniochaeta sp. C1Coniochaeta sp. C1 At*At* Δgar2Δgar2 complex (pH 5.5)
28℃, 800 rpm microplate
complex (pH 5.5)
28℃, 800 rpm microplate
8 galUA
11 g/L Glu
8 galUA
11 g/L Glu
168168 5.15.1 0.820.82 (Vidgren et al., 2020)(Vidgren et al., 2020)
Trichoderma sp. LF328 T2Trichoderma sp. LF328 T2 At*At* Δgar2Δgar2 complex (pH 4.0)
35℃,300-700rpm,0.6vvm
complex (pH 4.0)
35℃, 300-700rpm, 0.6vvm
66 galUA (Fed-batch)
22 Glu
66 galUA (Fed-batch)
22 Glu
192192 25.425.4 1.081.08 (Vidgren et al., 2020)(Vidgren et al., 2020)
Saccharomyces cerevisiae
BY4742
Saccharomyces cerevisiae
BY4742
AtAt NcGAT-1NcGAT-1 minimal (pH 6.0)
30℃,750rpm
minimal (pH 6.0)
30℃, 750rpm
19 galUA19 galUA 1One 0.0160.016 -- (Benz et al., 2014)(Benz et al., 2014)
Saccharomyces cerevisiae
BY4741
Saccharomyces cerevisiae
BY4741
PsPS AngatAAngatA minimal
30℃, 18 × g
minimal
30℃, 18 × g
50% CPW
200 Glu (Fed-batch)
50%CPW
200 Glu (Fed-batch)
8080 8.08.0 -- (Protzko et al., 2018)(Protzko et al., 2018)
Saccharomyces cerevisiae
Ps-udh*
Saccharomyces cerevisiae
Ps-udh*
Ps*Ps* Pentose pathway**Pentose pathway** complex
30C, 250 rpm
complex
30C, 250 rpm
20 galUA
40 Xyl
20 galUA
40Xyl
4848 21.821.8 1.081.08 This studyThis study

<실시예 3> 펙틴 발효 뮤식산 생산 능력 확인<Example 3> Confirmation of pectin fermentation muciic acid production capacity

펙틴의 동시 당화 발효를 위해 질소원인 yeast extract 및 peptone을 다양한 농도로 처리하였다. 0x(control; 질소원을 처리하지 않은 경우), 0.1x(1 g/L yeast extract, 2 g/L peptone), 0.5x(2 g/L yeast extract, 4 g/L peptone), 1.0x(10 g/L yeast extract, 20 g/L peptone), 2.0x(20 g/L yeast extract, 40 g/L peptone)로 서로 다른 농도의 질소원에서 뮤식산 생산 능력을 비교한 결과 1.0x 농도의 질소원에서 가장 많은 양의 뮤식산(mucic acid)를 생산했다. 이때 48시간동안 최대 19.2 g/L mucic acid를 생산하였다(도 3a 참조). For simultaneous saccharification fermentation of pectin, yeast extract and peptone, which are nitrogen sources, were treated at various concentrations. 0x (control; when the nitrogen source is not treated), 0.1x (1 g/L yeast extract, 2 g/L peptone), 0.5x (2 g/L yeast extract, 4 g/L peptone), 1.0x (10 As a result of comparing the mu acid production capacity from nitrogen sources of different concentrations (g/L yeast extract, 20 g/L peptone) and 2.0x (20 g/L yeast extract, 40 g/L peptone), It produced the largest amount of mucic acid. At this time, a maximum of 19.2 g/L mucic acid was produced over 48 hours (see Figure 3a).

또한, 펙틴의 동시 당화 발효를 위해 0, 10, 20, 40, 60, 80, 100 g/L로 서로 다른 농도의 자일로스를 첨가하여 뮤식산 생산 능력을 비교한 결과 60 g/L 이상의 자일로스를 첨가했을 때 가장 많은 양의 뮤식산(mucic acid)를 생산했다(도 3b 참조). In addition, for the simultaneous saccharification fermentation of pectin, the musitic acid production ability was compared by adding different concentrations of xylose at 0, 10, 20, 40, 60, 80, and 100 g/L, and the results showed that xylose above 60 g/L When added, the largest amount of mucic acid was produced (see Figure 3b).

펙틴의 동시 당화 발효를 위해 펙틴의 농도를 다르게 하여 뮤식산 생산 능력을 비교한 결과 2.5% 이하의 펙틴 농도에서 생산 수율은 1.08 g/g의 이론 수율에 가까웠다(도 3c 참조).As a result of comparing the musitic acid production ability at different concentrations of pectin for simultaneous saccharification fermentation of pectin, the production yield at a pectin concentration of 2.5% or less was close to the theoretical yield of 1.08 g/g (see Figure 3c).

<실시예 4> 감귤 껍질 폐기물 발효 뮤식산 생산 능력 확인<Example 4> Confirmation of citrus peel waste fermentation mu-sic acid production capacity

감귤 껍질 폐기물의 서로 다른 두 가지 방법으로 전처리한 후, 동시 당화 발효를 통한 뮤식산 생산 능력을 비교하였다. 묽은산 전처리 방법(1% H2SO4, 121C, 15분)과 열수 전처리 방법(121C, 15분)을 비교한 결과, 묽은산 전처리 방법으로 처리된 감귤 껍질 폐기물은 뮤식산이 전혀 생산되지 않았으나(도 4a 참조), 열수 전처리 방법으로 처리된 감귤 껍질 폐기물에서는 36시간동안 총 약 21.0 g/L의 뮤식산이 생산되었다(도 4b 참조). After pretreatment of citrus peel waste using two different methods, the production capacity of mucic acid through simultaneous saccharification fermentation was compared. As a result of comparing the dilute acid pretreatment method (1% H2SO4, 121 C, 15 minutes) and the hydrothermal pretreatment method (121 C, 15 minutes), citrus peel waste treated with the dilute acid pretreatment method did not produce muic acid at all (Figure 4a). In the citrus peel waste treated with the hydrothermal pretreatment method, a total of about 21.0 g/L of mu acid was produced over 36 hours (see Figure 4b).

한국생명공학연구원 생물자원센터 (KCTC)Korea Research Institute of Bioscience and Biotechnology Biological Resources Center (KCTC) KCTC14701BPKCTC14701BP 2021091520210915

<110> Kyungpook National University Industry-Academic Cooperation Foundation <120> A novel yeast strain producing mucic acid by fermenting galacturonic acid <130> PN2107-330 <150> KR 10-2020-0118104 <151> 2020-09-15 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 828 <212> DNA <213> Pseudomonas syringae <400> 1 atggcatcgg ctcataccac tcaaactccc ttcaatcgcc tcctgctgac cggtgctgca 60 ggcggcctgg gcaaggtatt gcgcgagaca ttgcgccctt actcacacat tctgcgactc 120 tctgatatcg ccgagatggc gcccgcggtc ggcgaccatg aagaagtgca ggtctgcgat 180 ctggcggaca aagacgccgt acaccgtctg gtcgaaggcg tggacgccat tctgcatttt 240 ggcggcgtgt cggtcgaacg gcctttcgag gaaatcctcg gcgctaatat ctgcggcgtg 300 ttccatatct acgaggccgc ccgccggcat ggcgtgaaac gcgtgatctt cgccagctcc 360 aaccatgtga tcggtttcta caagcagaac gaaaccatcg acgcgcactc cccgcgccgc 420 ccggacagct actatggttt gtccaagtcc tacggcgaag acatggccag cttctacttt 480 gatcgttacg gcatcgaaac cgtcagcatc cgcatcggct catcgttccc tgaaccacag 540 aaccgcagaa tgatgagcac ctggctgagc ttcgatgacc tgacccggtt gctcgagcgc 600 gccctgtaca cgccggacgt cggccacacc gtggtgtatg gcgtgtcgga caacaagacc 660 gtgtggtggg acaaccgctt tgccagcaaa ctggactacg cccctaaaga cagctcggag 720 gtcttccgcg ccaaggtcga cgcccagcca atgccggcgg acgacgaccc ggcaatggtt 780 taccagggcg gtgcgtttgt agcgtccgga ccgttcggcg ataaataa 828 <210> 2 <211> 828 <212> DNA <213> Pseudomonas syringae <400> 2 atggcttctg ctcacactac tcaaactcca ttcaacagat tgttgttgac tggtgctgct 60 ggtggtttgg gtaaggtttt gagagaaact ttgagaccat actctcacat cttgagattg 120 tctgacatcg ctgaaatggc tccagctgtt ggtgaccacg aagaagttca agtttgtgac 180 ttggctgaca aggacgctgt tcacagattg gttgaaggtg ttgacgctat cttgcacttc 240 ggtggtgtct ccgttgaaag accattcgaa gaaatcttgg gtgctaacat ctgtggtgtt 300 ttccacatct acgaagctgc tagaagacac ggtgttaaga gagttatctt cgcttcttct 360 aaccacgtta tcggtttcta caaacaaaat gaaactatcg acgctcactc tccaagaaga 420 ccagactctt actacggttt gtctaagtct tacggtgaag acatggcttc tttctacttc 480 gacagatacg gtatcgaaac tgtttctatc agaatcggtt cttctttccc agaaccacaa 540 aacagaagaa tgatgtctac ttggttgtct ttcgacgact tgactagatt gttggaaaga 600 gctttgtaca ctccagacgt tggtcacact gttgtttacg gtgtttctga caacaagact 660 gtttggtggg acaacagatt cgcttctaag ttggactacg ctccaaagga ctcttctgaa 720 gttttcagag ctaaggttga cgctcaacca atgccagctg acgacgaccc agctatggtt 780 taccaaggtg gtgctttcgt tgcttctggt ccattcggtg acaagtaa 828 <110> Kyungpook National University Industry-Academic Cooperation Foundation <120> A novel yeast strain producing mucic acid by fermenting galacturonic acid <130>PN2107-330 <150> KR 10-2020-0118104 <151> 2020-09-15 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 828 <212> DNA <213> Pseudomonas syringae <400> 1 atggcatcgg ctcataccac tcaaactccc ttcaatcgcc tcctgctgac cggtgctgca 60 ggcggcctgg gcaaggtatt gcgcgagaca ttgcgccctt actcacacat tctgcgactc 120 tctgatatcg ccgagatggc gcccgcggtc ggcgaccatg aagaagtgca ggtctgcgat 180 ctggcggaca aagacgccgt acaccgtctg gtcgaaggcg tggacgccat tctgcatttt 240 ggcggcgtgt cggtcgaacg gcctttcgag gaaatcctcg gcgctaatat ctgcggcgtg 300 ttccatatct acgaggccgc ccgccggcat ggcgtgaaac gcgtgatctt cgccagctcc 360 aaccatgtga tcggtttcta caagcagaac gaaaccatcg acgcgcactc cccgcgccgc 420 ccggacagct actatggttt gtccaagtcc tacggcgaag acatggccag cttctacttt 480 gatcgttacg gcatcgaaac cgtcagcatc cgcatcggct catcgttccc tgaaccacag 540 aaccgcagaa tgatgagcac ctggctgagc ttcgatgacc tgacccggtt gctcgagcgc 600 gccctgtaca cgccggacgt cggccacacc gtggtgtatg gcgtgtcgga caacaagacc 660 gtgtggtggg acaaccgctt tgccagcaaa ctggactacg cccctaaaga cagctcggag 720 gtcttccgcg ccaaggtcga cgcccagcca atgccggcgg acgacgaccc ggcaatggtt 780 taccagggcg gtgcgtttgt agcgtccgga ccgttcggcg ataaataa 828 <210> 2 <211> 828 <212> DNA <213> Pseudomonas syringae <400> 2 atggcttctg ctcacactac tcaaactcca ttcaacagat tgttgttgac tggtgctgct 60 ggtggtttgg gtaaggtttt gagagaaact ttgagaccat actctcacat cttgagattg 120 tctgacatcg ctgaaatggc tccagctgtt ggtgaccacg aagaagttca agtttgtgac 180 ttggctgaca aggacgctgt tcacagattg gttgaaggtg ttgacgctat cttgcacttc 240 ggtggtgtct ccgttgaaag accattcgaa gaaatcttgg gtgctaacat ctgtggtgtt 300 ttccacatct acgaagctgc tagaagacac ggtgttaaga gagttatctt cgcttcttct 360 aaccacgtta tcggtttcta caaacaaaat gaaactatcg acgctcactc tccaagaaga 420 ccagactctt actacggttt gtctaagtct tacggtgaag acatggcttc tttctacttc 480 gacagatacg gtatcgaaac tgtttctatc agaatcggtt cttctttccc agaaccacaa 540 aacagaagaa tgatgtctac ttggttgtct ttcgacgact tgactagatt gttggaaaga 600 gctttgtaca ctccagacgt tggtcacact gttgtttacg gtgtttctga caacaagact 660 gtttggtggg acaacagatt cgcttctaag ttggactacg ctccaaagga ctcttctgaa 720 gttttcagag ctaaggttga cgctcaacca atgccagctg acgacgaccc agctatggtt 780 taccaaggtg gtgctttcgt tgcttctggt ccattcggtg acaagtaa 828

Claims (8)

사카로마이세스 세레비지애(Saccharomyces cerevisiae)(수탁번호: KCTC 14701BP) 균주를 1 내지 20 g/L 효모추출물(yeast extract), 2 내지 40 g/L 펩톤(peptone), 60g/L 자일로스 및 5 내지 100g/L의 펙틴(pectin)이 포함된 배지에서 발효하는 1단계; 및
상기 배지 또는 상기 균주로부터 뮤식산(mucic acid)을 회수하는 2단계를 포함하는, 뮤식산(mucic acid) 생산 방법.
Saccharomyces cerevisiae (Accession number: KCTC 14701BP) strain was mixed with 1 to 20 g/L yeast extract, 2 to 40 g/L peptone, 60 g/L xylose and Step 1 of fermentation in a medium containing 5 to 100 g/L of pectin; and
A method for producing mucic acid, comprising two steps of recovering mucic acid from the medium or the strain.
제1항에 있어서,
상기 사카로마이세스 세레비지애(Saccharomyces cerevisiae)(수탁번호: KCTC 14701BP) 균주는 서열번호 2의 염기서열로 표시되고 우로네이트 탈수소효소(Uronate Dehydrogenase)를 코딩하는 udh 유전자를 도입한 것인, 뮤식산(mucic acid) 생산 방법.
According to paragraph 1,
The Saccharomyces cerevisiae (Accession number: KCTC 14701BP) strain is represented by the base sequence of SEQ ID NO: 2 and is a mu strain into which a udh gene encoding Uronate Dehydrogenase has been introduced. Method for producing mucic acid.
제1항에 있어서,
상기 사카로마이세스 세레비지애(Saccharomyces cerevisiae)(수탁번호: KCTC 14701BP) 균주는 뮤식산(mucic acid) 생산능이 향상된 것인, 뮤식산(mucic acid) 생산 방법.
According to paragraph 1,
A method of producing mucic acid, wherein the Saccharomyces cerevisiae (Accession number: KCTC 14701BP) strain has improved mucic acid production ability.
제1항에 있어서,
상기 사카로마이세스 세레비지애(Saccharomyces cerevisiae)(수탁번호: KCTC 14701BP) 균주는 갈락투론산(galacturonic acid) 소비량이 향상된 것인, 뮤식산(mucic acid) 생산 방법.
According to paragraph 1,
A method for producing mucic acid, wherein the Saccharomyces cerevisiae (Accession number: KCTC 14701BP) strain has improved galacturonic acid consumption.
삭제delete 삭제delete 제1항에 있어서,
상기 펙틴(pectin)은 열수 전처리 방법으로 처리된 감귤 껍질 폐기물인, 뮤식산(mucic acid) 생산 방법.
According to paragraph 1,
The pectin is a method of producing mucic acid, which is citrus peel waste treated by a hydrothermal pretreatment method.
사카로마이세스 세레비지애(Saccharomyces cerevisiae)(수탁번호: KCTC 14701BP) 균주를 포함하는, 뮤식산(mucic acid) 생산용 조성물.
A composition for producing mucic acid, comprising a strain of Saccharomyces cerevisiae (Accession number: KCTC 14701BP).
KR1020210123042A 2020-09-15 2021-09-15 A novel yeast strain producing mucic acid by fermenting galacturonic acid KR102649855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/012620 WO2022060098A1 (en) 2020-09-15 2021-09-15 Novel yeast strain for producing mucic acid by fermenting galacturonic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200118104 2020-09-15
KR1020200118104 2020-09-15

Publications (2)

Publication Number Publication Date
KR20220036359A KR20220036359A (en) 2022-03-22
KR102649855B1 true KR102649855B1 (en) 2024-03-22

Family

ID=80992236

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210123042A KR102649855B1 (en) 2020-09-15 2021-09-15 A novel yeast strain producing mucic acid by fermenting galacturonic acid

Country Status (1)

Country Link
KR (1) KR102649855B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017153454A (en) 2016-03-04 2017-09-07 公立大学法人大阪府立大学 Method for producing pectic polysaccharides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145838A2 (en) * 2008-04-04 2009-12-03 Massachusetts Institute Of Technology Cellular production of glucaric acid
KR20170009521A (en) 2015-07-17 2017-01-25 현대자동차주식회사 Novel synthetic process of mucic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017153454A (en) 2016-03-04 2017-09-07 公立大学法人大阪府立大学 Method for producing pectic polysaccharides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bioresource Technology, 2019.10.15., 295:122259.
NATURE COMMUNICATIONS, 2018, 9:5059.*

Also Published As

Publication number Publication date
KR20220036359A (en) 2022-03-22

Similar Documents

Publication Publication Date Title
Li et al. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R, 3R)-2, 3-butanediol from lignocellulose-derived sugars
Prakash et al. Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii
EP2679686B1 (en) Nucleic acid molecule encoding xylose isomerase and xylose isomerase encoded thereof
Zhu et al. Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosynthesis in Phellinus igniarius
Guo et al. A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan
CN108949852B (en) Method for preparing xylitol by whole-cell catalysis
US20220220522A1 (en) Method for producing anhydrous galactose derived from seaweed
EP2821485A1 (en) Hydrocarbon synthase gene, and use thereor
JP5496356B2 (en) Xylitol producing strain introduced with arabinose metabolic pathway and xylitol producing method using the same
CN110964686B (en) Recombinant pseudomonas proteus and construction method and application thereof
CN106995794B (en) Succinic acid-producing actinobacillus engineering strain for improving succinic acid yield and construction method and application thereof
KR102649855B1 (en) A novel yeast strain producing mucic acid by fermenting galacturonic acid
JP5813977B2 (en) Mutant yeast belonging to the genus Kluyveromyces and method for producing ethanol using the same
CN103789248A (en) 1,3-propylene glycol genetically engineered bacterium and method for producing 1,3-propylene glycol by converting same
WO2022060098A1 (en) Novel yeast strain for producing mucic acid by fermenting galacturonic acid
CN115976005A (en) Xylose isomerase obtained based on ancestral sequence construction method and application thereof
Baumler et al. Enhancement of acid tolerance in Zymomonas mobilis by a proton-buffering peptide
KR20190095429A (en) Glutathione reductase
KR20200040585A (en) A recombinant microorganism into which a high activity malate dehydrogenase for producing succinic acid and a method for producing succinic acid using the same
CN105820966B (en) Efficient chitosanase producing strain and fermentation method thereof
ES2776361T3 (en) Strains of microorganism for the production of 2,3-butanediol
KR101350823B1 (en) Composition for increasing saccharification efficiency of biomass, method for increasing saccharification efficiency of biomass and method for preparing bioethanol derived from biomass on a large scale using charperone protein
US9719112B2 (en) Mutant beta-glucosidases having enhanced activity and a method for producing bioethanol using the same
CN114752543B (en) Gluconobacter oxydans for synthesizing 2-keto-L-gulonic acid by taking glucose as substrate through one-step fermentation and application thereof
CN110747190B (en) Maleic acid hydratase mutant and application thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant