KR102648253B1 - 광학 이미징 시스템의 접안렌즈로부터의 미광 방출을 감소시키기 위한 방법들 및 장치들 - Google Patents

광학 이미징 시스템의 접안렌즈로부터의 미광 방출을 감소시키기 위한 방법들 및 장치들 Download PDF

Info

Publication number
KR102648253B1
KR102648253B1 KR1020227029178A KR20227029178A KR102648253B1 KR 102648253 B1 KR102648253 B1 KR 102648253B1 KR 1020227029178 A KR1020227029178 A KR 1020227029178A KR 20227029178 A KR20227029178 A KR 20227029178A KR 102648253 B1 KR102648253 B1 KR 102648253B1
Authority
KR
South Korea
Prior art keywords
waveguide
light
edge
waveguides
head
Prior art date
Application number
KR1020227029178A
Other languages
English (en)
Other versions
KR20220119773A (ko
Inventor
파리 야라스
에릭 씨. 브로위
빅터 카이 리우
사마스 바르가바
비크람짓 싱
마이클 보우 데니슨 본
조셉 크리스토퍼 사위키
Original Assignee
매직 립, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매직 립, 인코포레이티드 filed Critical 매직 립, 인코포레이티드
Publication of KR20220119773A publication Critical patent/KR20220119773A/ko
Application granted granted Critical
Publication of KR102648253B1 publication Critical patent/KR102648253B1/ko

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29325Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide of the slab or planar or plate like form, i.e. confinement in a single transverse dimension only
    • G02B6/29328Diffractive elements operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3534Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being diffractive, i.e. a grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

머리-장착 디스플레이를 위한 접안렌즈는, 제1 에지에서 공간 광 변조기로부터 광을 수신하고, 수신된 광 중 적어도 일부를 제1 에지에 대향하는 제2 에지로 안내하고, 제1 에지와 제2 에지 사이의 하나 이상의 제1 도파관들의 한 면을 통해 광 중 적어도 일부를 추출하도록 배열된 하나 이상의 제1 도파관들을 포함한다. 접안렌즈는 또한, 제2 에지에서 하나 이상의 제1 도파관들에서 출사되는 광을 수신하고, 수신된 광을 하나 이상의 광 흡수기들로 안내하도록 위치된 제2 도파관을 포함한다.

Description

광학 이미징 시스템의 접안렌즈로부터의 미광 방출을 감소시키기 위한 방법들 및 장치들{METHODS AND APPARATUSES FOR REDUCING STRAY LIGHT EMISSION FROM AN EYEPIECE OF AN OPTICAL IMAGING SYSTEM}
[0001] 본 출원은 2017년 9월 28일에 출원된 미국 가출원 제62/564,528호의 출원일의 이익을 주장한다. 미국 출원 제62/564,528호의 내용들은 그 전체가 본원에 인용에 의해 포함된다.
[0002] 본 개시내용은 광학 이미징 시스템들에서 미광 방출(stray light emission)을 감소시키기 위한 컴포넌트들에 관한 것이다.
[0003] 이미징 시스템들은 시각적 정보를 사용자에게 제공하는 데 사용될 수 있다. 예컨대, 이미징 시스템은 이미지들을 이미징 표면에 투사하여, 한 명 이상의 사용자들이 이미지를 볼 수 있도록 하는 광학 컴포넌트를 포함할 수 있다. 일부 경우들에서, 이미징 시스템들은 시각적 정보를 더 몰입하는 방식으로 제공하기 위해 머리-장착 디스플레이 디바이스에 통합될 수 있다. 예컨대, 머리-장착 디스플레이들은 VR(virtual reality) 또는 AR(augmented reality) 시스템들에 대한 시각적 정보를 제공하는 데 사용될 수 있다.
[0004] 양상에서, 머리-장착 디스플레이를 위한 접안렌즈는, 제1 에지에서 공간 광 변조기로부터 광을 수신하고, 수신된 광 중 적어도 일부를 제1 에지에 대향하는 제2 에지로 안내하고, 제1 에지와 제2 에지 사이의 하나 이상의 제1 도파관들의 한 면을 통해 광 중 적어도 일부를 추출하도록 배열된 하나 이상의 제1 도파관들을 포함한다. 접안렌즈는 또한, 제2 에지에서 하나 이상의 제1 도파관들에서 출사되는 광을 수신하고, 수신된 광을 하나 이상의 광 흡수기들로 안내하도록 위치된 제2 도파관을 포함한다.
[0005] 이러한 양상의 구현들은 다음의 특징들 중 하나 이상을 포함할 수 있다.
[0006] 일부 구현들에서, 접안렌즈는 하나 이상의 제1 도파관들의 제2 에지와 제2 도파관 사이에 배열되고, 광을 하나 이상의 제1 도파관들로부터 제2 도파관에 커플링하도록 구성된 광학 구조물들을 더 포함할 수 있다.
[0007] 일부 구현들에서, 접안렌즈는 반사기를 더 포함할 수 있다. 제2 도파관은 반사기와 하나 이상의 제1 도파관들 사이에 배열될 수 있다. 반사기는, 하나 이상의 제1 도파관들로부터 제2 도파관에 진입하는 광이 하나 이상의 광 흡수기들로 안내되도록 그 광을 반사시키도록 구성될 수 있다.
[0008] 일부 구현들에서, 하나 이상의 흡수기들은 사용자에 의한 머리-장착 디스플레이의 동작 동안에 사용자의 시야 외부에 위치될 수 있다.
[0009] 일부 구현들에서, 접안렌즈는, 하나 이상의 제1 도파관들의 하나 이상의 추가적인 에지들에서 하나 이상의 제1 도파관들에서 출사되는 광을 수신하고, 수신된 광을 하나 이상의 추가적인 에지들로부터 하나 이상의 추가적인 광 흡수기들로 안내하도록 위치된 하나 이상의 추가적인 도파관들을 더 포함할 수 있다.
[0010] 일부 구현들에서, 하나 이상의 제1 도파관들은 사용자에 의한 머리-장착 디스플레이의 동작 동안에 사용자의 시야 내에 위치될 수 있다.
[0011] 일부 구현들에서, 하나 이상의 제1 도파관들은 제1 에지와 제2 에지 사이에서 연장되는 하나 이상의 회절 광학 엘리먼트들을 포함할 수 있다. 하나 이상의 회절 광학 엘리먼트들은 제1 에지와 제2 에지 사이의 하나 이상의 제1 도파관들의 한 면을 통해 광 중 적어도 일부를 추출하도록 구성될 수 있다.
[0012] 일부 구현들에서, 하나 이상의 회절 광학 엘리먼트들 중 적어도 하나는 하나 이상의 제1 도파관들의 내부에 배치될 수 있다.
[0013] 일부 구현들에서, 하나 이상의 회절 광학 엘리먼트들 중 적어도 하나는 하나 이상의 제1 도파관들의 주변을 따라 배치될 수 있다.
[0014] 일부 구현들에서, 접안렌즈는, 제3 에지에서 공간 광 변조기로부터 광을 수신하고, 수신된 광 중 적어도 일부를 제3 에지에 대향하는 제4 에지로 안내하고, 제3 에지와 제4 에지 사이의 제3 도파관의 한 면을 통해 광 중 적어도 일부를 추출하도록 배열된 제3 도파관을 더 포함할 수 있다. 접안렌즈는, 제4 에지에서 제3 도파관에서 출사되는 광을 수신하고, 수신된 광을 하나 이상의 제2 광 흡수기들로 안내하도록 위치된 제4 도파관을 더 포함할 수 있다.
[0015] 일부 구현들에서, 제2 도파관은 자신의 주변을 따라 격자 패턴을 규정할 수 있다.
[0016] 일부 구현들에서, 제2 도파관은 하나 이상의 제1 도파관들과 통합될 수 있다.
[0017] 일부 구현들에서, 격자 패턴은 제2 도파관의 제1 면 또는 제2 도파관의 제2 면 중 적어도 하나 상에 규정될 수 있다. 제2 도파관의 제1 면은 제2 도파관의 제2 면에 대향할 수 있다.
[0018] 일부 구현들에서, 제2 도파관은 하나 이상의 제1 도파관들과 별개일 수 있다.
[0019] 일부 구현들에서, 접안렌즈는 격자 패턴을 따라 증착된 광 흡수 재료를 더 포함할 수 있다.
[0020] 일부 구현들에서, 격자 패턴은 제2 도파관의 주변 전체를 따라 규정될 수 있다.
[0021] 일부 구현들에서, 광 흡수 재료는 제2 도파관의 주변 전체를 따라 증착될 수 있다.
[0022] 일부 구현들에서, 격자 패턴은 제2 도파관의 주변의 서브세트를 따라 규정될 수 있다.
[0023] 일부 구현들에서, 광 흡수 재료는 제2 도파관의 주변의 서브세트를 따라 증착될 수 있다.
[0024] 일부 구현들에서, 접안렌즈는, 공간 광 변조기로부터 광을 수신하고, 1차 방출 축을 따라 하나 이상의 제1 도파관들의 제1 에지를 향해 제1 방향으로 광을 지향시키도록 구성된 광학 커플러 서브시스템을 포함할 수 있다.
[0025] 일부 구현들에서, 제2 도파관은 광학 커플러 서브시스템으로부터 제2 방향으로 주변 에지를 포함할 수 있다. 제2 방향은 제1 방향과 대향할 수 있다. 주변 에지는 1차 방출 축에 대해 기울어질 수 있다.
[0026] 본원에 설명된 구현들은 다양한 이익들을 제공할 수 있다. 일부 경우들에서, 본원에 설명된 특징들은 광학 시스템(예컨대, 접안렌즈 및/또는 머리-장착 디스플레이)에서 새는 미광의 양을 감소시킬 수 있다. 따라서, 광학 시스템은, 더 많은 미광을 경험하는 유사한 시스템보다 더 높은 품질의 디지털 이미저리를 사용자에게 제공할 수 있다. 일부 경우들에서, 본원에 설명된 특징들은 투사된 디지털 이미저리의 해상도를 증가시키고, 디지털 이미저리의 콘트라스트를 증가시키고, 원하지 않는 이미지 아티팩트들의 존재를 감소시키고 그리고/또는 컬러의 정확한 재생을 가능하게 할 수 있다.
[0027] 하나 이상의 실시예들의 세부사항들은 첨부된 도면들 및 이하의 설명에서 제시된다. 다른 특징들 및 이점들은 설명, 도면들, 및 청구항들로부터 명백해질 것이다.
[0028] 도 1은 예시적인 광학 시스템의 개략도이다.
[0029] 도 2는 예시적인 도파관 장치의 정면도이다.
[0030] 도 3a-3c는 예시적인 도파관 장치들의 개략도이다.
[0031] 도 4는 다른 예시적인 광학 시스템을 도시하는 개략도이다.
[0032] 도 5는 광 흡수 조립체를 포함하는 다른 예시적인 광학 시스템을 도시하는 개략도이다.
[0033] 도 6은 도 5에 도시된 광학 시스템을 사용하여 미광의 예시적인 흡수를 도시하는 개략도이다.
[0034] 도 7은 광 흡수 조립체의 예시적인 도파관의 단면도이다.
[0035] 도 8은 도파관 장치, 광학 커플러 서브시스템, 및 분배 도파관 장치를 포함하는 예시적인 광학 조립체의 도면이다.
[0036] 도 9는 다수의 광학 조립체들의 예시적인 어레인지먼트의 도면이다.
[0037] 도 10은 예시적인 광학 조립체의 개략도이다.
[0038] 도 11a-11c는 예시적인 광학 조립체들의 개략도이다.
[0039] 상이한 도면들에서 동일한 참조 번호들은 동일한 엘리먼트들을 나타낸다.
[0040] 도 1은 도파관 장치(102), 도파관 장치(102)로 또는 도파관 장치(102)로부터의 광을 광학적으로 커플링하기 위한 광학 커플러 서브시스템(104), 및 공간 광 변조기(106)를 포함하는 광학 시스템(100)을 도시한다.
[0041] 도파관 장치(102)는 하나 이상의 1차 평면 도파관들(108)(도 1에서 단지 하나만 도시됨), 및 1차 평면 도파관들(108) 중 적어도 일부의 1차 평면 도파관들 각각과 연관된 하나 이상의 DOE(diffractive optical element)들(110)을 포함한다.
[0042] 도 2에 도시된 바와 같이, 1차 평면 도파관들(108) 각각은 적어도 제1 단부(112a) 및 제2 단부(112b)를 가지며, 제2 단부(112b)는 1차 평면 도파관(108)의 길이(114)를 따라 제1 단부(112a)에 대향한다. 1차 평면 도파관들(108) 각각은 제1 면(116a) 및 제2 면(116b)을 가지며, 적어도 제1 면(116a) 및 제2 면(116b)(총괄적으로 116)은 1차 평면 도파관(108)의 길이(114)의 적어도 일부를 따라 적어도 부분적으로 내부적으로 반사성 광학 경로(화살표(118a) 및 파선 화살표(118b), 총괄적으로 118로 예시됨)를 형성한다. 1차 평면 도파관(들)(108)은 면의 법선(normal)에 대해 규정된 임계 각도보다 더 큰 각도에서 면들(116)에 부딪치는 광에 대해 실질적으로 TIR(total internal reflection)을 제공하는 다양한 형태들을 취할 수 있다. 1차 평면 도파관들(108)은, 예컨대, 다른 재료들 중에서도, 유리, 용융 실리카(fused silica), 아크릴 또는 폴리카보네이트의 판유리(pane) 또는 평면의 형태를 취할 수 있다.
[0043] DOE들(110)(도 1 및 2에서 점선 이중선으로 도시됨)은, 1차 평면 도파관(108)의 내부(122)와 외부(124) 사이에 1차 평면 도파관(108)의 길이(114)의 적어도 일부를 따라 연장되는 복수의 광학 경로들(화살표들(120a) 및 파선 화살표들(120b), 총괄적으로 120으로 예시됨)을 제공하는 TIR 광학 경로(118)를 방해하는 매우 다양한 형태들을 취할 수 있다. 일부 경우들에서, DOE들(110)은 유리하게도 선형 회절 격자의 위상 함수들과 원형 또는 방사상 대칭적인 렌즈의 위상 함수를 결합하여, 분명한 객체들 및 분명한 객체들에 대한 초점 평면의 포지셔닝을 허용할 수 있다. 이는 프레임 단위로, 서브프레임 단위로, 또는 심지어 픽셀 단위로 달성될 수 있다.
[0044] 도 1을 참조하면, 광학 커플러 서브시스템(104)은 도파관 장치(102)로 또는 도파관 장치(102)로부터의 광을 광학적으로 커플링한다. 도 1에 예시된 바와 같이, 광학 커플러 서브시스템은, 1차 평면 도파관(108)의 에지(128)로 또는 1차 평면 도파관(108)의 에지(128)로부터의 광을 광학적으로 커플링하기 위한 광학 엘리먼트(126), 예컨대, 반사 표면, 미러, 이색성 미러 또는 프리즘을 포함할 수 있다. 광학 커플러 서브시스템(104)은, 광을 시준하는 시준 엘리먼트(130)를 추가적으로 또는 대안적으로 포함할 수 있다.
[0045] 공간 광 변조기(106)는, 공간적으로 그리고/또는 시간적으로 변하는 광(예컨대, 공간적으로 그리고/또는 시간적으로 변조된 광)의 형태로 인코딩된 이미지 데이터를 생성하는 하나 이상의 드라이브 전자장치(134) 및 광 소스들(132)을 포함하는 제어 서브시스템이다. 위에 언급된 바와 같이, 시준 엘리먼트(130)는 광을 시준할 수 있고, 시준된 광은 하나 이상의 1차 평면 도파관들(108)에 광학적으로 커플링될 수 있다.
[0046] 도 2에 예시된 바와 같이, 광은, TIR 전파로부터 기인한 적어도 일부 반사들 또는 "바운스들"을 갖고서 1차 평면 도파관(108)을 따라 전파된다. 일부 구현들이 내부 광학 경로에서 하나 이상의 반사기들, 예컨대, 반사를 가능하게 할 수 있는 박막들, 유전체 코팅들, 금속화된 코팅들 등을 사용할 수 있음에 유의된다. 광은 1차 평면 도파관(108)의 길이(114)를 따라 전파되고, 길이(114)를 따라 다양한 포지션들에서 하나 이상의 DOE들(110)과 교차한다. 도 3a-3c를 참조하여 아래에 설명되는 바와 같이, DOE(들)(110)는 1차 평면 도파관(108) 또는, 1차 평면 도파관(108)의 면들(116) 중 인접하거나 근접한 하나 이상의 면들(예컨대, 면(116a) 또는 면(116b))에 통합될 수 있다. DOE(들)(110)는 적어도 2개의 기능들을 달성한다. DOE(들)(110)는 광의 각도를 시프팅하여, 광의 일부로 하여금 TIR을 새게 하고, 1차 평면 도파관(108)의 하나 이상의 면들(116)을 통해 내부(112)로부터 외부(124)로 나오게 한다. DOE(들)(110)는 또한 하나 이상의 뷰잉 거리들에서 아웃-커플링된 광의 초점을 맞춘다. 따라서, 1차 평면 도파관(108)의 면(116a)을 통해 보고 있는 누군가는 하나 이상의 뷰잉 거리들에서 디지털 이미저리를 볼 수 있다.
[0047] 일부 경우들에서, 각각의 1차 평면 도파관(108)은 실질적으로 특정 평면(예컨대, x-y 평면)을 따라 연장될 수 있고, 광이 특정 평면에 직교 또는 대략 직교하는 방향들(예컨대, z-방향 또는 대략 z-방향)로 하나 이상의 위치들에서 1차 평면 도파관(108)으로부터 나오도록 입사광을 안내할 수 있다. 일부 경우들에서, 1차 평면 도파관(108)의 연장 평면을 따르는 1차 평면 도파관(108)의 표면 영역은 다른 비-평행(예컨대, 직교) 평면을 따르는 자신의 표면 영역보다 실질적으로 더 클 수 있다. 예컨대, 일부 경우들에서, x-y 평면을 따르는 1차 평면 도파관(108)의 표면 영역은 x-z 평면 또는 y-z 평면을 따르는 자신의 표면 영역보다 10 배 더 크거나, 20 배 더 크거나, 또는 어떤 다른 배수로 클 수 있다.
[0048] 도 1 및 2가 면들(116)로부터 이격된 1차 평면 도파관(108)의 내부(112)에 위치된 DOE(110)를 도시하지만, DOE(110)는, 예컨대, 도 3a-3c에 예시된 바와 같이, 다른 구현들에서 다른 위치들에 위치될 수 있다.
[0049] 도 3a는, 1차 평면 도파관(108) 및 1차 평면 도파관(108)의 외부 표면 또는 면(116) 상에 보유된 하나 이상의 DOE들(110)을 포함하는 예시적인 도파관 장치(102a)를 도시한다. 예컨대, DOE들(110)은 1차 평면 도파관(108)의 외부 표면 또는 면(116b) 상에, 예컨대, 패터닝된 금속 층으로서 증착될 수 있다.
[0050] 도 3b는, 1차 평면 도파관(108) 및 1차 평면 도파관(108)의 외부 표면 또는 면(116b)에 내부적으로 바로 인접하게 위치된 적어도 하나의 DOE(110)를 포함하는 다른 예시적인 도파관 장치(102b)를 도시한다. 예컨대, DOE(110)는 1차 평면 도파관(108)의 재료의 선택적인 또는 마스킹된 경화를 통해 내부(122)에 형성될 수 있다. 대안적으로, DOE(110)는 1차 평면 도파관(108)에 통합된 별개의 물리적 구조물일 수 있다.
[0051] 도 3c는, 1차 평면 도파관(108) 및 1차 평면 도파관(108)의 외부 표면에 형성된 적어도 하나의 DOE(110)를 포함하는 다른 예시적인 도파관 장치(102c)를 도시한다. DOE(110)는, 예컨대, 1차 평면 도파관(108)의 외부 표면 또는 면(116b)에, 예컨대, 그루브들(grooves)로서 에칭, 패터닝 또는 그렇지 않다면 형성될 수 있다. 예컨대, DOE(110)는, 하나 이상의 규정된 피치들(예컨대, 길이(114)를 따라 연장되는 개별 엘리먼트들 또는 피처들 사이의 공간)로 이격될 수 있는 선형 또는 톱니형 리지들(saw tooth ridges) 및 밸리들(valleys)의 형태를 취할 수 있다. 피치는 선형 함수일 수 있거나, 비선형 함수일 수 있다.
[0052] 일부 경우들에서, 1차 평면 도파관(108)은 적어도 부분적으로 투명할 수 있다. 이러한 구성은 하나 이상의 뷰어들이 뷰어의 유리한 입장에 대해 1차 평면 도파관(108)의 먼 측에서 물리적 객체들(예컨대, 실세계)을 볼 수 있게 한다. 이것은 유리하게도, 뷰어들이 도파관을 통해 실세계를 보고 동시에 도파관에 의해 눈(들)에 중계되는 디지털 이미저리를 볼 수 있게 한다.
[0053] 일부 구현들에서, 복수의 도파관 시스템들이 근안 디스플레이(near-to-eye display)에 통합될 수 있다. 예컨대, 복수의 도파관 시스템들은 머리-착용, 머리-장착 또는 헬멧-장착 디스플레이 또는 다른 웨어러블 디스플레이에 통합될 수 있다(예컨대, 사용자에게 디지털 이미저리를 디스플레이하기 위해 사용자의 시야 내에 위치된 접안렌즈에 통합됨).
[0054] 일부 구현들에서, 복수의 도파관 시스템들은 착용되지 않은 HUD(head-up display)(예컨대, 디스플레이 이미지가 드라이버/파일럿의 시선에서 투명 윈도우에 투사되는 자동차 HUD 또는 항공 전자(avionics) HUD)에 통합될 수 있다. 이러한 구현들에서, 다수의 뷰어들은 공유 도파관 시스템 또는 결과적인 이미지 필드를 볼 수 있다. 다수의 뷰어들은, 예컨대, 도파관 시스템에 대한 각각의 뷰어의 개개의 위치들과 매칭하는 상이한 뷰잉 관점들로부터 디지털 또는 가상 객체를 보거나 광학적으로 지각할 수 있다.
[0055] 광학 시스템(100)은 가시광의 사용에 제한되지 않지만, 또한 전자기 스펙트럼의 다른 부분들(예컨대, 적외선 또는 자외선)에서 광을 사용할 수 있고 그리고/또는 "광(예컨대, 가시광선, UV 또는 IR)"의 대역 외부에 있는 전자기 방사선을 사용할 수 있는데, 예컨대, 전자기 스펙트럼의 마이크로파 또는 X-레이 부분들에서 전자기 방사선 또는 에너지를 사용할 수 있다.
[0056] 일부 구현들에서, 스캐닝 광 디스플레이는 광을 복수의 1차 평면 도파관들에 커플링하는 데 사용된다. 스캐닝 광 디스플레이는, 이미지를 형성하기 위해 시간이 지남에 따라 스캔되는 단일 빔을 형성하는 단일 광 소스를 포함할 수 있다. 이러한 스캔된 광 빔은 상이한 밝기 레벨들의 픽셀들을 형성하기 위해 세기-변조될 수 있다. 대안적으로, 다수의 광 소스들은 다수의 광 빔들을 생성하는 데 사용될 수 있으며, 다수의 광 빔들은 이미저리를 형성하기 위해 공유 스캐닝 엘리먼트 또는 별개의 스캐닝 엘리먼트들로 스캔된다. 이러한 광 소스들은 상이한 파장들을 포함하고, 가시적이고 그리고/또는 비-가시적일 수 있고, 그들은 상이한 기하학적 원점들(예컨대, X, Y 또는 Z)을 포함할 수 있고, 그들은 상이한 입사 각도들로 스캐너(들)에 진입할 수 있고, 하나 이상의 이미지들(예컨대, 평평한 이미지, 볼류메트릭 이미지, 동영상 또는 정적 이미지)의 상이한 부분들에 대응하는 광을 생성할 수 있다.
[0057] 예컨대, 광은, 예컨대, 미국 특허 출원 일련번호 제13/915,530호, 국제 특허 출원 일련번호 제PCT/US2013/045267호 및 미국 가특허 출원 일련번호 제61/658,355호에 논의된 진동 광섬유로 이미지를 형성하도록 스캔될 수 있고, 상기 출원들의 내용은 그 전체가 인용에 의해 본원에 포함된다. 광섬유는 압전 액추에이터에 의해 이축으로(biaxially) 스캔될 수 있다. 대안적으로, 광섬유는 일축으로(uniaxially) 또는 삼축으로(triaxially) 스캔될 수 있다. 다른 대안으로서, 광섬유의 출력을 스캔하기 위해 하나 이상의 광학 컴포넌트들(예컨대, 회전 다각형 반사기(rotating polygonal reflector) 또는 미러, 진동 반사기(oscillating reflector) 또는 미러)이 사용될 수 있다.
[0058] 광학 시스템(100)은 이미지들의 생성에서 또는 이미지 투사기로서 또는 광 필드 생성에서 사용하는 것으로 제한되지 않는다. 예컨대, 광학 시스템(100) 또는 이의 변형예들은 디지털 스틸 이미지 또는 디지털 동영상 캡처 또는 카메라 시스템과 같은 이미지 캡처 디바이스로서 사용될 수 있다.
[0059] 도 4에 도시된 바와 같이, 일부 경우들에서, 광학 시스템은 제1 축(예컨대, 도 4의 뷰에서 수직 또는 Y-축)을 따라 광을 중계하고, 제1 축(예컨대, Y-축)을 따라 광의 유효 출사 동공을 확장시키기 위해 분배 도파관 장치(402)를 포함할 수 있다. 분배 도파관 장치(402)는, 예컨대, 분배 평면 도파관(404) 및 분배 평면 도파관(404)과 연관된 적어도 하나의 DOE(406)(이중 점선으로 예시됨)를 포함할 수 있다. 분배 평면 도파관(404)은 분배 평면 도파관(404)으로부터의 상이한 배향을 갖는 1차 평면 도파관(108)과 적어도 일부 면들에서 유사하거나 동일할 수 있다. 마찬가지로, 적어도 하나의 DOE(406)는 DOE(110)와 적어도 일부 면들에서 유사하거나 동일할 수 있다. 예컨대, 분배 평면 도파관(404) 및/또는 DOE(406)는, 적어도 부분적으로, 1차 평면 도파관(108) 및/또는 DOE(110)와 동일한 재료들로 각각 구성될 수 있다.
[0060] 중계되고 출사-동공 확장된 광은 분배 도파관 장치(402)로부터 하나 이상의 1차 평면 도파관(108)에 광학적으로 커플링된다. 1차 평면 도파관(108)은, 바람직하게는, 제1 축과 직교하는 제2 축(예컨대, 도 4의 뷰에서 수평 또는 X-축)을 따라 광을 중계할 수 있다. 특히, 제2 축은 제1 축에 대해 비-직교 축일 수 있다. 1차 평면 도파관(108)은 제2 축(예컨대, X-축)을 따라 광의 유효 출사 동공 경로를 확장시킨다. 예컨대, 분배 평면 도파관(404)은 수직 또는 Y- 축을 따라 광을 중계 및 확장시키고, 수평 또는 X-축을 따라 광을 중계 및 확장시키는 1차 평면 도파관(108)으로 그 광을 전달할 수 있다.
[0061] 위에 설명된 방식과 유사한 방식으로, 광은, TIR 전파로부터 기인한 적어도 일부 반사들 또는 "바운스들"을 갖고서 1차 평면 도파관(108)을 따라 전파된다. 또한, 광은 1차 평면 도파관(108)의 길이(114)를 따라 전파되고, 길이(114)를 따라 다양한 포지션들에서 하나 이상의 DOE들(110)과 교차한다. DOE(들)(110)는 광의 각도를 시프팅하여, 광의 일부로 하여금 TIR을 새게 하고, 1차 평면 도파관(108)의 하나 이상의 면들(116)(예컨대, 면(116a))을 통해 내부(112)로부터 외부(124)로 나오게 한다. 또한, DOE(들)(110)는 하나 이상의 뷰잉 거리들에서 아웃-커플링된 광의 초점을 맞춘다. 따라서, 1차 평면 도파관(108)의 면(116a)을 통해 보고 있는 누군가는 하나 이상의 뷰잉 거리들에서 디지털 이미저리를 볼 수 있다. 일부 구현들에서, 광학 시스템(100)의 적어도 일부는 머리-착용, 머리-장착 또는 헬멧-장착 디스플레이 또는 다른 웨어러블 디스플레이에 통합될 수 있다(예컨대, 사용자에게 디지털 이미저리를 디스플레이하기 위해 사용자의 시야 내에 위치된 접안렌즈에 통합됨).
[0062] 광학 시스템들에 관한 추가적인 정보는 미국 특허 출원 일련번호 제14/331,218호에서 알 수 있고, 상기 출원의 내용들은 그 전체가 인용에 의해 본원에 포함된다.
*52[0063] 위에 설명된 바와 같이, 광은, 디지털 이미저리를 사용자에게 디스플레이하기 위해 1차 평면 도파관(108)의 하나 이상의 면들(116)(예컨대, 면(116a))로부터 방출될 수 있다. 그러나, 일부 경우들에서, 미광은, 디지털 이미저리에 기여하지 않는 방식으로 광학 시스템(100)의 부분들로부터 새나갈 수 있다. 예컨대, 일부 경우들에서, 광은 면(116a) 이외의 면들로부터 1차 평면 도파관(108)으로부터 새나갈 수 있다. 예로서, 도 4를 참조하면, 광은 면(116b)(음의 z- 방향으로 향함), 면(116c)(음의 y-방향으로 향함), 면(116d)(양의 y-방향으로 향함), 면(116e)(양의 x-방향으로 향함) 및/또는 면(116f)(음의 x-방향으로 향함) 중 하나 이상의 면들로부터 새나갈 수 있다. 다른 예로서, 광학 커플러 서브시스템(104)에 의해 방출된 광 중 일부는, 도파관 장치(102) 및/또는 분배 도파관 장치(402)에 커플링되기보다는 외부(124)로 새나갈 수 있다. 다른 예로서, 도파관 장치(402)에 의해 방출된 광 중 일부는, 도파관 장치(102)에 커플링되기보다는 외부(124)로 새나갈 수 있다.
[0064] 일부 경우들에서, 미광은 광학 시스템(100)의 성능에 부정적으로 영향을 줄 수 있다. 예컨대, 미광은 (예컨대, 투사된 디지털 이미저리의 해상도를 감소시키고, 디지털 이미저리의 콘트라스트를 감소시키고, 원하지 않는 이미지 아티팩트들을 도입하고 그리고/또는 컬러의 정확한 재생을 손상시킴으로써) 광학 시스템(100)에 의해 렌더링된 디지털 이미저리의 이미지 품질을 감소시킬 수 있다.
[0065] 이미지 품질을 개선하기 위해, 광학 시스템은 미광을 재지향 및/또는 캡처하기 위한 하나 이상의 광 지향 및/또는 광 흡수 컴포넌트들을 포함할 수 있다.
[0066] 예로서, 도 5는 광학 시스템(500)을 도시한다. 광학 시스템(500)은 많은 점들에서 도 4에 도시된 광학 시스템과 유사하다. 예컨대, 광학 시스템(500)은, 도파관 장치(102), 분배 도파관 장치(402)를 통해 도파관 장치(102)에 또는 도파관 장치(102)로부터 광을 광학적으로 커플링하기 위한 광학 커플러 서브시스템(104), 및 공간 광 변조기(106)를 포함한다. 일부 구현들에서, 광학 시스템(500)의 적어도 일부는 머리-착용, 머리-장착 또는 헬멧-장착 디스플레이 또는 다른 웨어러블 디스플레이에 통합될 수 있다(예컨대, 사용자에게 디지털 이미저리를 디스플레이하기 위해 사용자의 시야 내에 위치된 접안렌즈에 통합됨).
[0067] 이 예에서, 광학 시스템(500)은 또한 광 흡수 조립체(502)를 포함한다. 광 흡수 조립체(502)는 하나 이상의 도파관들(504) 및 하나 이상의 광 흡수 엘리먼트들(506)을 포함한다. 하나 이상의 도파관들(504)은 광학 시스템(500)의 다른 컴포넌트들(예컨대, 도파관 장치(102), 광학 커플러 서브시스템(104) 및/또는 분배 도파관 장치(402))의 주변에 또는 그 둘레에 위치되어, 이러한 컴포넌트들에 의해 방출된 미광을 수집한다. 차례로, 도파관들(504)은 캡처된 광을 광 흡수 엘리먼트들(506) 중 하나 이상으로 지향시키고, 이로써 미광이 흡수된다(예컨대, 열로 변환됨). 따라서, 광학 시스템(500)으로부터 새는 미광의 양이 감소된다.
[0068] 예로서, 도 6은 1차 평면 도파관(108)의 면(116c)으로부터 새는 미광(실선 화살표들(602)로 도시됨)을 도시한다. 미광(602)은 1차 평면 도파관(108)의 주변을 따라 위치된 도파관(504a)에 부딪치고, 도파관(504a)에 진입한다. 차례로, 도파관(504a)은 미광을 광 흡수 엘리먼트들(506a 및/또는 506b)로 지향시키고(도파관(504a) 내의 미광의 예시적인 경로가 점선 화살표들(604)로 도시됨), 이로써 미광이 흡수된다. 따라서, 1차 평면 도파관(108)의 면(116c)으로부터 광학 시스템(500)의 외부로의 미광의 양이 감소된다.
[0069] 도파관(504)은 캡처된 광을 내부 전반사를 통해 광 흡수 엘리먼트들(506)로 지향시킬 수 있다. 내부 전반사는, 전파된 광파가 표면에 대한 법선에 대해 특정 임계 각도보다 더 큰 각도로 매체 경계 표면(medium boundary surface)에 부딪칠 때 발생하는 현상이다. 굴절률이 경계의 다른 측에서 더 낮고 입사각이 임계각보다 더 크면, 광파는 통과할 수 없고, 완전히(또는 실질적으로 완전히) 반사된다. 임계각은, 입사각으로서 초과하면 내부 전반사가 발생하는 그러한 입사각이다.
[0070] 따라서, 도파관(504)은, 자신의 굴절률이 주변 매체의 굴절률보다 더 크도록 구성될 수 있다. 예로서, 미광이 새나갈 수 있는 광학 시스템(100)의 다른 컴포넌트들(예컨대, 도파관 장치(102), 광학 커플러 서브시스템(104) 및/또는 분배 도파관 장치(402)의 컴포넌트들) 사이에 에어 갭을 갖고서 도파관들(504)이 위치되면, 도파관들(504)은 에어보다 더 큰 굴절률을 갖는 물질을 사용하여 구성될 수 있다. 다른 예로서, 미광이 새나갈 수 있는 광학 시스템(100)의 다른 컴포넌트들(예컨대, 도파관 장치(102), 광학 커플러 서브시스템(104) 및/또는 분배 도파관 장치(402)의 컴포넌트들)에 도파관들(504)이 바로 인접하도록, 도파관들(504)이 위치되면, 도파관들(504)은 인접한 컴포넌트의 굴절률보다 더 큰 굴절률을 갖는 물질을 사용하여 구성될 수 있다.
[0071] 또한, 내부 전반사를 통해 도파관(504)의 길이를 따른, 진입한 광의 전파를 가능하게 하기 위해, 각각의 도파관(504)은, 도파관(504) 내로 진입할 때, 광의 방향을 수정하여 광이 임계각보다 더 큰 각도로 도파관(504) 내에서 전파되게 하는 하나 이상의 광학 구조물들을 포함할 수 있다.
[0072] 예로서, 도 7은 도파관(504) 및 예시적인 주변 매체(702)의 단면을 도시한다. 일부 경우들에서, 매체(702)는 에어 또는 어떤 다른 주변 물질(ambient substance)일 수 있다(예컨대, 도파관(504)이 광학 시스템(100)의 다른 컴포넌트들 사이에 에어 갭 또는 다른 주변 물질을 갖고서 위치되는 경우). 일부 경우들에서, 매체(702)는 광학 시스템(100)의 다른 컴포넌트일 수 있다(예컨대, 도파관(504)이 해당 컴포넌트에 바로 인접하도록 위치되는 경우).
[0073] 도파관(504)은 도파관(504)의 표면(706)을 따라 위치된 광학 구조물들(704)을 포함한다. 광(예컨대, 광학 시스템(100)의 다른 컴포넌트로부터 새는 미광)이 표면(706)에 입사될 때, 광은 도파관(504)에 진입하고, 그의 전파 방향은 광학 구조물들(704)에 의해 수정된다. 예컨대, 도 7에 도시된 바와 같이, 표면(706)에 수직인 방향으로 표면(706)에 입사하는 광은 도파관(504)에 진입하고, 광학 구조물들(704)에 의해 수직에 대해 각도(θ1)로 재지향된다. 각도(θ1)가 도파관(504)과 매체(702) 사이의 계면의 임계각(θc)보다 더 크면, 광은 (예컨대, 광이 광 흡수 엘리먼트들(506) 중 하나 이상에 도달할 때까지) 내부 전반사를 통해 도파관(504)의 길이를 따라 전파된다. 일부 경우들에서, 임계각(θc)은 의 관계로 정의될 수 있고, 여기서 n1은 매체(602)의 굴절률이고, n2는 도파관(504)의 굴절률이며, n2>n1이다. 실제로, n1 및/또는 n2는, 캡처된 광이 내부 전반사를 통해 도파관(504)의 길이 전체에 걸쳐 전파되는 것을 가능하게 하는 특정 θc를 획득하도록 선택될 수 있고, 구현에 의존하여 변할 수 있다.
[0074] 일부 경우들에서, 광학 구조물들(704)은 표면(706) 상에 위치되거나 표면(706) 상에 규정된 격자들일 수 있다. 격자들은, 광이 입사각과 상이한 방향을 따라 전파되도록 도파관(504)에 진입하는 광을 회절시킬 수 있다.
[0075] 예컨대, 격자들은 (예컨대, 표면(605)을 따라 리지들 또는 룰링들(rulings)을 에칭함으로써) 표면(705) 상에 에칭될 수 있다. 다른 예로서, 추가적인 광학 전도성 구조물들은 표면(706) 상에 위치될 수 있다(예컨대, 표면(706)에 접착, 본딩, 융합 또는 그렇지 않다면 고정됨). 또한, 격자들의 치수는 구현에 의존하여 상이할 수 있다. 일부 경우들에서, 도파관(504)에 입사될 것으로 예상되는 미광에 의존하여, 상이한 피치들이 사용될 수 있다. 예컨대, 330nm의 피치를 갖는 격자들은 청색 미광의 전파 방향을 수정하는 데 사용될 수 있다. 다른 예로서, 380nm의 피치를 갖는 격자들은 녹색 미광의 전파 방향을 수정하는 데 사용될 수 있다. 다른 예로서, 470nm의 피치를 갖는 격자들은 적색 미광의 전파 방향을 수정하는 데 사용될 수 있다. 일부 경우들에서, 격자들은 두 부분으로 이루어지고(binary)(예컨대, 계단식 방식으로 2개의 고도들(elevations) 사이에서 교번함), 다단계이고(예컨대, 순차적인 방식으로 3개의 고도들 사이에서 교번함) 그리고/또는 블레이즈 형상(blazed)(예컨대, 반복되는 경사진 고도들을 가짐)일 수 있다. 피치는 선형 함수일 수 있거나, 비선형 함수일 수 있다. 또한, 격자들의 듀티 사이클(예컨대, 제1 고도를 갖는 격자의 길이 대 격자의 총 길이)은 변할 수 있다. 예컨대, 일부 경우들에서, 듀티 사이클은 50% 또는 일부 다른 퍼센티지(예컨대, 10%, 20%, 30% 또는 임의의 다른 퍼센티지)일 수 있다.
[0076] 일부 경우들에서, 광학 구조물들(708)은 광의 전파를 변경하는 다른 구조물들일 수 있다. 예컨대, 광학 구조물들(704) 중 적어도 일부는 렌즈들 및/또는 표면 플라스모닉들(surface plasmonics)일 수 있다.
[0077] 도파관(504)은 다양한 재료들을 사용하여 구성될 수 있다. 예들로서, 도파관(504)은 유리, 용융 실리카, 아크릴, 폴리카보네이트 및/또는 다른 재료들을 사용하여 구성될 수 있다.
[0078] 일부 경우들에서, 도파관(504)은 도파관(504)의 길이를 따른 광의 전파를 가능하게 하기 위한 반사기를 포함할 수 있다. 예컨대, 도파관(504)은 자신의 외부 주변의 하나 이상의 표면들을 따라(예컨대, 미광의 소스를 등지는 표면을 따라) 반사기를 포함할 수 있어서, 도파관(504) 내에서 전파되는 광이 그 표면으로부터 멀리 반사되고 새지 않는다. 예로서, 도 7에 도시된 바와 같이, 도파관(504)은 입사 광의 소스를 등지는(예컨대, 표면(706)에 대향하는) 표면(710)을 따라 위치된 반사기(708)를 포함할 수 있다. 도파관(504)을 통해 전파되는 광은 반사기(708)에 의해 반사되며, 실질적으로 외부로 표면(710)을 통과할 수 없다.
[0079] 일부 경우들에서, 반사기는 도파관(504)의 표면 상에 규정되거나 표면 상에 위치된 평면 표면일 수 있다. 일부 경우들에서, 반사기는 (예컨대, 알루미늄 또는 은과 같은 반사 금속성 물질의 층을 표면 상에 증착하기 위해) 도파관(504)의 표면을 금속화함으로써 구현될 수 있다.
[0080] 일부 경우들에서, 도파관(504)의 격자들은 또한 (예컨대, 블레이즈 반사기(blazed reflector)를 생성하기 위해) 금속화될 수 있다. 예컨대, 블레이즈 반사기의 단면은 "연속한(in a train)" 일련의 직각 삼각형들을 포함할 수 있다(예컨대, 일련의 반복되는 직각 삼각형들은 엔드-투-엔드로 배치됨). 이것은, 예컨대, 법선에 대해 더 큰 각도들을 달성하는 방식으로 도파관(504) 내의 광을 지향시키는 데 유용할 수 있다. 예로서, 이러한 어레인지먼트는 회절의 효율을 증가시키는 데 사용될 수 있다. 또한, 이러한 어레인지먼트는 더 큰 입사각들이 더 효율적으로 지향되는 것을 가능하게 할 수 있다.
[0081] 광 흡수 엘리먼트(506)는 (예컨대, 광을 열로 변환함으로써) 그에 입사되는 광의 일부 또는 전부를 흡수한다. 광 흡수 엘리먼트들(506)은 그들이 도파관(504)의 하나 이상의 단부들에 인접하도록 위치될 수 있어서, 도파관(504)의 길이를 따라 전파되는 광이 광 흡수 엘리먼트(506)에 입사되어 흡수되게 한다. 일부 경우들에서, 광 흡수 엘리먼트들(506)은, 그들이 광학 시스템의 동작 동안에 사용자의 시야 외부에 위치되도록 위치될 수 있다. 예컨대, 광학 시스템이 머리-장착 디스플레이의 접안렌즈의 일부로서 사용되는 경우, 광 흡수 엘리먼트들(506)은, 사용자가 머리-장착 디스플레이를 착용하고 있는 동안, 광 흡수 엘리먼트들(506)이 사용자의 시야 외부에 있도록 위치될 수 있다. 일부 경우들에서, 광 흡수 엘리먼트(506)는 타르 또는 UV 경화성 블랙 중합체 재료와 같은 광학적으로 어두운 재료(예컨대, "카본 블랙")로 구성될 수 있다.
[0082] 도 6에 도시된 예에서, 1차 평면 도파관(108)의 면(116c)으로부터 새는 미광은 광 흡수 조립체(502)에 의해 재지향되고 흡수된다. 그러나 이것은 단지 예시적인 예이다. 광 흡수 조립체(502)가 적절히 위치된 도파관들(504) 및 광 흡수 엘리먼트들(506)을 통해 광학 시스템의 컴포넌트들 중 임의의 것에 의해 방출된 미광을 흡수하는 데 사용될 수 있다는 것이 이해된다. 예로서, 광 흡수 조립체(502)는 면들(116b-f) 중 하나 이상의 면들로부터 방출된 미광을 흡수하는 데 사용될 수 있다. 다른 예로서, 광 흡수 조립체(502)는 광학 커플러 서브시스템(104)(예컨대, 광학 엘리먼트(126) 및/또는 시준 엘리먼트(130))으로부터 방출된 미광을 흡수하는 데 사용될 수 있다. 다른 예로서, 광 흡수 조립체(502)는 분배 도파관 장치(402)로부터 방출된 미광을 흡수하는 데 사용될 수 있다.
[0083] 또한, 광 흡수 조립체(502)의 예시적인 어레인지먼트가 도 5 및 6에 도시되지만, 이는 단지 예시적인 예라는 것이 이해된다. 실제로, 광 흡수 조립체(502)의 어레인지먼트는 구현에 따라 달라진다.
[0084] 예로서, 도 8은 예시적인 광학 조립체(800)를 도시한다. 광학 조립체(800)는 단일 컴포넌트로서 일체로 형성되는 도파관 장치(102)(예컨대, 1차 평면 도파관(108)을 포함함), 광학 커플러 서브시스템(104) 및 분배 도파관 장치(402)를 포함한다. 광학 조립체(800)의 부분들 또는 전체는, 다른 재료들 중에서도, 유리, 용융 실리카, 아크릴 또는 폴리카보네이트로 구성될 수 있다.
[0085] 광학 조립체(800)는, 사용자에게 디지털 이미저리를 디스플레이하기 위해 공간 광 변조기(106)와 함께 사용될 수 있다. 예컨대, 광학 조립체(800)의 적어도 일부는 머리-착용, 머리-장착 또는 헬멧-장착 디스플레이 또는 다른 웨어러블 디스플레이에 통합될 수 있다(예컨대, 사용자에게 디지털 이미저리를 디스플레이하기 위해 사용자의 시야 내에 위치된 접안렌즈에 통합됨).
[0086] 위에 설명된 방식과 유사한 방식으로, 광학 커플러 서브시스템(104)은 분배 도파관 장치(402)를 통해 도파관 장치(102)에 또는 도파관 장치(102)로부터 광을 광학적으로 커플링하도록 구성된다. 분배 도파관 장치(402)는 제1 축(802)을 따라 광을 중계하고, 제1 축(802)을 따라 광의 유효 출사 동공을 확장시키도록 구성된다. 또한, 중계되어 출사 동공 확장된 광은 분배 도파관 장치(402)로부터 도파관 장치(102)에 광학적으로 커플링된다. 도파관 장치(102)는 (예컨대, 1차 평면 도파관(108)을 사용하여) 제2 축(804)을 따라 광을 중계하고, 제2 축(804)을 따라 광의 유효 출사 동공을 확장시킨다. 일부 경우들에서, 제2 축(804)은 제1 축(802)에 직교할 수 있다. 일부 경우들에서, 제2 축(804)은 제1 축(802)에 직교하지 않을 수 있다.
[0087] 또한, 위에 설명된 방식과 유사한 방식으로, 광은 1차 평면 도파관(108)을 따라 전파되며 TIR 전파로 인해 적어도 일부 반사들 또는 "바운스들"이 발생한다. 또한, 광은 1차 평면 도파관(108)을 따라 전파되고, 길이를 따라 다양한 포지션들에서 1차 평면 도파관(108)의 하나 이상의 DOE들과 교차한다. DOE(들)(110)는 광의 각도를 시프팅하여, 광의 일부로 하여금 TIR을 새나가게 하고, 1차 평면 도파관(108)의 하나 이상의 면들을 통해 광학 조립체(800)의 내부로부터 외부로 나오게 한다. 또한, DOE(들)(110)는 아웃-커플링된 광의 초점을 하나 이상의 뷰잉 거리들에 맞춘다. 따라서, (예컨대, 1차 평면 도파관(108)을 향한 방향으로, 페이지 위의 포지션으로부터) 1차 평면 도파관(108)의 면들을 통해 보는 누군가는 하나 이상의 뷰잉 거리들에 있는 디지털 이미저리를 볼 수 있다.
[0088] 이 예에서, 광학 조립체(800)는 또한 광 흡수 조립체(502)를 포함한다. 위에 설명된 방식과 유사한 방식으로, 광 흡수 조립체(502)는 하나 이상의 도파관들(504) 및 하나 이상의 광 흡수 엘리먼트들(506)을 포함한다. 하나 이상의 도파관들(504)은 광학 조립체(800)의 주변에 위치되어, 도파관들(504)이 광학 조립체(800)의 컴포넌트들(예컨대, 도파관 장치(102), 광학 커플러 서브시스템(104) 및 분배 도파관 장치(402))를 둘러싸거나 실질적으로 둘러싸게 하고, 이들 컴포넌트들에 의해 방출된 미광을 수집한다. 차례로, 도파관들(504)은 캡처된 광을 광 흡수 엘리먼트들(506) 중 하나 이상으로 지향시키고, 이로써 미광이 흡수된다. 따라서, 광학 조립체(800)로부터 새는 미광의 양이 감소된다.
[0089] 광 흡수 조립체(502)의 예시적인 어레인지먼트가 도 8에 도시되지만, 이는 단지 예시적인 예이다. 실제로, 각각의 도파관(504) 및 광 흡수 엘리먼트(506)의 포지션은 구현에 의존하여 상이할 수 있다. 또한, 실제로, 광 흡수 조립체(502)는 도 8에 도시된 것과 상이한 수의 도파관들(504) 및/또는 광 흡수 엘리먼트들(506)을 포함할 수 있다.
[0090] 일부 경우들에서, 다수의 광학 조립체들(800)은 사용자에게 디지털 이미저리를 디스플레이하기 위해 함께 사용될 수 있다. 예컨대, 도 9는 순서대로(예컨대, 광학 조립체들이 서로 정렬되는 스택으로) 배열된 8개의 광학 조립체들(800a-h)을 도시한다. 예시를 용이하게 하기 위해, 광학 조립체들(800)은 그들 사이에 갭들이 있는 것으로(예컨대, "분해도"로) 예시된다. 그러나, 실제로, 각각의 세트들 사이의 거리는 도 8에 예시된 거리보다 더 가까울 수 있다. 예컨대, 세트들은, 각각의 광학 조립체(800a-h)가 각각의 인접한 광학 조립체(800a-h)에 인접하거나 근접하도록 위치될 수 있다.
[0091] 일부 구현들에서, 광학 조립체들(800a-h)의 적어도 일부는 머리-착용, 머리-장착 또는 헬멧-장착 디스플레이 또는 다른 웨어러블 디스플레이에 통합될 수 있다(예컨대, 사용자에게 디지털 이미저리를 디스플레이하기 위해 사용자의 시야 내에 위치된 접안렌즈에 통합됨).
[0092] 또한, 일부 경우들에서, 광학 조립체들(800a-h) 각각은 뷰의 상이한 개개의 컬러 및/또는 상이한 깊이를 사용하여 디지털 이미저리를 투사하도록 구성될 수 있어서, 광학 조립체들(800a-h)이 (예컨대, 광학 조립체들(800a-h)에 수직인 방향(904)을 따라 포지션(902)으로부터) 사용자에 의해 보여질 때, 광학 조립체들(800a-h) 각각에 의해 투사된 디지털 이미저리가 중첩되어, 단일의 다중-컬러, 깊이에 의존하는 이미지(예컨대, 3차원인 것처럼 보이는 다중-컬러 이미지)의 외관을 제공하게 한다.
[0093] 또한, 도 9에 도시된 바와 같이, 광학 조립체들(800a-h) 각각은 미광을 캡처 및 흡수하기 위해 개개의 광 흡수 조립체(502a-h)를 포함할 수 있어서, 이로써 디지털 이미저리의 이미지 품질을 향상시킨다.
[0094] 일부 경우들에서, 광 흡수 조립체들(502a-h) 각각의 두께는 그의 개개의 광학 조립체(800a-h)의 나머지의 두께와 실질적으로 동일하거나 미만일 수 있다. 이것은, 예컨대, 광학 조립체들(800a-h)이 서로 근접하게 배치되게 하거나 또는 광학 조립체들(800a-h)이 장애물 없이 서로 인접하도록 할 때, 유용할 수 있다.
[0095] 위에 설명된 예시적인 구현들 중 하나 이상에서, 광 흡수 엘리먼트들은 광을 흡수하기 위해 도파관의 종방향 단부들에 위치될 수 있다. 예컨대, 도 8을 참조하면, 광 흡수 엘리먼트들(506)은 도파관들(502) 각각의 종방향 단부들에(예컨대, 도파관을 통한 광 전파의 축에 실질적으로 수직인 표면 상에) 위치될 수 있어서, 각각의 광 흡수 엘리먼트는 2개의 인접한 도파관들 사이에 위치된다. 도파관에 입사되는 광은 그 도파관의 종방향 단부로 지향되고, 이로써 광이 광 흡수 엘리먼트에 의해 흡수된다.
[0096] 그러나, 일부 경우들에서, 광 흡수 엘리먼트들은 도파관의 하나 이상의 측면 또는 주변 에지들을 따라(예컨대, 도파관을 통한 광 전파의 축에 실질적으로 평행한 표면 상에) 위치될 수 있다. 예로서, 도 10은 평면도에 따른 광학 조립체(1000)의 개략도를 도시한다. 광학 조립체(1000)는 도 8에 도시된 광학 조립체(800)와 유사할 수 있다. 예컨대, 광학 조립체(1000)는 단일 컴포넌트로서 일체로 형성되는 도파관 장치(102)(예컨대, 1차 평면 도파관(108)을 포함함), 광학 커플러 서브시스템(104) 및 분배 도파관 장치(402)를 포함한다. 광학 조립체(1000)의 부분들 또는 전체는, 다른 재료들 중에서도, 유리, 용융 실리카, 아크릴, 폴리카보네이트, 리튬 니오베이트, 리튬 탄탈레이트 또는 입자-도핑된 중합체 수지들로 구성될 수 있다.
[0097] 도 10의 삽도(A)는 광학 조립체(1000)의 일부의 단면도를 도시한다. 도 10의 삽도(A)에 도시된 바와 같이, 격자들(1002)의 패턴은 도파관 장치(102)의 주변 에지(1004)를 따라 도파관 장치(102)의 최상부면 및 최하부면 중 적어도 하나 상에 규정된다. 또한, 광 흡수 재료 층(1006)이 격자들(1002) 위에 증착된다. 도파관 장치(102)는, TIR 전파로부터 기인한 일부 반사들 또는 "바운스들"을 갖고서, 광 전파의 축(1010)을 따라 주변 에지(1004)를 향해 미광(1008)(예컨대, 1차 평면 도파관(108) 및/또는 분배 도파관 장치(402)로부터 새는 미광)을 안내한다. 격자들(1002)에 도달할 때, 미광(1008)의 전파 각도는 미광이 광 흡수 재료(1006)에 진입하는 것을 가능하게 하도록 변경된다. 미광(1008)은 도파관 장치(102)로부터 방출되고, 광 흡수 재료(1006)에 의해 흡수된다. 따라서, 미광(1008)은 광학 조립체(1000) 내에 포함되고, 이로써 디지털 이미저리의 이미지 품질을 향상시킨다.
[0098] 일부 경우들에서, 격자들(1002)의 폭(W) 및 광 흡수 재료(1006)는, 미광(1008)이 TIR을 통해 도파관 장치(102)를 통해 전파될 때 폭(W)을 따라 적어도 2번 바운싱하도록 선택될 수 있다. 따라서, 격자들(1002) 및 광 흡수 재료(1006)는 다수의 상이한 광 바운스들에 걸쳐 미광을 점진적으로 추출 및 흡수할 수 있다. 이는, 예컨대, 광 흡수 성능을 향상시키는 데 유용할 수 있다. 예컨대, 폭(W) 내에서 미광의 제1 바운스 시에, 격자들(1002) 및 광 흡수 재료(1006)는 광의 일부만을 흡수할 수 있다(예컨대, 광의 90%를 흡수하고 10%의 잔여물을 남겨둠). 폭(W) 내에서 미광의 제2 바운스 시에, 격자들(1002) 및 광 흡수 재료(1006)는 잔여 광의 일부 또는 전부를 흡수할 수 있다(예컨대, 잔여 광의 90%를 흡수하여, 오리지널 광의 1%의 잔여물을 남겨둠). 또한, 도파관(102)의 주변 에지(1004) 근처의 이러한 격자 패턴(1002)은, TIR로 다시 반사되는 광의 경향이 더 높기 때문에, 더 높은 굴절률 기판들이 도파관들로서 사용되는 실시예들에서 특히 유용할 수 있다. 실제로, 광 흡수 재료들은, 더 높은 굴절률의 기판들(예컨대, n> 1.8)의 굴절률과 매칭하기에 충분한 높은 굴절률을 갖지 않을 수 있다. 따라서, 도파관의 주변 에지의 적어도 일부 근처에 충분히 넓은 폭(W)을 따른 격자들 및 광 흡수 재료들의 사용은 이러한 상황들에서 광학 장치의 광 성능 특징들을 향상시킬 수 있다.
[0099] 격자 패턴(1002)의 치수들 및 설계는 특정 파장들의 광에 대해 튜닝될 수 있다. 예컨대, 격자 패턴은 높은 굴절률 도파관으로부터 더 낮은 굴절률 광 흡수 재료에 적색 광을 최적으로 아웃커플링하도록 선택될 수 있다. 격자 패턴이 또한 녹색, 청색 또는 임의의 다른 파장의 광에 대해 튜닝될 수 있다는 것을 당업자는 인지할 것이다. 일부 실시예들에서, 고굴절률 도파관은 하나 초과의 파장의 광의 내부 전반사를 지원할 수 있다. 이러한 실시예에서, 격자 패턴은 하나 초과의 파장의 광을 아웃커플링하도록 설계될 수 있다. 다수의 파장들 또는 넓은 범위의 파장들의 아웃커플링을 달성하는 하나의 방법은, 도파관에 의해 지원되는 파장들의 수만큼, 제1 파장에 대해 격자 패턴의 제1 부분을 튜닝하고, 제2 파장에 대해 격자 패턴의 제2 부분을 튜닝하고, 이러한 식이다. 일부 실시예들에서, 제1 부분은 도파관의 주변 에지를 따르고, 제2 부분은 도파관의 중심을 향해 제1 부분에 인접한다.
[00100] 일부 경우들에서, 광 흡수 재료(1006)는 위에 설명된 광 흡수 엘리먼트들(506)을 구성하는 데 사용된 재료와 유사한 재료일 수 있다. 예컨대, 광 흡수 재료(1006)는 타르 또는 UV 경화성 블랙 중합체 재료와 같은 광학적으로 어두운 재료(예컨대, "카본 블랙")일 수 있다. 또한, 일부 경우들에서, 광 흡수 재료(1006)는 액체 형태로 주변 에지(1004)에 적용되고(예컨대, 주변 에지(1004) 및/또는 몰드에 주입됨), 고체 형태로 경화될 수 있다. 일부 경우들에서, 격자들(1002)은 주변 에지(1004) 상의 광 흡수 재료(1006)의 볼륨 및/또는 분포를 조절하는 데 사용될 수 있다. 예컨대, 격자들(1002)의 치수(예컨대, 각각의 격자의 높이, 각각의 격자의 폭, 격자의 피치, 격자 방향, 격자들에 의해 규정된 공간의 볼륨 등)는, 광 흡수 재료(1006)가 액체 형태에 있는 동안에 (예컨대, 모세관력들을 통한) 광 흡수 재료(1006)의 증착을 제어하고, 광 회절/추출 효율을 향상시키도록 선택될 수 있다.
[00101] 도 10에 도시된 예에서, 격자들(1002) 및 광 흡수 재료(1006)는 도파관 장치(102)의 전체 주변 에지(1004) 주위에 분포된다. 그러나, 반드시 그런 것은 아니다. 예로서, 격자들(1002)은 주변 에지(1004)의 하나 이상의 선택된 부분들을 따라(예컨대, 더 많은 양의 미광을 만나는 도파관 장치(102)의 부분들을 따라) 규정될 수 있다. 다른 예로서, 광 흡수 재료(1006)는 또한 주변 에지(1004)의 하나 이상의 선택된 부분들을 따라 증착될 수 있다. 도 10을 참조하면, 일부 경우들에서, 에지 세그먼트들(1012a-c)은 격자들(1002) 및 광 흡수 재료(1006)를 포함할 수 있는 반면에, 격자들(1002) 및 광 흡수 재료(1006)는 에지 세그먼트들(1012d-f)에서 생략된다. 실제로, 구현에 의존하여 다른 구성이 또한 가능하다.
[00102] 일부 경우들에서, 광학 조립체의 형상은 또한 미광의 흡수를 가능하게 하도록 설계될 수 있다. 예컨대, 광학 조립체는, 특정 컴포넌트에 의해 방출된 미광이 그 컴포넌트로부터 반사될 가능성이 더 높아서, 미광이 광학 조립체(100)의 광학 경로들에 재커플링되지 않도록 성형될 수 있다.
[00103] 예로서, 도 11a는 평면도에 따른 광학 조립체(1100a)의 개략도를 도시한다. 광학 조립체(1100a)는 도 8 및 10에 도시된 광학 조립체들(800 및 1000)과 유사할 수 있다. 예컨대, 광학 조립체(1100a)는 단일 컴포넌트로서 일체로 형성되는 도파관 장치(102)(예컨대, 1차 평면 도파관(108)을 포함함), 광학 커플러 서브시스템(104) 및 분배 도파관 장치(402)를 포함한다. 광학 조립체(1000)의 부분들 또는 전체는, 다른 재료들 중에서도, 유리, 용융 실리카, 아크릴 또는 폴리카보네이트로 구성될 수 있다. 일부 실시예들에서, 광학 조립체(1000)는 고굴절률 재료, 이를테면, 고굴절률 유리, 중합체, 도핑된 중합체, 리튬 니오베이트 또는 리튬 탄탈레이트를 포함한다.
[00104] 이 예에서, 광학 커플러 서브시스템(104)은 1차 방출 축(1102a)을 따라 광(1104)을 방출하도록 구성된다. 그러나, 실제 제한들(예컨대, 물리적 및 설계 제한들)로 인해, 광학 커플러 서브시스템(104)은 또한 1차 방출 축(1102a)의 방향에 반대 방향으로 2차 방출 축(1102b)을 따라 일부 미광(1106)을 방출한다. 도 11a의 삽도(A)에 도시된 바와 같이, 미광의 경로(1106)에서 도파관 장치(102)의 주변 에지(1108)는 제2 방출 축(1102b)에 실질적으로 수직이다. 따라서, 미광(1106)의 적어도 일부는 주변 에지(1108)로부터 반사되고, 광학 커플링 서브시스템(104) 및 분배 도파관 장치(402)를 향해 다시 전파된다. 이는 (예컨대, 광학 조립체의 광학 경로로의 미광의 재커플링으로 인해 ― 이는 디지털 이미저리의 이미지 품질을 저하시킬 수 있음 ― ) 광학 조립체의 성능에 부정적으로 영향을 줄 수 있다.
[00105] 이러한 효과들은, 도파관 장치(102)의 주변 에지들이 1차 방출 축(1102a) 및 2차 방출 축(1102b)에 대해 기울어지도록(예컨대, 축들(1102a 및 1102b)에 실질적으로 수직하지 않도록) 광학 조립체를 설계함으로써 완화될 수 있다. 예로서, 도 11b는 평면도에 따른 광학 조립체(1100b)의 일부의 개략도를 도시한다. 이 예에서, 광학 조립체(1100b)는 2차 방출 축(1102b)을 따른 2개의 주변 에지들(1110a 및 1110b)을 포함한다. 주변 에지들(1110a 및 1110b)은 1차 방출 축(1102a) 및 2차 방출 축(1102b)에 대해 기울어진다. 따라서, 미광(1106)은 광학 커플링 서브시스템(104)을 향해 다시 반사되지 않는다(예컨대, 대신에 축들(1112a 및 1112b)을 따라 전파됨). 따라서, 미광은 광학 조립체의 광학 경로들에 재커플링될 가능성이 더 낮다.
[00106] 다른 예로서, 도 11c는 평면도에 따른 광학 조립체(1100c)의 일부의 개략도를 도시한다. 이 예에서, 광학 조립체(1100c)는 2차 방출 축(1102b)을 따른 주변 에지(1114)를 포함한다. 주변 에지들(1110a 및 1110b)은 1차 방출 축(1102a) 및 2차 방출 축(1102b)에 대해 기울어진다. 따라서, 미광(1106)은 광학 커플링 서브시스템(104)을 향해 다시 반사되지 않는다(예컨대, 대신에 축(1116)을 따라 전파됨). 따라서, 미광은 광학 조립체의 광학 경로들에 재커플링될 가능성이 더 낮다.
[00107] 일부 경우들에서, 광학 조립체는, 2차 방출 축(1102b)을 따라 방출된 미광이 광학 조립체(예컨대, 도파관 장치(102), 분배 도파관 장치(402) 및/또는 광학 커플러 서브시스템(104))의 광학 경로들을 만나기 전에 최소 2번 실질적으로 바운싱하도록 구성될 수 있다. 이것은, 예컨대, 광학 경로들에 재커플링되는 광의 양을 감소시키는 데 유리할 수 있다.
[00108] 미광 방출을 감소시키기 위한 몇몇 예시적인 기법들이 본원에 도시되고 설명되었지만, 이들이 상호 배타적이지 않다는 것이 이해된다. 일부 경우들에서, 광학 조립체의 성능을 향상시키기 위해 특정 방식으로 미광을 흡수 및/또는 미광을 지향시키기 위해, 설명된 기법들 중 둘 이상이 함께 사용될 수 있다. 예로서, 하나 이상의 광 흡수 엘리먼트들(예컨대, 도 5, 6, 8 및 9와 관련하여 도시되고 설명됨), 하나 이상의 격자들(예컨대, 도 7 및 10과 관련하여 도시되고 설명됨), 광학 컴포넌트들의 주변 에지 상의 발광 재료들의 하나 이상의 부분들(예컨대, 도 10과 관련하여 도시되고 설명됨) 및/또는 2차 방출 축에 실질적으로 평행하지 않은 하나 이상의 주변 에지들(예컨대, 도 11a-11c와 관련하여 도시되고 설명됨)은 광학 조립체에 대해 미광 방출을 감소시키기 위해, 개별적으로 또는 임의의 조합으로, 사용될 수 있다.
[00109] 다수의 실시예들이 설명되었다. 그럼에도 불구하고, 본 발명의 사상 및 범위에서 벗어나지 않고서, 다양한 수정들이 이루어질 수 있다는 것이 이해될 것이다. 그에 따라서, 다른 실시예들은 다음의 청구항들의 범위 내에 있다.

Claims (21)

  1. 머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법으로서, 상기 방법은,
    상기 머리-장착 디스플레이의 동작 동안 하나 이상의 제1 도파관들의 제1 에지에서 공간 광 변조기로부터 광을 수신하도록 상기 제1 에지를 상기 공간 광 변조기에 광학적으로 커플링하는 단계 ― 상기 하나 이상의 제1 도파관들은 상기 제1 에지에서 수신된 광 중 적어도 일부를 상기 제1 에지에 대향하는 상기 하나 이상의 제1 도파관들의 제2 에지로 안내하고, 그리고 상기 제1 에지와 상기 제2 에지 사이의 하나 이상의 제1 도파관들의 한 면(face)을 통해 상기 제1 에지에서 수신된 광 중 적어도 일부를 추출하도록 구성됨 ― ;
    상기 머리-장착 디스플레이의 동작 동안 상기 제2 에지에서 상기 하나 이상의 제1 도파관들에서 출사되는 광을 수신하도록 제2 도파관을 상기 하나 이상의 제1 도파관들의 상기 제2 에지에 광학적으로 커플링하는 단계 ― 상기 제2 도파관은 상기 제2 에지에서 수신된 광을 하나 이상의 제1 광 엘리먼트들로 안내하도록 구성됨 ― ;
    상기 머리-장착 디스플레이의 동작 동안 제3 도파관의 제3 에지에서 상기 공간 광 변조기로부터 광을 수신하도록 상기 제3 에지를 상기 공간 광 변조기에 광학적으로 커플링하는 단계 ― 상기 제3 도파관은 상기 제3 에지에서 수신된 광 중 적어도 일부를 상기 제3 에지에 대향하는 상기 제3 도파관의 제4 에지로 안내하고, 그리고 상기 제3 에지와 상기 제4 에지 사이의 상기 제3 도파관의 한 면을 통해 상기 제3 에지에서 수신된 광 중 적어도 일부를 추출하도록 구성됨 ― ; 및
    상기 머리-장착 디스플레이의 동작 동안 상기 제4 에지에서 상기 제3 도파관에서 출사되는 광을 수신하도록 제4 도파관을 상기 제3 도파관의 상기 제4 에지에 광학적으로 커플링하는 단계 ― 상기 제4 도파관은 상기 제3 에지에서 수신된 광을 하나 이상의 제2 광 엘리먼트들로 안내하도록 구성됨 ―
    를 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  2. 제1 항에 있어서,
    상기 하나 이상의 제1 도파관들의 제2 에지와 상기 제2 도파관 사이에 광학 구조물들을 배열하는 단계 ― 상기 광학 구조물들은 상기 하나 이상의 제1 도파관들로부터의 광을 상기 제2 도파관에 커플링하도록 구성됨 ― 를 더 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  3. 제1 항에 있어서,
    반사기와 상기 하나 이상의 제1 도파관들 사이에 상기 제2 도파관을 배열하는 단계를 더 포함하고,
    상기 반사기는, 상기 하나 이상의 제1 도파관들로부터의 광이 상기 하나 이상의 제1 광 엘리먼트들로 안내되도록 상기 하나 이상의 제1 도파관들로부터 상기 제2 도파관에 진입하는 광을 반사시키도록 구성되는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  4. 제1 항에 있어서,
    상기 하나 이상의 제1 광 엘리먼트들과 상기 하나 이상의 제2 광 엘리먼트들이 사용자에 의한 상기 머리-장착 디스플레이의 동작 동안에 상기 사용자의 시야 외부에 위치되도록 상기 하나 이상의 제1 광 엘리먼트들과 상기 하나 이상의 제2 광 엘리먼트들을 배열하는 단계를 더 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  5. 제1 항에 있어서,
    상기 머리-장착 디스플레이의 동작 동안에 상기 하나 이상의 추가적인 에지들에서 상기 하나 이상의 제1 도파관들에서 출사되는 광을 수신하도록 하나 이상의 추가적인 도파관들을 상기 하나 이상의 제1 도파관들의 하나 이상의 추가적인 에지들에 광학적으로 커플링하는 단계를 더 포함하고,
    상기 하나 이상의 추가적인 도파관들은 상기 수신된 광을 상기 하나 이상의 추가적인 에지들로부터 하나 이상의 추가적인 광 엘리먼트들로 안내하도록 구성되는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  6. 제1 항에 있어서,
    상기 하나 이상의 제1 도파관들이 사용자에 의한 상기 머리-장착 디스플레이의 동작 동안에 상기 사용자의 시야 내에 위치되도록 상기 하나 이상의 제1 도파관들을 배열하는 단계를 더 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  7. 제1 항에 있어서,
    상기 제1 에지와 상기 제2 에지 사이에서 상기 하나 이상의 제1 도파관들의 하나 이상의 회절 광학 엘리먼트들을 배열하는 단계를 더 포함하고,
    상기 하나 이상의 회절 광학 엘리먼트들은 상기 제1 에지와 상기 제2 에지 사이의 상기 하나 이상의 제1 도파관들의 한 면을 통해 상기 광 중 적어도 일부를 추출하도록 구성되는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  8. 제7 항에 있어서,
    상기 하나 이상의 회절 광학 엘리먼트들 중 적어도 하나를 상기 하나 이상의 제1 도파관들의 내부에 배열하는 단계를 더 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  9. 제7 항에 있어서,
    상기 하나 이상의 회절 광학 엘리먼트들 중 적어도 하나를 상기 하나 이상의 제1 도파관들의 주변을 따라 배열하는 단계를 더 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  10. 제1 항에 있어서,
    상기 제2 도파관의 주변을 따라 격자 패턴을 규정하는 단계를 더 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  11. 제10 항에 있어서,
    상기 제2 도파관의 주변을 따라 격자 패턴을 규정하는 단계는,
    상기 제2 도파관의 제1 면 또는 상기 제2 도파관의 제2 면 중 적어도 하나 상에 상기 격자 패턴을 규정하는 단계를 포함하고,
    상기 제2 도파관의 상기 제1 면은 상기 제2 도파관의 상기 제2 면에 대향하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  12. 제10 항에 있어서,
    상기 격자 패턴을 따라 광 흡수 재료를 증착하는 단계를 더 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  13. 제12 항에 있어서,
    상기 제2 도파관의 주변을 따라 격자 패턴을 규정하는 단계는,
    상기 제2 도파관의 주변 전체를 따라 상기 격자 패턴을 규정하는 단계를 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  14. 제12 항에 있어서,
    상기 격자 패턴을 따라 광 흡수 재료를 증착하는 단계는,
    상기 제2 도파관의 주변 전체를 따라 상기 광 흡수 재료를 증착하는 단계를 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  15. 제12 항에 있어서,
    상기 제2 도파관의 주변을 따라 격자 패턴을 규정하는 단계는,
    상기 제2 도파관의 주변의 서브세트를 따라 상기 격자 패턴을 규정하는 단계를 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  16. 제12 항에 있어서,
    상기 격자 패턴을 따라 광 흡수 재료를 증착하는 단계는,
    상기 제2 도파관의 주변의 서브세트를 따라 상기 광 흡수 재료를 증착하는 단계를 포함하는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  17. 제1 항에 있어서,
    상기 머리-장착 디스플레이의 동작 동안 상기 공간 광 변조기로부터 상기 광을 수신하도록 광학 커플러 서브시스템을 상기 공간 광 변조기에 광학적으로 커플링하는 단계를 더 포함하고,
    상기 광학 커플러 서브시스템은 1차 방출 축(primary emission axis)을 따라 상기 하나 이상의 제1 도파관들의 상기 제1 에지를 향해 제1 방향으로 상기 광을 지향시키도록 구성되는,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  18. 제17 항에 있어서,
    상기 광학 커플러 서브시스템으로부터 제2 방향으로 상기 제2 도파관의 주변 에지를 배열하는 단계를 더 포함하고,
    상기 제2 방향은 상기 제1 방향과 반대이고, 상기 주변 에지는 상기 1차 방출 축에 대해 기울어진,
    머리-장착 디스플레이를 위한 접안렌즈를 제조하는 방법.
  19. 삭제
  20. 삭제
  21. 삭제
KR1020227029178A 2017-09-28 2018-09-27 광학 이미징 시스템의 접안렌즈로부터의 미광 방출을 감소시키기 위한 방법들 및 장치들 KR102648253B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762564528P 2017-09-28 2017-09-28
US62/564,528 2017-09-28
PCT/US2018/053172 WO2019067751A1 (en) 2017-09-28 2018-09-27 METHODS AND APPARATUSES FOR REDUCING PARASITIC LIGHT EMISSION OF AN OCULAR OF AN OPTICAL IMAGING SYSTEM
KR1020207011678A KR102437645B1 (ko) 2017-09-28 2018-09-27 광학 이미징 시스템의 접안렌즈로부터의 미광 방출을 감소시키기 위한 방법들 및 장치들

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207011678A Division KR102437645B1 (ko) 2017-09-28 2018-09-27 광학 이미징 시스템의 접안렌즈로부터의 미광 방출을 감소시키기 위한 방법들 및 장치들

Publications (2)

Publication Number Publication Date
KR20220119773A KR20220119773A (ko) 2022-08-30
KR102648253B1 true KR102648253B1 (ko) 2024-03-14

Family

ID=65808918

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020227029178A KR102648253B1 (ko) 2017-09-28 2018-09-27 광학 이미징 시스템의 접안렌즈로부터의 미광 방출을 감소시키기 위한 방법들 및 장치들
KR1020207011678A KR102437645B1 (ko) 2017-09-28 2018-09-27 광학 이미징 시스템의 접안렌즈로부터의 미광 방출을 감소시키기 위한 방법들 및 장치들

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020207011678A KR102437645B1 (ko) 2017-09-28 2018-09-27 광학 이미징 시스템의 접안렌즈로부터의 미광 방출을 감소시키기 위한 방법들 및 장치들

Country Status (9)

Country Link
US (2) US11086128B2 (ko)
EP (2) EP3688371B1 (ko)
JP (3) JP7064581B2 (ko)
KR (2) KR102648253B1 (ko)
CN (2) CN111133248B (ko)
AU (1) AU2018339658B2 (ko)
CA (1) CA3075926A1 (ko)
IL (1) IL273522A (ko)
WO (1) WO2019067751A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190095047A1 (en) 2017-09-25 2019-03-28 International Business Machines Corporation Safely capturing input when a dialog is presented
WO2019140269A1 (en) * 2018-01-14 2019-07-18 Light Field Lab, Inc. Systems and methods for transverse energy localization in energy relays using ordered structures
KR20220085620A (ko) 2020-12-15 2022-06-22 삼성전자주식회사 도파관형 디스플레이 장치
EP4302150A1 (en) * 2021-03-10 2024-01-10 Meta Platforms Technologies, Llc Light redirection feature in waveguide display
WO2023039124A1 (en) * 2021-09-10 2023-03-16 Meta Platforms Technologies, Llc Lightguide with radial pupil replication and visual display based thereon
CN115291412B (zh) * 2022-09-30 2023-01-24 南方科技大学 基于ar几何光波导的三维显示装置和三维显示方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070188869A1 (en) 2006-02-10 2007-08-16 Matsushita Electric Industrial Co., Ltd. Oblique parallelogram pattern diffractive optical element
US20110019874A1 (en) 2008-02-14 2011-01-27 Nokia Corporation Device and method for determining gaze direction

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070081123A1 (en) 2005-10-07 2007-04-12 Lewis Scott W Digital eyewear
US11428937B2 (en) 2005-10-07 2022-08-30 Percept Technologies Enhanced optical and perceptual digital eyewear
US8696113B2 (en) 2005-10-07 2014-04-15 Percept Technologies Inc. Enhanced optical and perceptual digital eyewear
US9658473B2 (en) 2005-10-07 2017-05-23 Percept Technologies Inc Enhanced optical and perceptual digital eyewear
WO2008071830A1 (en) * 2006-12-14 2008-06-19 Nokia Corporation Display device having two operating modes
US8189263B1 (en) * 2011-04-01 2012-05-29 Google Inc. Image waveguide with mirror arrays
KR101907045B1 (ko) * 2011-12-14 2018-10-12 엘지디스플레이 주식회사 액정 표시 장치
US8917453B2 (en) * 2011-12-23 2014-12-23 Microsoft Corporation Reflective array waveguide
US10502876B2 (en) 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
EP2859403B1 (en) 2012-06-11 2022-10-19 Magic Leap, Inc. Multiple depth plane three-dimensional display using a wave guide reflector array projector
US20140168260A1 (en) * 2012-12-13 2014-06-19 Paul M. O'Brien Waveguide spacers within an ned device
TWI630502B (zh) * 2016-08-05 2018-07-21 金佶科技股份有限公司 取像裝置
CA2962899C (en) * 2014-09-29 2022-10-04 Robert Dale Tekolste Architectures and methods for outputting different wavelength light out of waveguides
JP6464708B2 (ja) 2014-12-08 2019-02-06 セイコーエプソン株式会社 画像表示装置
JP6700310B2 (ja) * 2015-05-19 2020-05-27 マジック リープ, インコーポレイテッドMagic Leap,Inc. 二重混合光照射フィールドデバイス
JP6562088B2 (ja) 2016-01-18 2019-08-21 株式会社島津製作所 光学素子並びにそれを用いた表示装置及び受光装置
US9720237B1 (en) 2016-01-27 2017-08-01 Microsoft Technology Licensing, Llc. Mixed environment display device and waveguide cross-coupling suppressors
JP6978423B2 (ja) * 2016-03-01 2021-12-08 マジック リープ, インコーポレイテッドMagic Leap, Inc. 光の異なる波長を導波管に入力するための反射切替デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070188869A1 (en) 2006-02-10 2007-08-16 Matsushita Electric Industrial Co., Ltd. Oblique parallelogram pattern diffractive optical element
US20110019874A1 (en) 2008-02-14 2011-01-27 Nokia Corporation Device and method for determining gaze direction

Also Published As

Publication number Publication date
KR20200061369A (ko) 2020-06-02
AU2018339658B2 (en) 2022-03-31
EP3688371B1 (en) 2023-08-30
US20190094551A1 (en) 2019-03-28
CN115061278A (zh) 2022-09-16
EP4273601A2 (en) 2023-11-08
JP2022093475A (ja) 2022-06-23
JP7296505B2 (ja) 2023-06-22
JP2022063881A (ja) 2022-04-22
AU2018339658A1 (en) 2020-04-02
EP4273601A3 (en) 2024-01-10
JP7064581B2 (ja) 2022-05-10
EP3688371A1 (en) 2020-08-05
WO2019067751A1 (en) 2019-04-04
JP2020536269A (ja) 2020-12-10
CN111133248B (zh) 2022-06-10
KR102437645B1 (ko) 2022-08-26
IL273522A (en) 2020-05-31
EP3688371A4 (en) 2020-11-25
US11086128B2 (en) 2021-08-10
CN111133248A (zh) 2020-05-08
CA3075926A1 (en) 2019-04-04
US20210364806A1 (en) 2021-11-25
KR20220119773A (ko) 2022-08-30

Similar Documents

Publication Publication Date Title
KR102648253B1 (ko) 광학 이미징 시스템의 접안렌즈로부터의 미광 방출을 감소시키기 위한 방법들 및 장치들
CN109416433B (zh) 交叠的反射面构造
US11513356B2 (en) Optical combiner apparatus
KR102642251B1 (ko) 균일한 이미지를 갖는 소형 헤드 장착 디스플레이 시스템
CN109154431B (zh) 紧凑型头戴式显示系统
US8446675B1 (en) Image waveguide with mirror arrays
KR102348588B1 (ko) 멀티빔 회절 격자-기반 니어-아이 디스플레이
JP6171740B2 (ja) 光学デバイス及び画像表示装置
JP5421285B2 (ja) 光導波路及び視覚用光学系
CN113168003B (zh) 用于增强现实设备中的高效目镜的方法和系统
US20060132914A1 (en) Method and system for displaying an informative image against a background image
KR20170030594A (ko) 도광 장치 및 허상 표시 장치
CN107167919B (zh) 导光装置以及虚像显示装置
CN114280790B (zh) 一种衍射光波导器件及近眼显示设备
JPWO2019067751A5 (ko)
CN112180594A (zh) 一种全息波导显示装置
CN107870426B (zh) 光学元件和显示装置
US20230011557A1 (en) Display device
JP2019204123A (ja) 導光部材、ライトガイド及び虚像表示装置

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant