KR102642882B1 - Recombinant microorganisms enhanced ability of producing acetoin and method for preparing acetoin using the same - Google Patents

Recombinant microorganisms enhanced ability of producing acetoin and method for preparing acetoin using the same Download PDF

Info

Publication number
KR102642882B1
KR102642882B1 KR1020160006582A KR20160006582A KR102642882B1 KR 102642882 B1 KR102642882 B1 KR 102642882B1 KR 1020160006582 A KR1020160006582 A KR 1020160006582A KR 20160006582 A KR20160006582 A KR 20160006582A KR 102642882 B1 KR102642882 B1 KR 102642882B1
Authority
KR
South Korea
Prior art keywords
acetoin
ala
gly
leu
val
Prior art date
Application number
KR1020160006582A
Other languages
Korean (ko)
Other versions
KR20170086931A (en
Inventor
오민규
장지웅
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020160006582A priority Critical patent/KR102642882B1/en
Publication of KR20170086931A publication Critical patent/KR20170086931A/en
Application granted granted Critical
Publication of KR102642882B1 publication Critical patent/KR102642882B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B9/00Lock casings or latch-mechanism casings ; Fastening locks or fasteners or parts thereof to the wing
    • E05B9/08Fastening locks or fasteners or parts thereof, e.g. the casings of latch-bolt locks or cylinder locks to the wing
    • E05B9/084Fastening of lock cylinders, plugs or cores
    • E05B9/086Fastening of rotors, plugs or cores to an outer stator
    • E05B9/088Means for preventing loss of tumblers during mounting or removal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • C12P7/28Acetone-containing products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01027L-Lactate dehydrogenase (1.1.1.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01047Glucose 1-dehydrogenase (1.1.1.47)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01304Diacetyl reductase, (S)-acetoin forming (1.1.1.304)
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/0001Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 아세토인 생성능이 증진된 재조합 미생물 및 이를 이용한 아세토인의 제조방법에 관한 것이다. 본 발명의 재조합 미생물은 대사공학적 방법을 통하여 지속적인 호기성 조건에서도 아세토인의 높은 생산수율을 유지할 수 있으며, 최소배지에 배양시킴으로써 아세토인의 생산비용을 효과적으로 절감시킬 수 있음을 확인하였는바, 아세토인 생산의 핵심 기술로 활용될 수 있을 것이다. The present invention relates to a recombinant microorganism with enhanced acetoin production ability and a method for producing acetoin using the same. It was confirmed that the recombinant microorganism of the present invention can maintain a high production yield of acetoin even under continuous aerobic conditions through metabolic engineering methods, and that the production cost of acetoin can be effectively reduced by culturing it in minimal medium. It can be used as a core technology for

Description

아세토인 생성능이 증진된 재조합 미생물 및 이를 이용한 아세토인의 제조방법 {Recombinant microorganisms enhanced ability of producing acetoin and method for preparing acetoin using the same}Recombinant microorganisms with enhanced ability to produce acetoin and method for producing acetoin using the same {Recombinant microorganisms enhanced ability of producing acetoin and method for preparing acetoin using the same}

본 발명은 아세토인 생성능이 증진된 재조합 미생물 및 이를 이용한 아세토인의 제조방법에 관한 것이다. The present invention relates to a recombinant microorganism with enhanced acetoin production ability and a method for producing acetoin using the same.

화석 연료의 사용에 따른 지구 온난화 가스 및 폐기물은 인류에게 심각한 환경적인 위기를 초래하고 있다. 이에, 화학 공업을 대체할 수 있는, 즉, 인류에게 유해한 폐기물의 생산 및 에너지 소비를 최소화할 수 있는 바이오매스를 원료로 사용하는 환경 친화적인 새로운 생물 공정의 개발이 필요하다. 바이오에너지로 널리 알려진 바이오에탄올, 바이오디젤, 바이오가스에 대한 관심이 증가하고 있으며, 언급된 종류의 바이오에너지 모두 전력 생산이나 수송용 연료로 활용되고 있으나, 생산 방법에서의 몇몇 단점으로 인해 새로운 신재생에너지 자원인 탄화수소 형태의 화합물에 대한 관심이 증가되고 있다. 이에 따라 식품이나 제약, 화장품 등 많은 산업에서 다양한 산업적 가치를 지닌 플랫폼용 화합물인 아세토인 (Acetoin)을 대사 산물로서 생성할 수 있는 재조합 균주에 대한 관심이 증대되고 있다. Global warming gases and waste resulting from the use of fossil fuels are causing a serious environmental crisis for humanity. Accordingly, there is a need to develop a new environmentally friendly biological process using biomass as a raw material that can replace chemical industry, that is, minimize the production of waste and energy consumption harmful to humanity. Interest in bioethanol, biodiesel, and biogas, widely known as bioenergy, is increasing, and all of the mentioned types of bioenergy are used for power generation or transportation fuel, but due to some shortcomings in the production method, new renewable energy Interest in hydrocarbon-type compounds as energy resources is increasing. Accordingly, interest in recombinant strains that can produce acetoin, a platform compound with various industrial values, as a metabolite is increasing in many industries such as food, pharmaceuticals, and cosmetics.

우선, 지금까지 연구된 재조합 균주들은 복합배지에서 배양되어 아세토인을 생산하여 왔다. 그러나 상기 복합배지에는 Yeast extract. Corn steep liquor 등의 성분들이 함유되어 있으며, 이러한 성분은 배양액의 총 비용에서 50% 이상 차지하는바, 생산비용을 증가시키는 결과를 초래하였다. 이뿐만 아니라, 다양한 복합배지의 성분은 미생물 배양 후, 아세토인을 정제하는 과정에서 추가적인 문제를 일으키기도 하는바, 실제 상용화에 있어서 걸림돌이 되고 있는 실정이다. First, the recombinant strains studied so far have been cultured in complex media to produce acetoin. However, the above complex medium contains Yeast extract. It contains ingredients such as corn steep liquor, and these ingredients account for more than 50% of the total cost of the culture medium, resulting in an increase in production costs. In addition, the components of various complex media cause additional problems in the process of purifying acetoin after culturing microorganisms, which is an obstacle to actual commercialization.

한편, 대사 산물로서 아세토인을 생산할 수 있는 균주인 Enterobacteriaceae는 포도당을 탄소원으로 하여 분해하는 2개의 대사 경로, 즉 Phosphotransferase system (PTS)을 통해 6-Phospho-glucose로 전환시키는 PTS 대사 경로와 Glucose dehydrogenase를 이용하여 gluconate로 전환시키는 Non-PTS 대사 경로를 지니고 있다 (도 1 참조). 해당 균주는, 이들 중 PTS 대사 경로를 통해 포도당을 세포 내로 유입시키고 해당과정을 거친 후, Acetolactate synthase와 Acetolactate decarboxylase에 의해 아세토인을 생성하게 되는데, 상기 생성된 아세토인은 Aceotoin reductase에 의해 추가적으로 대사되어 2,3-부탄디올이 생산되기 때문에 아세토인의 생산수율은 크게 감소하게 된다. 또한, 상기 균주를 배양하는 과정에서, 호기성 조건을 유지해야 아세토인의 생산효율을 높일 수 있으나, Enterobacteriaceae는, 호기성 조건이 지속되면 포도당이 PTS 회로가 아닌, Non-PTS 대사 경로를 통해 포도당이 분해되고 2-Ketogluconate가 쌓이게 되어 아세토인의 생산효율이 급격하게 떨어지게 된다. 따라서 아세토인의 대량생산을 위해서는, PTS 대사 경로에서의 추가적인 대사를 차단하고, 호기성 조건이 지속되는 조건에서도 아세토인의 높은 생산효율이 유지되는 재조합 균주의 개발이 필요하다. Meanwhile, a strain that can produce acetoin as a metabolite Enterobacteriaceae has two metabolic pathways that decompose glucose as a carbon source: the PTS metabolic pathway, which converts it to 6-Phospho-glucose through the Phosphotransferase system (PTS), and the Non-PTS metabolic pathway, which converts it to gluconate using glucose dehydrogenase. There is (see Figure 1). The strain allows glucose to enter the cell through the PTS metabolic pathway and undergoes glycolysis to produce acetoin by Acetolactate synthase and Acetolactate decarboxylase. The acetoin produced is further metabolized by Acetoin reductase. Because 2,3-butanediol is produced, the production yield of acetoin is greatly reduced. In addition, in the process of cultivating the above strain, aerobic conditions must be maintained to increase acetoin production efficiency, but in Enterobacteriaceae , if aerobic conditions continue, glucose is decomposed through the non-PTS metabolic pathway, not the PTS cycle. As 2-Ketogluconate accumulates, acetoin production efficiency drastically decreases. Therefore, for mass production of acetoin, it is necessary to develop a recombinant strain that blocks additional metabolism in the PTS metabolic pathway and maintains high production efficiency of acetoin even under continuous aerobic conditions.

이러한 배경하에서, 아세토인의 생산효율을 증진시키고, 생산비용을 절감시킬 수 있는 새로운 재조합 균주에 대한 연구가 활발히 진행되고 있으나, 아직은 미비한 실정이다.Against this background, research on new recombinant strains that can improve the production efficiency of acetoin and reduce production costs is being actively conducted, but is still insufficient.

한국 공개특허 제2015-0076410호Korean Patent Publication No. 2015-0076410

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명자들은, PTS (Phosphotransferase system) 대사 경로 내 아세토인의 추가적인 대사를 억제할 뿐만 아니라, 지속적인 호기성 조건에서도 Non-PTS 대사 경로가 활성화되지 않는 재조합 미생물을 최초로 규명하였으며, 이를 통해 대사 산물인 아세토인의 생산수율을 현저하게 향상시킬 수 있음을 확인하고, 이에 기초하여 본 발명을 완성하게 되었다. The present invention was created to solve the above problems, and the present inventors not only suppressed the additional metabolism of acetoin in the PTS (Phosphotransferase system) metabolic pathway, but also prevented the Non-PTS metabolic pathway from being activated even under continuous aerobic conditions. For the first time, a recombinant microorganism was identified that did not contain any recombinant microorganisms, and through this, it was confirmed that the production yield of acetoin, a metabolite, could be significantly improved, and based on this, the present invention was completed.

이에, 본 발명의 목적은, 2,3-부탄디올 (2,3-butandiol) 및 락테이트 (Lactate) 생합성 경로를 갖는 미생물로서, 젖산 탈수소효소 (Lactate dehydrogenase) 및 아세토인 환원효소 (Acetoin reductase)의 활성이 약화 또는 불활성화되어 아세토인 생성능이 증진된, 엔테로박테리아세아에 (Enterobacteriaceae) 과의 세균인 재조합 미생물을 제공하는 것이다. Accordingly, the object of the present invention is a microorganism having 2,3-butandiol and lactate biosynthetic pathways, including lactate dehydrogenase and acetoin reductase. The aim is to provide a recombinant microorganism, a bacterium of the Enterobacteriaceae family, whose activity is weakened or inactivated and whose acetoin production ability is enhanced.

또한, 본 발명의 다른 목적은, 상기 재조합 미생물에 있어서, 포도당 탈수소효소 (Glucose dehydrogenase)의 활성이 추가적으로 약화 또는 불활성화된, 아세토인 생성능이 증진된 재조합 미생물을 제공하는 것이다. In addition, another object of the present invention is to provide a recombinant microorganism with an enhanced acetoin production ability in which the activity of glucose dehydrogenase is additionally weakened or inactivated.

또한, 본 발명의 또 다른 목적은, (a) 상기 재조합 미생물을 탄소원이 포함된 배지에 배양시키는 단계; 및 (b) 상기 재조합 미생물이 배양된 배지로부터 아세토인을 회수하는 단계를 포함하는, 아세토인의 제조방법을 제공하는 것이다. In addition, another object of the present invention is, (a) culturing the recombinant microorganism in a medium containing a carbon source; and (b) recovering acetoin from the medium in which the recombinant microorganism was cultured.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.

상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 2,3-부탄디올 (2,3-butandiol) 및 락테이트 (Lactate) 생합성 경로를 갖는 미생물로서, 젖산 탈수소효소 (Lactate dehydrogenase) 및 아세토인 환원효소 (Acetoin reductase)의 활성이 약화 또는 불활성화되어 아세토인 생성능이 증진된, 엔테로박테리아세아에 (Enterobacteriaceae) 과의 세균인 재조합 미생물을 제공한다.In order to achieve the object of the present invention as described above, the present invention is a microorganism having a 2,3-butandiol and lactate biosynthetic pathway, lactate dehydrogenase and acetoin. Provided is a recombinant microorganism, a bacterium of the Enterobacteriaceae family, in which the activity of acetoin reductase is weakened or inactivated and the acetoin production ability is enhanced.

본 발명의 일 구현예로서, 상기 미생물은, 젖산 탈수소효소를 코딩하는 ldhA 유전자 및 아세토인 환원효소를 코딩하는 budC 유전자가 결실되어 있을 수 있다. In one embodiment of the present invention, the microorganism has ldhA encoding lactate dehydrogenase. The budC gene, which encodes acetoin reductase, may be deleted.

본 발명의 다른 구현예로서, 상기 미생물은, 포도당 탈수소효소 (Glucose dehydrogenase)의 활성이 추가로 약화 또는 불활성화될 수 있으며, 포도당 탈수소효소 (Glucose dehydrogenase)를 코딩하는 gcd 유전자가 추가적으로 결실되어 있을 수 있다. In another embodiment of the present invention, the activity of glucose dehydrogenase may be further weakened or inactivated in the microorganism, and the gcd gene encoding glucose dehydrogenase may be additionally deleted. there is.

본 발명의 또 다른 구현예로서, 상기 세균은, 엔테로박터 (Enterobacter ) 속 또는 크렙시엘라 (Klebsiella) 속일 수 있으며, 바람직하게는, 엔테로박터 에어로게네스균 (Enterobacter aerogenes)일 수 있다. As another embodiment of the present invention, the bacteria may be of the genus Enterobacter or Klebsiella , preferably Enterobacter aerogenes. aerogenes ).

본 발명은 (a) 상기 재조합 미생물을 탄소원이 포함된 배지에 배양시키는 단계; 및 (b) 상기 재조합 미생물이 배양된 배지로부터 아세토인을 회수하는 단계를 포함하는, 아세토인의 제조방법을 제공한다. The present invention includes the steps of (a) culturing the recombinant microorganism in a medium containing a carbon source; and (b) recovering acetoin from the medium in which the recombinant microorganism was cultured.

본 발명의 일 구현예로서, 상기 세균은, 엔테로박터 속 또는 크렙시엘라 속일 수 있으며, 바람직하게는, 엔테로박터 에어로게네스균일 수 있다. In one embodiment of the present invention, the bacterium is Enterobacter It may be the genus or Krebsiella, and preferably, it may be Enterobacter aerogenes.

본 발명의 다른 구현예로서, 상기 배양 배지는 Na2HPO4, KH2PO4, NaCl, NH4Cl, MgSO4, 및 CaCl2를 함유한 최소배지일 수 있다. In another embodiment of the present invention, the culture medium contains Na 2 HPO 4 , KH 2 PO 4 , NaCl, NH 4 Cl, MgSO 4 , and CaCl 2 It may be the minimum badge.

본 발명의 또 다른 구현예로서, 상기 배양은 호기성 조건에서 실시될 수 있다. As another embodiment of the present invention, the culture may be carried out under aerobic conditions.

본 발명에 따른 재조합 미생물은, 대사공학적 방법을 통하여 지속적인 호기성 조건에서도 대사 산물인 아세토인의 생산수율을 현저하게 향상시킬 수 있을 뿐만 아니라, 복합배지에서 배양되는 종래의 기술과 달리, 최소배지에서 배양함으로써 아세토인의 생산비용을 효과적으로 절감시킬 수 있는바, 아세토인 생산의 핵심 기술로 이용될 수 있을 것으로 기대된다. The recombinant microorganism according to the present invention can not only significantly improve the production yield of acetoin, a metabolite, even under continuous aerobic conditions through metabolic engineering methods, but also can be cultured in a minimal medium, unlike the conventional technology in which it is cultured in a complex medium. By doing so, the production cost of acetoin can be effectively reduced, and it is expected that it can be used as a core technology for acetoin production.

도 1은, 본 발명의 재조합 균주에서, PTS 포도당 분해 회로, 및 Non-PTS 포도당 분해 회로 내 차단되는 대사 경로를 나타낸 도이다.
도 2는, 본 발명에서 이용된 람다 레드 재조합 기술 (λ-red-recombination)을 간략하게 나타낸 도이다.
도 3은, 본 발명의 재조합 균주를 이용한 아세토인의 생산방법에서, 아세토인의 생성수율을 비교한 것으로, A는 대조군 균주, B는 재조합 균주 Ⅰ, 및 C는 재조합 균주 Ⅱ로부터 생성된 아세토인의 생성수율을 나타낸 결과이다.
도 4는, (a) Serratia marcescens H32 배양을 위한 복합배지, (b) Paenibacillus polymyxa CS107J 배양을 위한 복합배지, 및 (c) 본 발명의 M9 최소배지의 조성 및 이의 생산단가를 나타낸 결과이다.
도 5는, 본 발명의 재조합 균주를 이용한 아세토인의 생산방법에서, 생성된 2,3-부탄디올의 농도를 비교한 것으로, A는 대조군 균주, B는 재조합 균주 Ⅰ, 및 C는 재조합 균주 Ⅱ로부터 생성된 2,3-부탄디올의 농도를 나타낸 결과이다.
도 6은, 본 발명의 재조합 균주를 이용한 아세토인의 생산방법에서, 생성된 2-케토글루코네이트의 농도를 비교한 것으로, A는 대조군 균주, B는 재조합 균주 Ⅰ, 및 C는 재조합 균주 Ⅱ로부터 생성된 2-케토글루코네이트의 농도를 나타낸 결과이다.
Figure 1 is a diagram showing the metabolic pathways blocked in the PTS glucose decomposition cycle and the non-PTS glucose decomposition cycle in the recombinant strain of the present invention.
Figure 2 is a diagram briefly showing the lambda red recombination technology (λ-red-recombination) used in the present invention.
Figure 3 is a comparison of the production yield of acetoin in the acetoin production method using the recombinant strain of the present invention, where A is the control strain, B is the recombinant strain I, and C is acetoin produced from the recombinant strain II. This is a result showing the production yield of.
Figure 4, (a) Serratia marcescens H32 Complex medium for culture, (b) for culturing Paenibacillus polymyxa CS107J This is a result showing the composition and production cost of the complex medium and (c) the M9 minimal medium of the present invention.
Figure 5 compares the concentration of 2,3-butanediol produced in the acetoin production method using the recombinant strain of the present invention, where A is the control strain, B is the recombinant strain I, and C is the recombinant strain II. This result shows the concentration of 2,3-butanediol produced.
Figure 6 compares the concentration of 2-ketogluconate produced in the acetoin production method using the recombinant strain of the present invention, where A is the control strain, B is the recombinant strain I, and C is the recombinant strain II. This result shows the concentration of 2-ketogluconate produced.

이하, 본 발명을 상세히 설명하기로 한다. Hereinafter, the present invention will be described in detail.

본 발명은, 2,3-부탄디올 (2,3-butandiol) 및 락테이트 (Lactate) 생합성 경로를 갖는 미생물로서, 젖산 탈수소효소 (Lactate dehydrogenase) 및 아세토인 환원효소 (Acetoin reductase)의 활성이 약화 또는 불활성화되어 아세토인 생성능이 증진된, 엔테로박테리아세아에 ( Enterobacteriaceae ) 과의 세균인 재조합 미생물을 제공한다. The present invention is a microorganism having a 2,3-butandiol and lactate biosynthetic pathway, and the activities of lactate dehydrogenase and acetoin reductase are weakened or Provided is a recombinant microorganism, a bacterium of the Enterobacteriaceae family , which is inactivated and has an enhanced acetoin production ability.

또한, 본 발명은, 상기 재조합 미생물에서, 포도당 탈수소효소 (Glucose dehydrogenase)의 활성이 추가적으로 약화 또는 불활성화된, 아세토인 생성능이 증진된 재조합 미생물을 제공한다.In addition, the present invention provides a recombinant microorganism with an enhanced acetoin production ability in which the activity of glucose dehydrogenase is additionally weakened or inactivated.

본 발명에서, “아세토인 (Acetoin)”은 2,3-부탄디올의 전구체로서, 3-하이드록시부타논 (3-Hydroxybutanone) 또는 아세틸 메틸 카비놀 (acetyl methyl carbinol)이라고도 일컬으며, Phosphotransferase system (PTS) 대사 경로의 대사 산물 중 하나이다. 최근, 아세토인의 대량생산을 위한 다양한 재조합 균주들이 개발되고 있으나, 배양배지의 비경제성 및 호기성 조건에서 활성화되는 Non-PTS 대사 경로에 의해 어려움을 겪고 있는 실정이다. In the present invention, “Acetoin” is a precursor of 2,3-butanediol, also called 3-Hydroxybutanone or acetyl methyl carbinol, and is a phosphotransferase system (PTS). ) is one of the metabolites of the metabolic pathway. Recently, various recombinant strains have been developed for mass production of acetoin, but they are experiencing difficulties due to the uneconomical use of the culture medium and the non-PTS metabolic pathway activated under aerobic conditions.

본 발명에서 사용되는 용어, “젖산 탈수소효소” 및 “아세토인 환원효소”는 Phosphotransferase system (PTS) 대사 경로에 관여하는 효소로서, 상기 젖산 탈수효소는 서열번호 1의 아미노산 서열 또는 서열번호 2의 염기서열로, 상기 아세토인 환원효소는 서열번호 3의 아미노산 서열 또는 서열번호 4의 염기서열로 이루어질 수 있고, 상기 서열번호 1 내지 4의 아미노산 또는 염기서열과 각각 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다. 도 1 나타낸 바와 같이, 이들은 각각 피루브산을 젖산으로 전환시키는 반응, 및 아세토인을 2,3-부탄다이올로 전환시키는 반응을 촉매한다. 즉, 포도당의 대사과정에서 젖산 탈수소효소, 및 아세토인 환원효소에 의해 부산물인 젖산 및 2,3-부탄다이올이 생성되며, 이는 아세토인의 생산수율을 저하시키는 요인으로 작용하는바, 상기 효소들의 활성을 약화 또는 불활성화시킬 필요가 있다. The terms “lactic acid dehydrogenase” and “acetoin reductase” used in the present invention are enzymes involved in the Phosphotransferase system (PTS) metabolic pathway. The lactate dehydrogenase has the amino acid sequence of SEQ ID NO: 1 or the base of SEQ ID NO: 2. By sequence, the acetoin reductase may consist of the amino acid sequence of SEQ ID NO: 3 or the base sequence of SEQ ID NO: 4, and each contains at least 70%, preferably at least 80%, of the amino acid or base sequence of SEQ ID NOs: 1 to 4. , more preferably 90% or more, and most preferably 95% or more sequence homology. As shown in Figure 1, they catalyze the reaction of converting pyruvic acid to lactic acid and converting acetoin to 2,3-butanediol, respectively. That is, during the metabolism of glucose, by-products lactic acid and 2,3-butanediol are produced by lactate dehydrogenase and acetoin reductase, which acts as a factor in reducing the production yield of acetoin. There is a need to weaken or inactivate their activity.

본 발명에서 사용되는 용어, “포도당 탈수소효소”는 호기성 조건에서 활성화되는 Non-PTS 대사 경로에 관여하는 효소로서, 상기 포도당 탈수소효소는 서열번호 5의 아미노산 서열 또는 서열번호 6의 염기서열로 이루어질 수 있고, 상기 서열번호 5의 아미노산 및 서열번호 6의 염기서열과 각각 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다. 도 1에 나타낸 바와 같이, 이는 포도당을 글루코-1,5-락톤으로 전환시키는 반응을 촉매한다. 즉, 아세토인의 생산수율은 호기성 조건에서 더욱 증진될 수 있으나, 이러한 호기성 조건이 지속되면 포도당이 PTS 회로가 아닌, Non-PTS 대사 경로에 의해 포도당이 분해되고 2-Ketogluconate가 쌓이게 되어 아세토인 생산 효율이 급격하게 감소하게 된다. 따라서 아세토인의 생산수율을 증진시키기 위해서는 상기 효소의 활성을 약화 또는 불활성화시켜 Non-PTS 대사 경로를 차단시킬 필요가 있다. The term “glucose dehydrogenase” used in the present invention is an enzyme involved in the Non-PTS metabolic pathway that is activated under aerobic conditions. The glucose dehydrogenase may consist of the amino acid sequence of SEQ ID NO: 5 or the base sequence of SEQ ID NO: 6. and a base sequence having sequence homology of at least 70%, preferably at least 80%, more preferably at least 90%, and most preferably at least 95% with the amino acid of SEQ ID NO: 5 and the base sequence of SEQ ID NO: 6, respectively. may include. As shown in Figure 1, it catalyzes the reaction that converts glucose to gluco-1,5-lactone. In other words, the production yield of acetoin can be further improved under aerobic conditions, but if these aerobic conditions continue, glucose is broken down through the non-PTS metabolic pathway, not the PTS cycle, and 2-Ketogluconate accumulates, leading to the production of acetoin. Efficiency decreases sharply. Therefore, in order to improve the production yield of acetoin, it is necessary to block the Non-PTS metabolic pathway by weakening or inactivating the activity of the enzyme.

본 발명에서, 상기 “효소 활성의 약화”는 본래 미생물이 천연의 상태 또는 변형 전의 상태에서 가지고 있는 효소의 활성과 비교하였을 때, 그 활성이 감소된 것을 의미한다. 상기 약화는 상기 효소를 코딩하는 유전자의 변이 등으로 효소 자체의 활성이 본래 미생물이 가지고 있는 효소의 활성에 비해 감소한 경우와, 이를 코딩하는 유전자의 발현 저해 또는 번역 (translation) 저해 등으로 세포 내에서 전체적인 효소 활성 정도가 천연형 또는 변형 전의 균주에 비하여 낮은 경우를 포함하는 개념이다.In the present invention, the “weakening of enzyme activity” means a decrease in the activity of the enzyme compared to the activity of the enzyme in the original state or before modification of the microorganism. The weakening occurs when the activity of the enzyme itself is reduced compared to the activity of the enzyme originally possessed by the microorganism due to mutation of the gene encoding the enzyme, or when the activity of the enzyme encoding the enzyme is inhibited or translation is inhibited within the cell. This concept includes cases where the overall degree of enzyme activity is lower than that of the natural type or strain before modification.

또한, 상기 “불활성화”는 효소를 코딩하는 유전자의 발현이 천연형 균주 또는 변형 전의 균주에 비하여 전혀 발현이 되지 않는 경우 및 발현이 되더라도 그 활성이 없는 경우를 의미한다.In addition, “inactivation” refers to a case where the expression of the gene encoding the enzyme is not expressed at all compared to the natural strain or the strain before modification, and even when expressed, there is no activity.

이러한 효소 활성의 약화 또는 불활성화는, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 상기 효소의 활성이 제거된 경우를 포함하여 상기 효소의 활성이 감소되도록 돌연변이된 유전자로, 염색체상의 상기 효소를 코딩하는 유전자를 대체하는 방법; 상기 효소를 코딩하는 염색체상의 유전자의 발현 조절 서열에 변이를 도입하는 방법; 상기 효소를 코딩하는 유전자의 발현 조절 서열을 활성이 약하거나 없는 서열로 교체하는 방법; 상기 효소를 코딩하는 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 상기 염색체상의 유전자의 전사체에 상보적으로 결합하여 상기 mRNA로부터 효소로의 번역을 저해하는 안티센스 올리고뉴클레오티드 (예컨대, 안티센스 RNA)를 도입하는 방법; 상기 효소를 코딩하는 유전자의 SD 서열 앞단에 SD 서열과 상보적인 서열을 인위적으로 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착이 불가능하게 만드는 방법 및 해당 서열의 ORF(open reading frame)의 3' 말단에 역전사 되도록 프로모터를 부가하는 RTE(Reverse transcription engineering) 방법 등이 있다. Weakening or inactivating this enzyme activity can be achieved by applying various methods well known in the art. Examples of the method include a method of replacing a gene encoding the enzyme on a chromosome with a gene mutated to reduce the activity of the enzyme, including when the activity of the enzyme is removed; A method of introducing a mutation into the expression control sequence of a gene on a chromosome encoding the enzyme; A method of replacing the expression control sequence of the gene encoding the enzyme with a sequence with weak or no activity; A method of deleting all or part of the gene on the chromosome encoding the enzyme; A method of introducing an antisense oligonucleotide (eg, antisense RNA) that binds complementary to the transcript of the gene on the chromosome and inhibits translation from the mRNA to the enzyme; A method of artificially adding a sequence complementary to the SD sequence in front of the SD sequence of the gene encoding the enzyme to form a secondary structure to make attachment of ribosomes impossible, and a method of making the attachment of ribosomes impossible, and the method of making the attachment of the ribosome impossible There is a reverse transcription engineering (RTE) method that adds a promoter to the 3' end to enable reverse transcription.

구체적으로, 젖산 탈수소효소를 코딩하는 ldhA 유전자, 아세토인 환원효소를 코딩하는 budC 유전자, 또는 포도당 탈수소효소를 코딩하는 gcd 유전자의 전체 또는 일부를 결실시킴으로써 각각의 효소에 대한 활성을 약화 또는 불활성화시킬 수 있으나, 이에 제한되는 것은 아니다. Specifically, ldhA, encoding lactate dehydrogenase. The activity of each enzyme can be weakened or inactivated by deleting all or part of the gene, the budC gene encoding acetoin reductase, or the gcd gene encoding glucose dehydrogenase, but is not limited thereto.

본 발명에서, 상기 세균은 엔테로박터 (Enterobacter ) 속 또는 크렙시엘라 (Klebsiella) 속일 수 있으며, 바람직하게는, 엔테로박터 에어로게네스균 (Enterobacter aerogenes)일 수 있으나, 2,3-부탄디올 (2,3-butandiol) 및 락테이트 (Lactate) 생합성 경로를 갖는 미생물이라면, 제한 없이 포함될 수 있다. In the present invention, the bacteria may be of the Enterobacter genus or Klebsiella genus, preferably Enterobacter aerogenes , but 2,3-butanediol (2, Any microorganism having a 3-butandiol) and lactate biosynthetic pathway may be included without limitation.

본 발명의 일 실시예에서는, 람다 레드 재조합 기술을 통해 ldhAbudC 유전자가 제거된 재조합 균주 Ⅰ와 ldhA , budC, 및 gcd 유전자가 제거된 재조합 균주 Ⅱ를 제조하였으며, 이를 통해 아세토인의 생산수율을 현저하게 증가시킬 수 있으며, 최소배지에 배양시킴으로써 아세토인의 생산비용을 효과적으로 절감시킬 수 있음을 확인하였다 (실시예 1 참조). In one embodiment of the present invention, ldhA and budC are formed through Lambda Red recombination technology. Recombinant strains Ⅰ and ldhA , budC , and gcd with genes deleted Recombinant strain II with the gene removed was prepared, and it was confirmed that the production yield of acetoin can be significantly increased through this, and the production cost of acetoin can be effectively reduced by culturing it in minimal medium (see Example 1) ).

또한, 상기 재조합 균주를 이용하여 아세토인을 생산함으로써, PTS 대사 경로의 부산물인 2,3-부탄디올, Non-PTS 대사 경로의 부산물인 2-케토글루코네이트의 생성을 감소시킬 수 있음을 확인하였다 (실시예 2 참조). In addition, it was confirmed that by producing acetoin using the above recombinant strain, the production of 2,3-butanediol, a by-product of the PTS metabolic pathway, and 2-ketogluconate, a by-product of the Non-PTS metabolic pathway, could be reduced ( See Example 2).

이에, 본 발명은, (a) 상기 재조합 미생물을 탄소원이 포함된 배지에 배양시키는 단계; 및 (b) 상기 재조합 미생물이 배양된 배지로부터 아세토인을 회수하는 단계를 포함하는, 아세토인의 제조방법을 제공한다. Accordingly, the present invention includes the steps of (a) culturing the recombinant microorganism in a medium containing a carbon source; and (b) recovering acetoin from the medium in which the recombinant microorganism was cultured.

본 발명에서, 상기 세균은 엔테로박터 (Enterobacter ) 속 또는 크렙시엘라 (Klebsiella) 속일 수 있으며, 바람직하게는, 엔테로박터 에어로게네스균 (Enterobacter aerogenes)일 수 있으나, 2,3-부탄디올 (2,3-butandiol) 및 락테이트 (Lactate) 생합성 경로를 갖는 미생물이라면, 제한 없이 포함될 수 있다. In the present invention, the bacteria may be of the Enterobacter genus or Klebsiella genus, preferably Enterobacter aerogenes , but 2,3-butanediol (2, Any microorganism having a 3-butandiol) and lactate biosynthetic pathway may be included without limitation.

본 발명의 방법에 사용되는 배지는, Na2HPO4, KH2PO4, NaCl, NH4Cl, MgSO4, 및 CaCl2를 함유한 최소배지로서, 바람직하게 5~7g/ℓ의 Na2HPO4, 2~4g/ℓ의 KH2PO4, 0.3~0.7g/ℓ의 NaCl, 0.5~1.5g/ℓ의 NH4Cl, 0.39~0.59g/ℓ의 MgSO4, 및 0.004~0.0024g/ℓ의 CaCl2로 이루어질 수 있으나, 이에 제한되는 것은 아니다. The medium used in the method of the present invention contains Na 2 HPO 4 , KH 2 PO 4 , NaCl, NH 4 Cl, MgSO 4 , and CaCl 2 As a minimal medium, preferably 5-7 g/l of Na 2 HPO 4 , 2-4 g/l of KH 2 PO 4 , 0.3-0.7 g/l of NaCl, 0.5-1.5 g/l of NH 4 Cl, 0.39- It may consist of 0.59 g/l of MgSO 4 and 0.004 to 0.0024 g/l of CaCl 2 , but is not limited thereto.

본 발명의 방법에 사용되는 배지에 이용되는 탄소원으로는, 배지에 탄소원으로 첨가될 수 있는 통상의 탄수화물을 포함하며, 바람직하게는 수크로스, 락토스, 말토스, 트레할로스, 투라노스, 셀로비오스, 라피노스, 멜레치토스, 말로트리오스, 아카보스, 스타키오스, 글루코스, 아밀로스, 셀룰로스, 프럭토스, 아노스, 또는 갈락토스일 수 있으나, 이에 제한되는 것은 아니다. Carbon sources used in the medium used in the method of the present invention include common carbohydrates that can be added to the medium as carbon sources, preferably sucrose, lactose, maltose, trehalose, turanose, cellobiose, and raffinose. , melechytose, malothriose, acarbose, stachyose, glucose, amylose, cellulose, fructose, anose, or galactose, but is not limited thereto.

또한, 본 발명의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 및 황산과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조절할 수 있으며, 배양물의 호기 상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입할 수도 있다. In addition, during the culture of the present invention, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, and sulfuric acid can be added to the culture in an appropriate manner to adjust the pH of the culture, and to maintain the aerobic state of the culture. Oxygen or oxygen-containing gas can also be injected into the water.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Below, preferred embodiments are presented to aid understanding of the present invention. However, the following examples are provided only to make the present invention easier to understand, and the content of the present invention is not limited by the following examples.

제조예Manufacturing example 1. One. 아세토인Acetoin 생산능이production capacity 재조합 균주의 제조 Preparation of recombinant strains

본 실시예에서는, Lactate dehydrogenase 유전자 (ldhA)가 결실된 Enterobacter aerogenes (KCTC 2190)를 모 균주로 하여, 대사공학적 방법인 람다 레드 재조합 기술 (λ-red-recombination)을 통해 아세토인 생산능이 증진된 재조합 균주를 제조하였다. 즉, 상기 모 균주로부터, Acetoin reductase 유전자 (budC)를 제거하여 아세토인에서 2,3-부탄디올 (2,3-butandiol)로 전환되는 경로가 차단된 재조합 균주 Ⅰ (△ldhA, △budC), 상기 Acetoin reductase 유전자뿐만 아니라, Glucose dehydrogenase 유전자 (gcd )도 제거하여 호기성 조건에서 활성화되는 Non-PTS 포도당 분해 경로까지 차단된 재조합 균주 Ⅱ (△ldhA, △budC, △gcd)를 제조하였다. In this example, Enterobacter aerogenes (KCTC 2190), in which the lactate dehydrogenase gene ( ldhA ) has been deleted, was used as the parent strain, and a recombinant strain with improved acetoin production ability was obtained through lambda red recombination technology (λ-red-recombination), a metabolic engineering method. A strain was prepared. That is, from the parent strain, recombinant strain I (△ ldhA , △ budC ) in which the pathway for converting acetoin to 2,3-butandiol is blocked by removing the Acetoin reductase gene (budC), Recombinant strain II (△ldhA, △budC, △gcd) was prepared by deleting not only the acetoin reductase gene but also the glucose dehydrogenase gene ( gcd ) , thereby blocking the Non-PTS glucose decomposition pathway activated under aerobic conditions.

λ-red-recombinase 효소, 및 Flippase 효소의 발현을 위하여, 각각 Gene bridge GmbH사 pRedET 플라스미드 및 707FLP 플라스미드를 이용하였고, 카나마이신 시퀀스 등이 포함된 카세트 DNA는 pKD4 plasmid를 주형으로 이용하여 제조하였다. For the expression of λ-red-recombinase enzyme and Flippase enzyme, pRedET plasmid and 707FLP plasmid from Gene bridge GmbH were used, respectively, and cassette DNA containing kanamycin sequence was prepared using pKD4 plasmid as a template.

구체적으로, 모 균주에 전기천공법 (electroporator, 1800V)을 통해 pRedET 플라스미드를 도입한 후, 이를 테트라사이클린이 첨가된 배지에 30에서 배양시켰다. 이와 함께, FRT-카나마이신-FRT 카세트를 포함하는 pKD4 플라스미드를 주형으로 하여, 제거하고자 하는 타겟 유전자의 양 주변부와 상동한 염기쌍 (homologous region, 50bp)이 포함된 프라이머를 제조한 후, Tm값 45로 GS taq 폴리머라제 프로토콜에 따라 PCR을 실행하여 카세트 DNA를 준비하였으며, 상기 프라이머에 대한 서열정보는 하기 표 1에 나타내었다.Specifically, the pRedET plasmid was introduced into the parent strain through electroporation (1800V), and then cultured in a medium supplemented with tetracycline at 30°C. In addition, using the pKD4 plasmid containing the FRT-kanamycin-FRT cassette as a template, primers containing base pairs (homologous region, 50bp) homologous to the surrounding regions of the target gene to be removed were prepared, and then primers were prepared with a Tm value of 45. Cassette DNA was prepared by performing PCR according to the GS taq polymerase protocol, and sequence information for the primers is shown in Table 1 below.

상기 pRedET가 도입된 모 균주를 테트라사이클린이 첨가된 LB 배지에 접종한 다음, OD600이 약 0.2 정도 되었을 때, 20% L-arabinose (0.9ml)를 첨가하여 람다 레드 재조합 효소 (recombinase)를 발현시켰으며, 다시 OD600이 0.5가 될 때까지 배양시켜 컴피턴트한 상태의 세포를 제조하였다. 이후, 상기 세포를 10% 글라이세롤 용액으로 희석한 후, 전기천공법 (1800V)을 통해 준비된 카세트 DNA (100ng)를 도입하여 형질전환시키고, LB 배지에서 1시간 동안 배양시킨 후, 카나마이신 항생제 플레이트로 스크리닝하였다. The parent strain into which pRedET was introduced was inoculated into LB medium supplemented with tetracycline, and when the OD600 reached about 0.2, 20% L-arabinose (0.9ml) was added to express Lambda Red recombinase. Then, the cells were cultured again until the OD600 reached 0.5 to prepare cells in a competent state. Afterwards, the cells were diluted with a 10% glycerol solution, transformed by introducing the prepared cassette DNA (100ng) through electroporation (1800V), cultured in LB medium for 1 hour, and then plated with kanamycin antibiotics. was screened.

이후, 상기 형질전환된 균주에서, 카세트 DNA의 도입을 확인하고자 Colony PCR을 실시하였다. 우선, 상기 카나마이신 항생제 플레이트로 스크리닝된 콜로니를 10㎕의 DW로 희석한 후, 100℃로 5분간 가열하여 genomic DNA를 수득하였다. 이후, 희석시킨 콜로니 (1㎕)를 주형으로 Colony PCR 프라이머를 사용하여 GS taq 폴리머라제 프로토콜에 따라 PCR을 실행하였으며, 상기 PCR 결과물을 전기영동하여 카세트 DNA의 도입을 확인하였다 상기 프라이머에 대한 서열정보는 하기 표 2에 나타내었다.Afterwards, colony PCR was performed to confirm the introduction of the cassette DNA in the transformed strain. First, the colonies screened with the kanamycin antibiotic plate were diluted with 10 μl of DW and then heated at 100°C for 5 minutes to obtain genomic DNA. Afterwards, PCR was performed according to the GS taq polymerase protocol using colony PCR primers using the diluted colonies (1 ㎕) as a template, and the PCR result was electrophoresed to confirm the introduction of cassette DNA. Sequence information for the primers is shown in Table 2 below.

이후, 다시 전기천공법 (1800V)을 통해 707FLP 플라스미드를 도입하고, LB배지에 30℃로 배양시킨 다음, 37℃에서 O/N 배양시켜 카세트 DNA 및 플라스미드를 모두 제거함으로써, 모 균주에서 타겟 유전자인 budC 또는 gcd를 각각 제거하였다. Afterwards, the 707FLP plasmid was introduced again through electroporation (1800V), cultured in LB medium at 30°C, and then cultured O/N at 37°C to remove all cassette DNA and plasmid, thereby extracting the target gene from the parent strain. budC or gcd were removed, respectively.

실시예Example 1. One. 아세토인Acetoin 생산능production capacity 증진 효과 확인 Check the enhancement effect

상기 제조예 1에서 제조된 재조합 균주 Ⅰ 및 Ⅱ를 이용한 아세토인의 생산과정에서, 목적 생성물인 아세토인의 생산수율을 평가하였다.In the process of producing acetoin using recombinant strains I and II prepared in Preparation Example 1, the production yield of acetoin, the target product, was evaluated.

이를 위하여, M9 최소 배지에 유일의 탄소원인 포도당을 첨가한 후, 상기 재조합 균주 각각을 호기성 조건 하, 24시간 동안 플라스크 회분 배양을 하였다. 대조군으로는, Lactate dehydrogenase 유전자 (ldhA)만 결실된 재조합 균주를 이용하였다. To this end, glucose, the sole carbon source, was added to the M9 minimal medium, and then each of the above recombinant strains was cultured in flask batches for 24 hours under aerobic conditions. As a control, a recombinant strain in which only the lactate dehydrogenase gene ( ldhA ) was deleted was used.

그 결과, 도 3에 나타낸 바와 같이, 대조군에서 아세토인의 생산수율은 0.02g/g로 매우 낮았던 반면, 재조합 균주 Ⅰ 및 Ⅱ 이용한 방법 모두에서 아세토인의 생산수율이 크게 증가됨을 확인할 수 있었으며, 특히, 재조합 균주 Ⅱ에서 0.38g/g으로 가장 높은 생산수율을 나타내었다. As a result, as shown in Figure 3, while the production yield of acetoin in the control group was very low at 0.02 g/g, it was confirmed that the production yield of acetoin was greatly increased in both methods using recombinant strains I and II, especially , recombinant strain II showed the highest production yield at 0.38 g/g.

한편, 기존의 미생물을 이용한 아세토인의 생산방법에서, Serratia marcescens CS107J, 또는 Paenibacillus polymyxa H32가 생산균주로 알려져 있으며, 이들의 배양배지로는, 각각 복합배지가 사용되고 있다. 다만, 상기 복합배지들은 도 4a 및 도 4b에 나타낸 바와 같이, Corn steep powder 또는 Yeast extract와 같은 성분들이 함유되어 있으며, 상기 성분들은 비용적인 측면에서 전체의 50% 이상을 차지하고 있다. 이 뿐만 아니라, 이들은 아세토인의 정제과정에서 추가적인 비용을 발생시킬 가능성을 내포하고 있는바, 아세토인 생산단가의 증가에 주요한 요인으로 작용하고 있다. Meanwhile, in the production method of acetoin using existing microorganisms, Serratia marcescens CS107J , or Paenibacillus polymyxa H32 is known as the producing strain, As these culture media, complex media are used. However, as shown in FIGS. 4A and 4B, the complex media contain ingredients such as corn steep powder or yeast extract, and these ingredients account for more than 50% of the total in terms of cost. In addition, these have the potential to incur additional costs during the purification process of acetoin, which is a major factor in increasing the unit cost of acetoin production.

이에 반하여, 본 발명의 재조합 균주가 배양되는 M9 최소 배지는, 도 4c에 나타낸 바와 같이, Corn steep powder 또는 Yeast extract와 같은 성분이 전혀 함유되어 있지 않은 배지로서, 비용적인 측면에서 상기 복합배지에 비해 약 10배, 또는 약 25배가량 저렴하고, 배양배지로부터 아세토인을 간이하게 분리, 정제할 수 있는바, 이를 통해 아세토인의 생산단가를 낮출 수 있음을 확인할 수 있었다. On the other hand, the M9 minimal medium in which the recombinant strain of the present invention is cultured is a medium that does not contain any ingredients such as corn steep powder or yeast extract, as shown in Figure 4c, and is cheaper than the complex medium in terms of cost. It is about 10 times cheaper, or about 25 times cheaper, and acetoin can be easily separated and purified from the culture medium, making it possible to lower the production cost of acetoin.

상기 결과를 종합해 볼 때, 본 발명의 재조합 균주를 이용한 아세토인의 생산방법은, 최소배지에서 이를 배양시킴으로써 생산단가를 절감시킬 수 있으며, 대사 경로의 차단, 특히 호기성 조건에서 활성화되는 Non-PTS 대상 경로의 차단을 통해 아세토인의 생산수율을 극대화시킬 수 있음을 알 수 있다. Considering the above results, the method for producing acetoin using the recombinant strain of the present invention can reduce production costs by culturing it in minimal medium, and can block metabolic pathways, especially Non-PTS, which is activated under aerobic conditions. It can be seen that the production yield of acetoin can be maximized by blocking the target path.

실시예Example 2. 부산물 생성 감소 효과 확인 2. Confirm the effect of reducing by-product production

상기 실시예 1과 동일한 방법으로, 상기 제조예 1에서 제조된 재조합 균주 Ⅰ 및 Ⅱ를 이용한 아세토인의 생산과정에서, PTS 포도당 분해 경로에 의한 2,3-부탄디올 (2,3-butandiol), 및 호기성 조건에서 활성화되는 Non-PTS 포도당 분해 경로에 의한 2-케토글루코네이트 (2-ketogluconate)의 농도를 측정하였다. 대조군으로는, Lactate dehydrogenase 유전자 (ldhA)만 결실된 재조합 균주를 이용하였다. In the same manner as Example 1, in the process of producing acetoin using recombinant strains I and II prepared in Preparation Example 1, 2,3-butandiol by the PTS glucose decomposition pathway, and The concentration of 2-ketogluconate by the non-PTS glucose decomposition pathway activated under aerobic conditions was measured. As a control, a recombinant strain in which only the lactate dehydrogenase gene ( ldhA ) was deleted was used.

그 결과, 도 5에 나타낸 바와 같이, 대조군에서 생성된 2,3-부탄디올의 농도는 약 8.87g/ℓ였던 반면, 재조합 균주 Ⅰ 및 Ⅱ 이용한 방법 모두에서 2,3-부탄디올의 농도가 현격하게 감소됨을 확인할 수 있었다. 상기 결과와 마찬가지로, 도 6에 나타낸 바와 같이, 대조군에서 생성된 2-케토글루코네이트의 농도는 약 4g/ℓ였던 반면, 재조합 균주 Ⅰ 및 Ⅱ에서는 2-케토글루코네이트의 농도가 유의적으로 감소되었으며, 특히, Acetoin reductase 유전자뿐만 아니라, Glucose dehydrogenase 유전자 (gcd)도 제거한 재조합 균주 Ⅱ에서는, 2-케토글루코네이트가 전혀 검출되지 않았다. As a result, as shown in Figure 5, the concentration of 2,3-butanediol produced in the control group was about 8.87 g/l, while the concentration of 2,3-butanediol was significantly reduced in both methods using recombinant strains I and II. was able to confirm. Similar to the above results, as shown in Figure 6, the concentration of 2-ketogluconate produced in the control group was about 4 g/l, while the concentration of 2-ketogluconate was significantly reduced in recombinant strains I and II. In particular, in recombinant strain II, in which not only the acetoin reductase gene but also the glucose dehydrogenase gene ( gcd ) was deleted, 2-ketogluconate was not detected at all.

상기 결과로부터, 본 발명의 재조합 균주를 이용한 아세토인은 생산방법은, 생산과정에서 부산물의 생성을 최소화시킴으로써, 목적 생성물인 아세토인의 생산수율이 증진될 수 있음을 알 수 있다. From the above results, it can be seen that the acetoin production method using the recombinant strain of the present invention can improve the production yield of the target product, acetoin, by minimizing the production of by-products during the production process.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The description of the present invention described above is for illustrative purposes, and those skilled in the art will understand that the present invention can be easily modified into other specific forms without changing the technical idea or essential features of the present invention. will be. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

<110> KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION <120> Recombinant microorganisms enhanced ability of producing acetoin and method for preparing acetoin using the same <130> DP-2016-0024_P16U13C0037 <160> 15 <170> KoPatentIn 3.0 <210> 1 <211> 329 <212> PRT <213> Artificial Sequence <220> <223> lactate dehydrogenase_amino acid <400> 1 Met Lys Ile Ala Val Tyr Ser Thr Lys Gln Tyr Asp Lys Lys Tyr Leu 1 5 10 15 Gln His Val Asn Asp Ala Tyr Gly Phe Glu Leu Glu Phe Phe Asp Phe 20 25 30 Leu Leu Thr Glu Lys Thr Ala Lys Thr Ala Asn Gly Cys Glu Ala Val 35 40 45 Cys Ile Phe Val Asn Asp Asp Gly Ser Arg Pro Val Leu Glu Glu Leu 50 55 60 Lys Ala His Gly Val Lys Tyr Ile Ala Leu Arg Cys Ala Gly Phe Asn 65 70 75 80 Asn Val Asp Leu Glu Ala Ala Lys Glu Leu Gly Leu Arg Val Val Arg 85 90 95 Val Pro Ala Tyr Ser Pro Glu Ala Val Ala Glu His Ala Ile Gly Met 100 105 110 Met Met Ser Leu Asn Arg Arg Ile His Arg Ala Tyr Gln Arg Thr Arg 115 120 125 Asp Ala Asn Phe Ser Leu Glu Gly Leu Thr Gly Phe Thr Met Tyr Gly 130 135 140 Lys Thr Ala Gly Val Ile Gly Thr Gly Lys Ile Gly Val Ala Thr Leu 145 150 155 160 Arg Ile Leu Lys Gly Phe Gly Met Arg Leu Leu Ala Phe Asp Pro Tyr 165 170 175 Pro Ser Ala Ala Ala Leu Asp Leu Gly Val Glu Tyr Val Asp Leu Pro 180 185 190 Thr Leu Tyr Ala Gln Ser Asp Val Ile Ser Leu His Cys Pro Leu Thr 195 200 205 Asn Glu Asn Tyr His Leu Leu Asn Gln Ala Ala Phe Asp Gln Met Lys 210 215 220 Asp Gly Val Met Val Ile Asn Thr Ser Arg Gly Ala Leu Ile Asp Ser 225 230 235 240 Gln Ala Ala Ile Asp Ala Leu Lys His Gln Lys Ile Gly Ala Leu Gly 245 250 255 Met Asp Val Tyr Glu Asn Glu Arg Asp Leu Phe Phe Glu Asp Lys Ser 260 265 270 Asn Asp Val Ile Gln Asp Asp Val Phe Arg Arg Leu Ser Ala Cys His 275 280 285 Asn Val Leu Phe Thr Gly His Gln Ala Phe Leu Thr Ala Glu Ala Leu 290 295 300 Ile Gly Ile Ser Glu Thr Thr Leu Gly Asn Leu Gln Gln Val Ala Lys 305 310 315 320 Gly Glu Thr Cys Pro Asn Ala Leu Val 325 <210> 2 <211> 990 <212> DNA <213> Artificial Sequence <220> <223> lactate dehydrogenase_nucleotide <400> 2 atgaaaatcg ctgtttatag taccaagcag tacgataaaa agtatctgca gcatgttaac 60 gacgcatacg gctttgaact ggaatttttc gatttcctgc tgaccgaaaa gaccgcgaaa 120 acggccaacg gctgtgaagc ggtatgtatc ttcgttaatg acgacggtag ccgcccggtg 180 ctggaagagc taaaagccca cggcgtgaaa tatatcgcgc tgcgctgcgc cggctttaac 240 aacgtcgatc ttgaggcggc taaagagctg ggcctgcgcg tcgtgcgcgt cccggcctac 300 tcgccggaag ccgttgctga acacgccatc ggtatgatga tgtcgttgaa ccgtcgcatt 360 catcgcgcct atcagcgtac ccgcgatgcc aacttctcgc tggaagggct gaccggcttc 420 acgatgtacg gtaaaaccgc aggggtgatc ggcaccggta aaatcggcgt tgcgacgctg 480 cggatcctca aaggtttcgg tatgcgcctg ctggcgtttg atccctatcc gagcgcggcg 540 gcgctggatc tcggcgttga atatgtcgac ctgccgacgc tgtacgcgca gtccgacgtc 600 atctccctgc actgcccgct taccaacgaa aactatcacc tgctcaacca ggcggcattc 660 gatcagatga aagacggcgt gatggtcatt aataccagcc gcggcgcgct tatcgattca 720 caagcggcta tcgacgcgct gaagcatcag aaaatcggcg cgctgggaat ggacgtgtat 780 gaaaatgaac gcgatctgtt ctttgaagat aaatcgaatg atgtcatcca ggatgacgtg 840 ttccgccggc tctccgcctg ccacaacgtc ctgtttaccg ggcaccaggc attcctgacg 900 gctgaggcgc tgatcggtat ttccgagaca acgcttggca atctgcagca ggtagctaag 960 ggcgaaacct gcccgaacgc gctggtctaa 990 <210> 3 <211> 256 <212> PRT <213> Artificial Sequence <220> <223> acetoin reductase_amino acid <400> 3 Met Lys Lys Val Ala Leu Val Thr Gly Ala Gly Gln Gly Ile Gly Lys 1 5 10 15 Ala Ile Ala Leu Arg Leu Val Lys Asp Gly Phe Ala Val Ala Ile Ala 20 25 30 Asp Tyr Asn Asp Val Thr Ala Lys Ala Val Ala Asp Glu Ile Asn Gln 35 40 45 His Gly Gly Arg Ala Ile Ala Val Lys Val Asp Val Ser Asp Arg Glu 50 55 60 Gln Val Phe Ala Ala Val Glu Gln Ala Arg Lys Thr Leu Gly Gly Phe 65 70 75 80 Asn Val Ile Val Asn Asn Ala Gly Val Ala Pro Ser Thr Pro Ile Glu 85 90 95 Ser Ile Thr Pro Glu Ile Val Asp Lys Val Tyr Asn Ile Asn Val Lys 100 105 110 Gly Val Ile Trp Gly Ile Gln Ala Ala Val Glu Ala Phe Lys Lys Glu 115 120 125 Gly His Gly Gly Lys Ile Ile Asn Ala Cys Ser Gln Ala Gly His Val 130 135 140 Gly Asn Pro Glu Leu Ala Val Tyr Ser Ser Ser Lys Phe Ala Val Arg 145 150 155 160 Gly Leu Thr Gln Thr Ala Ala Arg Asp Leu Ala Pro Leu Gly Ile Thr 165 170 175 Val Asn Gly Tyr Cys Pro Gly Ile Val Lys Thr Pro Met Trp Ala Glu 180 185 190 Ile Asp Arg Gln Val Ser Glu Ala Ala Gly Lys Pro Leu Gly Tyr Gly 195 200 205 Thr Ala Glu Phe Ala Lys Arg Ile Thr Leu Gly Arg Leu Ser Glu Pro 210 215 220 Glu Asp Val Ala Ala Cys Val Ser Tyr Leu Ala Ser Pro Asp Ser Asp 225 230 235 240 Tyr Met Thr Gly Gln Ser Leu Leu Ile Asp Gly Gly Met Val Phe Asn 245 250 255 <210> 4 <211> 711 <212> DNA <213> Artificial Sequence <220> <223> acetoin reductase_nucleotide <400> 4 cgcctcgtga aggacggttt tgccgtggcg atcgccgatt acaatgacgt cacagcgaaa 60 gccgtggcgg atgaaatcaa ccagcacggc ggccgggcaa tcgcggtcaa agtcgatgtt 120 tccgaccgtg agcaggtgtt tgccgccgtc gaacaggcgc gaaaaacgct gggcggattc 180 aacgtcatcg tcaataacgc cggggtcgcg ccatcaacgc ctatcgaatc cattacgccg 240 gagattgtcg acaaggtcta caacatcaac gttaaagggg tgatctgggg gattcaggcg 300 gcagtcgagg cctttaaaaa agaggggcac ggcggcaaaa tcatcaacgc ctgttcgcag 360 gccggacacg tcggcaaccc ggaactggcg gtctacagct cgagcaaatt cgccgtacgc 420 ggtttaacgc aaaccgccgc tcgcgacctg gcgccgctgg gtattaccgt taacggctac 480 tgcccgggga ttgtgaaaac gccgatgtgg gccgagatcg atcgtcaggt atccgaagcg 540 gcgggtaaac ctctgggcta cgggacagcc gaattcgcca aacgcatcac cctcggccgc 600 ctgtctgagc cagaagatgt cgccgcctgc gtctcttatc tcgccagccc ggattccgat 660 tatatgaccg gtcaatcgct gctgatcgat ggcgggatgg tattcaatta a 711 <210> 5 <211> 796 <212> PRT <213> Artificial Sequence <220> <223> glucose dehydrogenase_amino acid <400> 5 Met Ala Glu Thr Lys Ser Gln Gln Ser Arg Leu Leu Val Thr Leu Thr 1 5 10 15 Ala Leu Phe Ala Ala Phe Cys Gly Leu Tyr Leu Leu Ile Gly Gly Val 20 25 30 Trp Leu Ala Ala Ile Gly Gly Ser Trp Tyr Tyr Pro Ile Ala Gly Leu 35 40 45 Val Met Leu Ala Val Thr Val Met Leu Phe Arg Gly Lys Arg Ala Ala 50 55 60 Leu Trp Leu Tyr Ala Ala Leu Leu Leu Ala Thr Met Ile Trp Gly Val 65 70 75 80 Trp Glu Val Gly Phe Asp Phe Trp Ala Leu Thr Pro Arg Ser Asp Ile 85 90 95 Leu Val Phe Phe Gly Ile Trp Leu Ile Leu Pro Phe Val Trp Arg Arg 100 105 110 Leu Pro Val Pro Ser Ala Gly Ala Val Gly Gly Leu Val Ile Ala Leu 115 120 125 Leu Ile Ser Gly Gly Ile Leu Thr Trp Ala Gly Phe Asn Asp Pro Gln 130 135 140 Glu Val Asn Gly Thr Leu Ser Ala Asp Ala Thr Pro Ala Ala Pro Ile 145 150 155 160 Ser Thr Val Ala Asp Ser Asp Trp Pro Ala Tyr Gly Arg Asn Gln Glu 165 170 175 Gly Gln Arg Tyr Ser Pro Leu Lys Gln Ile Asn Thr Asp Asn Val Lys 180 185 190 Asn Leu Lys Glu Ala Trp Val Phe Arg Thr Gly Asp Leu Lys Gln Pro 195 200 205 Asn Asp Pro Gly Glu Ile Thr Asn Glu Val Thr Pro Ile Lys Val Gly 210 215 220 Asp Met Leu Tyr Leu Cys Thr Ala His Gln Arg Leu Phe Ala Leu Asp 225 230 235 240 Ala Ala Thr Gly Lys Glu Lys Trp His Phe Asp Pro Gln Leu Asn Ala 245 250 255 Asp Pro Ser Phe Gln His Val Thr Cys Arg Gly Val Ser Tyr His Glu 260 265 270 Ala Lys Ala Asp Asn Ala Pro Ala Asp Val Val Ala Asp Cys Pro Arg 275 280 285 Arg Ile Ile Leu Pro Val Asn Asp Gly Arg Leu Phe Ala Val Asn Ala 290 295 300 Asp Asn Gly Lys Leu Cys Glu Thr Phe Ala Asn Lys Gly Ile Leu Asn 305 310 315 320 Leu Gln Thr Asn Met Pro Val Thr Thr Pro Gly Met Tyr Glu Pro Thr 325 330 335 Ser Pro Pro Ile Ile Thr Asp Lys Thr Ile Val Ile Ala Gly Ala Val 340 345 350 Thr Asp Asn Phe Ser Thr Arg Glu Pro Ser Gly Val Ile Arg Gly Phe 355 360 365 Asp Val Asn Thr Gly Lys Leu Leu Trp Ala Phe Asp Pro Gly Ala Lys 370 375 380 Asp Pro Asn Ala Ile Pro Ser Asp Glu His His Phe Thr Leu Asn Ser 385 390 395 400 Pro Asn Ser Trp Ala Pro Ala Ala Tyr Asp Ala Lys Leu Asp Leu Val 405 410 415 Tyr Leu Pro Met Gly Val Thr Thr Pro Asp Ile Trp Gly Gly Asn Arg 420 425 430 Thr Pro Glu Gln Glu Arg Tyr Ala Ser Ser Ile Val Ala Leu Asn Ala 435 440 445 Thr Thr Gly Lys Leu Ala Trp Ser Tyr Gln Thr Val His His Asp Leu 450 455 460 Trp Asp Met Asp Met Pro Ser Gln Pro Thr Leu Ala Asp Ile Asp Val 465 470 475 480 Asn Gly Lys Thr Val Pro Val Ile Tyr Ala Pro Ala Lys Thr Gly Asn 485 490 495 Ile Phe Val Leu Asp Arg Arg Asn Gly Glu Leu Val Val Pro Ala Pro 500 505 510 Glu Lys Pro Val Pro Gln Gly Ala Ala Lys Gly Asp Tyr Val Ala Lys 515 520 525 Thr Gln Pro Phe Ser Glu Leu Ser Phe Arg Pro Lys Lys Asp Leu Thr 530 535 540 Gly Ala Asp Met Trp Gly Ala Thr Met Phe Asp Gln Leu Val Cys Arg 545 550 555 560 Val Ile Phe His Gln Met Arg Tyr Glu Gly Ile Phe Thr Pro Pro Ser 565 570 575 Glu Gln Gly Thr Leu Val Phe Pro Gly Asn Leu Gly Met Phe Glu Trp 580 585 590 Gly Gly Ile Ser Val Asp Pro Asn Arg Gln Val Ala Ile Ala Asn Pro 595 600 605 Met Ala Leu Pro Phe Val Ser Lys Leu Ile Pro Arg Gly Pro Gly Asn 610 615 620 Pro Met Glu Pro Pro Lys Asp Ala Lys Gly Ser Gly Thr Glu Ser Gly 625 630 635 640 Val Gln Pro Gln Tyr Gly Val Pro Phe Gly Val Thr Leu Asn Pro Phe 645 650 655 Leu Ser Pro Phe Gly Leu Pro Cys Lys Gln Pro Ala Trp Gly Tyr Ile 660 665 670 Ser Ala Leu Asp Leu Lys Thr Asn Glu Val Val Trp Lys Lys Arg Ile 675 680 685 Gly Thr Pro Gln Asp Ser Leu Pro Phe Pro Leu Pro Val Pro Leu Pro 690 695 700 Phe Asn Met Gly Met Pro Met Leu Gly Gly Pro Ile Ser Thr Ala Gly 705 710 715 720 Asn Val Leu Phe Ile Ala Ala Thr Ala Asp Asn Tyr Leu Arg Ala Tyr 725 730 735 Asn Met Ser Asn Gly Glu Lys Leu Trp Gln Ala Arg Leu Pro Ala Gly 740 745 750 Gly Gln Ala Thr Pro Met Thr Tyr Glu Val Asn Gly Lys Gln Tyr Val 755 760 765 Val Ile Ser Ala Gly Gly His Gly Ser Phe Gly Thr Lys Met Gly Asp 770 775 780 Tyr Ile Val Ala Tyr Ala Leu Pro Asp Asp Ala Lys 785 790 795 <210> 6 <211> 2391 <212> DNA <213> Artificial Sequence <220> <223> glucose dehydrogenase_nucleotide <400> 6 atggcagaaa caaaatctca acaatcacgg ttacttgtca cgctgacggc gctgtttgcc 60 gccttctgtg gcctgtatct gttaatcggt ggggtatggc tggccgctat tggcggttcc 120 tggtactacc ctatcgcagg cctggtgatg ctggccgtca ccgttatgct gttccgcggc 180 aagcgcgctg cgctgtggct gtacgccgcc ctgctgctgg caaccatgat ttggggggta 240 tgggaagtcg gtttcgactt ctgggcgctg acgccgcgta gcgacatcct ggtcttcttc 300 ggcatctggc tgattctgcc atttgtctgg cgtcgtctgc cggtcccttc cgccggtgcc 360 gttggcggtc tggttatcgc cctgctgatt agcggcggga tcctgacctg ggccggtttc 420 aacgatccgc aggaagtgaa cggtacgctg agcgctgacg cgacgccggc tgcgccgatt 480 tctaccgtcg ccgatagcga ctggccggct tatggccgca accaggaagg ccagcgttat 540 tcaccgctga agcaaattaa taccgataac gtgaagaacc tgaaggaagc ctgggtattc 600 cgcaccggcg acctgaagca gccgaacgat ccgggtgaaa tcactaacga agtgacgccg 660 attaaagttg gcgacatgct gtatctgtgt accgcgcacc agcgtctgtt cgcgcttgac 720 gcggccaccg gtaaagagaa gtggcatttt gacccgcagc tgaacgccga tccgtcgttc 780 cagcacgtga cctgccgtgg cgtctcctat catgaagcca aagcagataa cgcgcctgcc 840 gacgtcgtcg ccgactgccc gcgccgtatt attctgccgg tcaacgatgg ccgtctgttc 900 gcggtgaacg ccgacaacgg taagctgtgc gaaacctttg ccaacaaagg cattctcaac 960 ctgcaaacca atatgccggt aaccacgccg ggtatgtatg aaccgacgtc gccgccgatt 1020 atcaccgata aaactatcgt cattgccggc gcggtaaccg ataacttctc aacccgcgag 1080 ccatcaggcg tgatccgcgg ctttgatgtg aataccggta aactgctgtg ggccttcgac 1140 ccgggtgcga aagaccctaa tgcgatcccg agcgatgagc atcacttcac actcaattca 1200 cctaactcct gggcgcctgc cgcctatgac gcgaagctgg atttagtcta tctgccgatg 1260 ggcgttacca cgccggatat ctggggcggc aatcgcacgc cggaacagga acgttacgcc 1320 agctctatcg tagcgctgaa cgcaaccacc gggaaactgg catggagcta ccaaaccgta 1380 caccacgatc tgtgggatat ggatatgccg tcgcagccga cgctggccga cattgatgtg 1440 aacggtaaaa ccgtaccggt gatttacgct ccggccaaaa ccggcaacat cttcgtgctg 1500 gatcgccgta atggcgagct ggtggtcccg gcgccggaaa aaccggttcc gcaaggtgcg 1560 gcgaaaggcg attatgttgc taaaacccag ccgttctccg agctgagctt ccgtccgaag 1620 aaagacctga ccggcgcaga tatgtggggc gccaccatgt ttgaccaact ggtgtgccgc 1680 gttatcttcc atcagatgcg ctatgaaggt atcttcactc cgccgtctga acagggcacg 1740 ctggtcttcc cggggaacct ggggatgttt gaatggggcg gtatctccgt cgatccaaac 1800 cgtcaggtgg ctatcgccaa cccgatggcg ctgccgttcg tctctaaact gatcccacgc 1860 ggcccgggca acccgatgga accgccaaaa gacgcgaaag gctctggtac cgagtccggc 1920 gttcagccgc agtatggcgt cccgttcggc gtcacgctga acccgttcct gtcgccgttt 1980 ggcctgccgt gtaaacaacc ggcatggggt tatatctcgg cgctggatct gaagaccaac 2040 gaagtggtgt ggaaaaaacg catcggtacg ccgcaggata gtctgccgtt cccgctgcct 2100 gttccactgc cattcaatat gggtatgccg atgctgggcg ggccgatctc aaccgccggt 2160 aacgtgctgt ttatcgccgc caccgccgat aactacctgc gcgcttacaa catgagtaat 2220 ggtgaaaaac tgtggcaggc gcgtctgcct gcaggtggcc aggcgacgcc gatgacctat 2280 gaagtgaatg gcaagcagta cgttgtcatc tctgccggcg gtcatggctc gttcggtact 2340 aaaatgggcg actacatcgt tgcctatgcg ttaccggatg acgcgaaata a 2391 <210> 7 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> budC_Forward <400> 7 ccagctacac ctgagtcaaa ttctttaagt catcacaaaa ggaaatggaa gtgtaggctg 60 gagctgcttc 70 <210> 8 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> budC_Reverse <400> 8 aaagcccctg cgaacaggca ggggcaaacc atgtcagagc ttatttttta gtccatatga 60 atatcctcct 70 <210> 9 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> gcd_Forward <400> 9 tcctataatt aattgcagtt aaaaaattaa caactgaaga gtgtctttct gtgtaggctg 60 gagctgcttc 70 <210> 10 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> gcd_Reverse <400> 10 aggggagggg gcaaacaaaa aaacggcaac tttcgttgcc gttttgcgtt gtccatatga 60 atatcctcct 70 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> budC_Colony_Forward <400> 11 aaagcctatg ccgaatcctt 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> budC_Colony_Reverse <400> 12 cttctccggg ctaccaaatc 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gcd_Colony_Forward <400> 13 atttcactgc cgctgtcttt 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gcd_Colony_Reverse <400> 14 ggtgagtgaa gtgctggtga 20 <210> 15 <211> 1580 <212> DNA <213> Artificial Sequence <220> <223> cassette_nucleotide <400> 15 tcctataatt aattgcagtt aaaaaattaa caactgaaga gtgtctttct gtgtaggctg 60 gagctgcttc gaagttccta tactttctag agaataggaa cttcggaata ggaacttcaa 120 gatcccctca cgctgccgca agcactcagg gcgcaagggc tgctaaagga agcggaacac 180 gtagaaagcc agtccgcaga aacggtgctg accccggatg aatgtcagct actgggctat 240 ctggacaagg gaaaacgcaa gcgcaaagag aaagcaggta gcttgcagtg ggcttacatg 300 gcgatagcta gactgggcgg ttttatggac agcaagcgaa ccggaattgc cagctggggc 360 gccctctggt aaggttggga agccctgcaa agtaaactgg atggctttct tgccgccaag 420 gatctgatgg cgcaggggat caagatctga tcaagagaca ggatgaggat cgtttcgcat 480 gattgaacaa gatggattgc acgcaggttc tccggccgct tgggtggaga ggctattcgg 540 ctatgactgg gcacaacaga caatcggctg ctctgatgcc gccgtgttcc ggctgtcagc 600 gcaggggcgc ccggttcttt ttgtcaagac cgacctgtcc ggtgccctga atgaactgca 660 ggacgaggca gcgcggctat cgtggctggc cacgacgggc gttccttgcg cagctgtgct 720 cgacgttgtc actgaagcgg gaagggactg gctgctattg ggcgaagtgc cggggcagga 780 tctcctgtca tctcaccttg ctcctgccga gaaagtatcc atcatggctg atgcaatgcg 840 gcggctgcat acgcttgatc cggctacctg cccattcgac caccaagcga aacatcgcat 900 cgagcgagca cgtactcgga tggaagccgg tcttgtcgat caggatgatc tggacgaaga 960 gcatcagggg ctcgcgccag ccgaactgtt cgccaggctc aaggcgcgca tgcccgacgg 1020 cgaggatctc gtcgtgaccc atggcgatgc ctgcttgccg aatatcatgg tggaaaatgg 1080 ccgcttttct ggattcatcg actgtggccg gctgggtgtg gcggaccgct atcaggacat 1140 agcgttggct acccgtgata ttgctgaaga gcttggcggc gaatgggctg accgcttcct 1200 cgtgctttac ggtatcgccg ctcccgattc gcagcgcatc gccttctatc gccttcttga 1260 cgagttcttc tgagcgggac tctggggttc gaaatgaccg accaagcgac gcccaacctg 1320 ccatcacgag atttcgattc caccgccgcc ttctatgaaa ggttgggctt cggaatcgtt 1380 ttccgggacg ccggctggat gatcctccag cgcggggatc tcatgctgga gttcttcgcc 1440 caccccagct tcaaaagcgc tctgaagttc ctatactttc tagagaatag gaacttcgga 1500 ataggaacta aggaggatat tcatatggac aacgcaaaac ggcaacgaaa gttgccgttt 1560 ttttgtttgc cccctcccct 1580 <110> KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION <120> Recombinant microorganisms enhanced ability of producing acetoin and method for preparing acetoin using the same <130> DP-2016-0024_P16U13C0037 <160> 15 <170> KoPatentIn 3.0 <210> 1 <211 > 329 <212> PRT <213> Artificial Sequence <220> <223> lactate dehydrogenase_amino acid <400> 1 Met Lys Ile Ala Val Tyr Ser Thr Lys Gln Tyr Asp Lys Lys Tyr Leu 1 5 10 15 Gln His Val Asn Asp Ala Tyr Gly Phe Glu Leu Glu Phe Phe Asp Phe 20 25 30 Leu Leu Thr Glu Lys Thr Ala Lys Thr Ala Asn Gly Cys Glu Ala Val 35 40 45 Cys Ile Phe Val Asn Asp Asp Gly Ser Arg Pro Val Leu Glu Glu Leu 50 55 60 Lys Ala His Gly Val Lys Tyr Ile Ala Leu Arg Cys Ala Gly Phe Asn 65 70 75 80 Asn Val Asp Leu Glu Ala Ala Lys Glu Leu Gly Leu Arg Val Val Arg 85 90 95 Val Pro Ala Tyr Ser Pro Glu Ala Val Ala Glu His Ala Ile Gly Met 100 105 110 Met Met Ser Leu Asn Arg Arg Ile His Arg Ala Tyr Gln Arg Thr Arg 115 120 125 Asp Ala Asn Phe Ser Leu Glu Gly Leu Thr Gly Phe Thr Met Tyr Gly 130 135 140 Lys Thr Ala Gly Val Ile Gly Thr Gly Lys Ile Gly Val Ala Thr Leu 145 150 155 160 Arg Ile Leu Lys Gly Phe Gly Met Arg Leu Leu Ala Phe Asp Pro Tyr 165 170 175 Pro Ser Ala Ala Ala Leu Asp Leu Gly Val Glu Tyr Val Asp Leu Pro 180 185 190 Thr Leu Tyr Ala Gln Ser Asp Val Ile Ser Leu His Cys Pro Leu Thr 195 200 205 Asn Glu Asn Tyr His Leu Leu Asn Gln Ala Ala Phe Asp Gln Met Lys 210 215 220 Asp Gly Val Met Val Ile Asn Thr Ser Arg Gly Ala Leu Ile Asp Ser 225 230 235 240 Gln Ala Ala Ile Asp Ala Leu Lys His Gln Lys Ile Gly Ala Leu Gly 245 250 255 Met Asp Val Tyr Glu Asn Glu Arg Asp Leu Phe Phe Glu Asp Lys Ser 260 265 270 Asn Asp Val Ile Gln Asp Asp Val Phe Arg Arg Leu Ser Ala Cys His 275 280 285 Asn Val Leu Phe Thr Gly His Gln Ala Phe Leu Thr Ala Glu Ala Leu 290 295 300 Ile Gly Ile Ser Glu Thr Thr Leu Gly Asn Leu Gln Gln Val Ala Lys 305 310 315 320 Gly Glu Thr Cys Pro Asn Ala Leu Val 325 <210> 2 <211> 990 <212> DNA <213> Artificial Sequence <220> <223> lactate dehydrogenase_nucleotide <400> 2 atgaaaatcg ctgtttatag taccaagcag tacgataaaa agtatctgca gcatgttaac 60 gacgcatacg gctttgaact ggaatttttc gatttcctgc tgaccgaaaa gaccgcgaaa 120 acggccaacg gctgtgaagc ggtatgtatc ttcgttaatg acgacggtag ccgcccggtg 180 ctggaagagc ta aaagccca cggcgtgaaa tatatcgcgc tgcgctgcgc cggctttaac 240 aacgtcgatc ttgaggcggc taaagagctg ggcctgcgcg tcgtgcgcgt cccggcctac 300 tcgccggaag ccgttgctga acacgccatc ggtatgatga tgtcgttgaa ccgtcgcatt 360 catcgcgcct atcagcgtac ccgcgatgcc aacttctcgc tggaagggct gaccggcttc 420 acgatgtacg gtaaaaccgc aggggtgatc ggcaccggta aaatcggcgt tgcgacgctg 480 cggatcctca aaggtttcgg tatgcgcctg ctggcgtttg atccctatcc gagcgcggcg 540 gcgctggatc tcggcgttga atatgtcgac ctgccgacgc tgtacgcgca gtccgacgtc 600 at ctccctgc actgcccgct taccaacgaa aactatcacc tgctcaacca ggcggcattc 660 gatcagatga aagacggcgt gatggtcatt aataccagcc gcggcgcgct tatcgattca 720 caagcggcta tcgacgcgct gaagcatcag aaaatcggcg cgctgggaat ggacgtgtat 780 gaaaatgaac gcgatctgtt ctttgaagat aaatcgaatg atgtcatcca ggatgacgtg 840 ttccgccggc tctccgcctg ccacaacgtc ctgtttaccg ggcaccaggc attcctgacg 900 gctgaggcgc tgatcggtat ttccgagaca acgcttggca atctgcagca ggtagctaag 960 ggcgaaacct gcccgaacgc gctggtctaa 990 <210> 3 <211> 256 <212> PRT <213> Artificial Sequence <220> < 223> acetoin reductase_amino acid <400> 3 Met Lys Lys Val Ala Leu Val Thr Gly Ala Gly Gln Gly Ile Gly Lys 1 5 10 15 Ala Ile Ala Leu Arg Leu Val Lys Asp Gly Phe Ala Val Ala Ile Ala 20 25 30 Asp Tyr Asn Asp Val Thr Ala Lys Ala Val Ala Asp Glu Ile Asn Gln 35 40 45 His Gly Gly Arg Ala Ile Ala Val Lys Val Asp Val Ser Asp Arg Glu 50 55 60 Gln Val Phe Ala Ala Val Glu Gln Ala Arg Lys Thr Leu Gly Gly Phe 65 70 75 80 Asn Val Ile Val Asn Asn Ala Gly Val Ala Pro Ser Thr Pro Ile Glu 85 90 95 Ser Ile Thr Pro Glu Ile Val Asp Lys Val Tyr Asn Ile Asn Val Lys 100 105 110 Gly Val Ile Trp Gly Ile Gln Ala Ala Val Glu Ala Phe Lys Lys Glu 115 120 125 Gly His Gly Gly Lys Ile Ile Asn Ala Cys Ser Gln Ala Gly His Val 130 135 140 Gly Asn Pro Glu Leu Ala Val Tyr Ser Ser Ser Lys Phe Ala Val Arg 145 150 155 160 Gly Leu Thr Gln Thr Ala Ala Arg Asp Leu Ala Pro Leu Gly Ile Thr 165 170 175 Val Asn Gly Tyr Cys Pro Gly Ile Val Lys Thr Pro Met Trp Ala Glu 180 185 190 Ile Asp Arg Gln Val Ser Glu Ala Ala Gly Lys Pro Leu Gly Tyr Gly 195 200 205 Thr Ala Glu Phe Ala Lys Arg Ile Thr Leu Gly Arg Leu Ser Glu Pro 210 215 220 Glu Asp Val Ala Ala Cys Val Ser Tyr Leu Ala Ser Pro Asp Ser Asp 225 230 235 240 Tyr Met Thr Gly Gln Ser Leu Leu Ile Asp Gly Gly Met Val Phe Asn 245 250 255 <210> 4 <211> 711 <212> DNA <213> Artificial Sequence <220> <223> acetoin reductase_nucleotide <400> 4 cgcctcgtga aggacggttt tgccgtggcg atcgccgatt acaatgacgt cacagcgaaa 60 gccgtggcgg atgaaatca a ccagcacggc ggccgggcaa tcgcggtcaa agtcgatgtt 120 tccgaccgtg agcaggtgtt tgccgccgtc gaacaggcgc gaaaaacgct gggcggattc 180 aacgtcatcg tcaataacgc cggggtcgcg ccatcaacgc ctatcgaatc cattacgccg 240 gagattgtcg acaaggtcta caacatcaac gttaaagggg tgatctgggg gattcaggcg 300 gcagtcgagg cctttaaaaa agaggggcac ggcggcaaaa tcatcaacgc ctgttcgcag 360 gccggacacg tcggcaaccc ggaactggcg gtctacagct cgagcaaatt cgccgtacgc 420 ggtttaacgc aaaccgccgc tcgcgacctg gcgccgctgg gtattaccgt taacggctac 480 tgcccgggga ttgtgaaaac gccgatgtgg gccgagat cg atcgtcaggt atccgaagcg 540 gcgggtaaac ctctgggcta cgggacagcc gaattcgcca aacgcatcac cctcggccgc 600 ctgtctgagc cagaagatgt cgccgcctgc gtctcttatc tcgccagccc ggattccgat 660 tatatgaccg gtcaatcgct gctgatcgat ggcgggatgg tattcaatta a 711 <210> 5 <211> 796 <212> PRT <213> Artificial Sequence <220 > <223> glucose dehydrogenase_amino acid <400> 5 Met Ala Glu Thr Lys Ser Gln Gln Ser Arg Leu Leu Val Thr Leu Thr 1 5 10 15 Ala Leu Phe Ala Ala Phe Cys Gly Leu Tyr Leu Leu Ile Gly Gly Val 20 25 30 Trp Leu Ala Ala Ile Gly Gly Ser Trp Tyr Tyr Pro Ile Ala Gly Leu 35 40 45 Val Met Leu Ala Val Thr Val Met Leu Phe Arg Gly Lys Arg Ala Ala 50 55 60 Leu Trp Leu Tyr Ala Ala Leu Leu Leu Ala Thr Met Ile Trp Gly Val 65 70 75 80 Trp Glu Val Gly Phe Asp Phe Trp Ala Leu Thr Pro Arg Ser Asp Ile 85 90 95 Leu Val Phe Phe Gly Ile Trp Leu Ile Leu Pro Phe Val Trp Arg Arg 100 105 110 Leu Pro Val Pro Ser Ala Gly Ala Val Gly Gly Leu Val Ile Ala Leu 115 120 125 Leu Ile Ser Gly Gly Ile Leu Thr Trp Ala Gly Phe Asn Asp Pro Gln 130 135 140 Glu Val Asn Gly Thr Leu Ser Ala Asp Ala Thr Pro Ala Ala Pro Ile 145 150 155 160 Ser Thr Val Ala Asp Ser Asp Trp Pro Ala Tyr Gly Arg Asn Gln Glu 165 170 175 Gly Gln Arg Tyr Ser Pro Leu Lys Gln Ile Asn Thr Asp Asn Val Lys 180 185 190 Asn Leu Lys Glu Ala Trp Val Phe Arg Thr Gly Asp Leu Lys Gln Pro 195 200 205 Asn Asp Pro Gly Glu Ile Thr Asn Glu Val Thr Pro Ile Lys Val Gly 210 215 220 Asp Met Leu Tyr Leu Cys Thr Ala His Gln Arg Leu Phe Ala Leu Asp 225 230 235 240 Ala Ala Thr Gly Lys Glu Lys Trp His Phe Asp Pro Gln Leu Asn Ala 245 250 255 Asp Pro Ser Phe Gln His Val Thr Cys Arg Gly Val Ser Tyr His Glu 260 265 270 Ala Lys Ala Asp Asn Ala Pro Ala Asp Val Val Ala Asp Cys Pro Arg 275 280 285 Arg Ile Ile Leu Pro Val Asn Asp Gly Arg Leu Phe Ala Val Asn Ala 290 295 300 Asp Asn Gly Lys Leu Cys Glu Thr Phe Ala Asn Lys Gly Ile Leu Asn 305 310 315 320 Leu Gln Thr Asn Met Pro Val Thr Thr Pro Gly Met Tyr Glu Pro Thr 325 330 335 Ser Pro Pro Ile Ile Thr Asp Lys Thr Ile Val Ile Ala Gly Ala Val 340 345 350 Thr Asp Asn Phe Ser Thr Arg Glu Pro Ser Gly Val Ile Arg Gly Phe 355 360 365 Asp Val Asn Thr Gly Lys Leu Leu Trp Ala Phe Asp Pro Gly Ala Lys 370 375 380 Asp Pro Asn Ala Ile Pro Ser Asp Glu His His Phe Thr Leu Asn Ser 385 390 395 400 Pro Asn Ser Trp Ala Pro Ala Ala Tyr Asp Ala Lys Leu Asp Leu Val 405 410 415 Tyr Leu Pro Met Gly Val Thr Thr Pro Asp Ile Trp Gly Gly Asn Arg 420 425 430 Thr Pro Glu Gln Glu Arg Tyr Ala Ser Ser Ile Val Ala Leu Asn Ala 435 440 445 Thr Thr Gly Lys Leu Ala Trp Ser Tyr Gln Thr Val His His Asp Leu 450 455 460 Trp Asp Met Asp Met Pro Ser Gln Pro Thr Leu Ala Asp Ile Asp Val 465 470 475 480 Asn Gly Lys Thr Val Pro Val Ile Tyr Ala Pro Ala Lys Thr Gly Asn 485 490 495 Ile Phe Val Leu Asp Arg Arg Asn Gly Glu Leu Val Val Pro Ala Pro 500 505 510 Glu Lys Pro Val Pro Gln Gly Ala Ala Lys Gly Asp Tyr Val Ala Lys 515 520 525 Thr Gln Pro Phe Ser Glu Leu Ser Phe Arg Pro Lys Lys Asp Leu Thr 530 535 540 Gly Ala Asp Met Trp Gly Ala Thr Met Phe Asp Gln Leu Val Cys Arg 545 550 555 560 Val Ile Phe His Gln Met Arg Tyr Glu Gly Ile Phe Thr Pro Pro Ser 565 570 575 Glu Gln Gly Thr Leu Val Phe Pro Gly Asn Leu Gly Met Phe Glu Trp 580 585 590 Gly Gly Ile Ser Val Asp Pro Asn Arg Gln Val Ala Ile Ala Asn Pro 595 600 605 Met Ala Leu Pro Phe Val Ser Lys Leu Ile Pro Arg Gly Pro Gly Asn 610 615 620 Pro Met Glu Pro Pro Lys Asp Ala Lys Gly Ser Gly Thr Glu Ser Gly 625 630 635 640 Val Gln Pro Gln Tyr Gly Val Pro Phe Gly Val Thr Leu Asn Pro Phe 645 650 655 Leu Ser Pro Phe Gly Leu Pro Cys Lys Gln Pro Ala Trp Gly Tyr Ile 660 665 670 Ser Ala Leu Asp Leu Lys Thr Asn Glu Val Val Trp Lys Lys Arg Ile 675 680 685 Gly Thr Pro Gln Asp Ser Leu Pro Phe Pro Leu Pro Val Pro Leu Pro 690 695 700 Phe Asn Met Gly Met Pro Met Leu Gly Gly Pro Ile Ser Thr Ala Gly 705 710 715 720 Asn Val Leu Phe Ile Ala Ala Thr Ala Asp Asn Tyr Leu Arg Ala Tyr 725 730 735 Asn Met Ser Asn Gly Glu Lys Leu Trp Gln Ala Arg Leu Pro Ala Gly 740 745 750 Gly Gln Ala Thr Pro Met Thr Tyr Glu Val Asn Gly Lys Gln Tyr Val 755 760 765 Val Ile Ser Ala Gly Gly His Gly Ser Phe Gly Thr Lys Met Gly Asp 770 775 780 Tyr Ile Val Ala Tyr Ala Leu Pro Asp Asp Ala Lys 785 790 795 <210> 6 <211> 2391 <212> DNA <213> Artificial Sequence <220> <223> glucose dehydrogenase_nucleotide <400> 6 atggcagaaa caaaatctca acaatcacgg ttacttgtca cgctgacggc gctgtttgcc 60 gccttctgtg gcctgtatct gttaatcggt ggggtatggc tggccgctat tggcggttcc 120 tggtactacc ctatcgcagg cctggtgatg ctggccgtca ccgttatgct gttccgcggc 180 aagcgcgctg cgctgtggct gtacgccgcc ctgctgctgg caaccatgat ttggggggta 240 tgggaagtcg gtttcgactt ctgggcgctg acgccgcgta gcgacatcct ggtcttcttc 300 ggcatctggc tgattctgcc atttgtctgg cgtcgtctg c cggtcccttc cgccggtgcc 360 gttggcggtc tggttatcgc cctgctgatt agcggcggga tcctgacctg ggccggtttc 420 aacgatccgc aggaagtgaa cggtacgctg agcgctgacg cgacgccggc tgcgccgatt 480 tctaccgtcg ccgatag cga ctggccggct tatggccgca accaggaagg ccagcgttat 540 tcaccgctga agcaaattaa taccgataac gtgaagaacc tgaaggaagc ctgggtattc 600 cgcaccggcg acctgaagca gccgaacgat ccgggtgaaa tcactaacga agtgacgccg 660 attaaagttg gcgacatgct gtatctgtgt accgcgcacc agcgtctgtt cgcgcttgac 720 gcggccaccg gtaaagagaa gtggcatttt gacccgcagc tgaacg ccga tccgtcgttc 780 cagcacgtga cctgccgtgg cgtctcctat catgaagcca aagcagataa cgcgcctgcc 840 gacgtcgtcg ccgactgccc gcgccgtatt attctgccgg tcaacgatgg ccgtctgttc 900 gcggtgaacg ccgacaacgg taagctgt gc gaaacctttg ccaacaaagg cattctcaac 960 ctgcaaacca atatgccggt aaccacgccg ggtatgtatg aaccgacgtc gccgccgatt 1020 atcaccgata aaactatcgt cattgccggc gcggtaaccg ataacttctc aacccgcgag 1080 ccatcaggcg tgatccgcgg ctttgatgtg aataccggta aactgctgtg ggccttcgac 1140 ccgggtgcga aagaccctaa tgcgatcccg agcgatgagc atcacttcac actcaattca 1200 cctaactcct gggcgcctgc cgcctatgac gcgaagctgg atttagtcta tctgccgatg 1260 ggcgttacca cgccggatat ctggggcggc aatcgcacgc cggaacagga acgttacgcc 1320 agctctatcg tagcgctgaa cgcaaccacc gggaaactgg catggagcta ccaaaccgta 1380 caccacgatc tgtgggatat ggatatgccg tcgcagccga cgctggccga cattgatgtg 1440 aacggtaaaa ccgtaccggt gatttacgct ccggccaaaa ccggcaacat cttcgtgctg 1500 gatcgccgta atggcgagct ggtggtcccg gcgccggaaa aaccggttcc gcaaggtgcg 1560 gcgaaaggcg attatgttgc taaaacccag ccgttctccg agctgagctt ccgtccgaag 1 620 aaagacctga ccggcgcaga tatgtggggc gccaccatgt ttgaccaact ggtgtgccgc 1680 gttatcttcc atcagatgcg ctatgaaggt atcttcactc cgccgtctga acagggcacg 1740 ctggtcttcc cggggaacct ggggatgttt gaatggggcg gtatct ccgt cgatccaaac 1800 cgtcaggtgg ctatcgccaa cccgatggcg ctgccgttcg tctctaaact gatcccacgc 1860 ggcccgggca acccgatgga accgccaaaa gacgcgaaag gctctggtac cgagtccggc 1920 gttcagccgc agtatggcgt cccgttcggc gtcacgctga acccgttcct gtcgccgttt 1980 ggcctgccgt gtaaacaacc ggcatggggt tatatctcgg cgctggatct gaagaccaac 2040 gaagt ggtgt ggaaaaaacg catcggtacg ccgcaggata gtctgccgtt cccgctgcct 2100 gttccactgc cattcaatat gggtatgccg atgctgggcg ggccgatctc aaccgccggt 2160 aacgtgctgt ttatcgccgc caccgccgat aactacctgc gcgcttacaa catgag taat 2220 ggtgaaaaac tgtggcaggc gcgtctgcct gcaggtggcc aggcgacgcc gatgacctat 2280 gaagtgaatg gcaagcagta cgttgtcatc tctgccggcg gtcatggctc gttcggtact 2340 aaaatgggcg actacatcgt tgcctatgcg ttaccggatg acgcgaaata a 2391 <210> 7 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> budC_Forward <400> 7 ccagctacac ctgagt caaa ttctttaagt catcacaaaa ggaaatggaa gtgtaggctg 60 gagctgcttc 70 <210> 8 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> budC_Reverse <400> 8 aaagcccctg cgaacaggca ggggcaaacc atgtcagagc ttatttttta gtccatatga 60 atatcctcct 70 <210> 9 <211> 70 <212> DNA <21 3> Artificial Sequence <220> <223> gcd_Forward <400> 9 tcctataatt aattgcagtt aaaaaattaa caactgaaga gtgtctttct gtgtaggctg 60 gagctgcttc 70 <210> 10 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> gcd_Reverse < 400> 10 aggggaggggg gcaaacaaaa aaacggcaac tttcgttgcc gttttgcgtt gtccatatga 60 atatcctcct 70 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> budC_Colony_Forward <400> 11 aaagcctatg ccgaatcctt 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> budC_Colony_Reverse <400> 12 cttctccggg ctaccaaatc 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gcd_Colony_Forward <400> 13 atttcactgc cg ctgtcttt 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gcd_Colony_Reverse <400> 14 ggtgagtgaa gtgctggtga 20 <210> 15 <211> 1580 <212> DNA <213> Artificial Sequence < 220> <223> cassette_nucleotide <400> 15 tcctataatt aattgcagtt aaaaaattaa caactgaaga gtgtctttct gtgtaggctg 60 gagctgcttc gaagttccta tactttctag agaataggaa cttcggaata ggaacttcaa 120 gatcccctca cgctgccgca agcactcagg g cgcaagggc tgctaaagga agcggaacac 180 gtagaaagcc agtccgcaga aacggtgctg accccggatg aatgtcagct actgggctat 240 ctggacaagg gaaaacgcaa gcgcaaagag aaagcaggta gcttgcagtg ggcttacatg 300 gcgatagcta gactgggcgg ttttatggac agcaagcgaa ccggaattgc cagctggggc 360 gccctctggt aaggttggga agccctgcaa agtaaactgg atggctttct tgccgccaag 420 gatctgatgg cgcaggggat caagatctga tcaagagaca ggatgaggat cgtttcgcat 48 0 gattgaacaa gatggattgc acgcaggttc tccggccgct tgggtggaga ggctattcgg 540 ctatgactgg gcacaacaga caatcggctg ctctgatgcc gccgtgttcc ggctgtcagc 600 gcaggggcgc ccggttcttt ttgtcaagac cgacctgtcc ggtgccctga atgaact gca 660 ggacgaggca gcgcggctat cgtggctggc cacgacgggc gttccttgcg cagctgtgct 720 cgacgttgtc actgaagcgg gaagggactg gctgctattg ggcgaagtgc cggggcagga 780 tctcctgtca tctcaccttg ctcctgccga gaaagtatcc atcatggctg atgcaatgcg 840 gcggctgcat acgcttgatc cggctacctg cccattcgac caccaagcga aacatcgcat 900 cgagc gagca cgtactcgga tggaagccgg tcttgtcgat caggatgatc tggacgaaga 960 gcatcagggg ctcgcgccag ccgaactgtt cgccaggctc aaggcgcgca tgcccgacgg 1020 cgaggatctc gtcgtgaccc atggcgatgc ctgcttgccg aatatcatgg tggaaaaat gg 1080 ccgcttttct ggattcatcg actgtggccg gctgggtgtg gcggaccgct atcaggacat 1140 agcgttggct acccgtgata ttgctgaaga gcttggcggc gaatgggctg accgcttcct 1200 cgtgctttac ggtatcgccg ctcccgattc gcagcgcatc gccttctatc gccttcttga 1260 cgagttcttc tgagcgggac tctggggttc gaaatgaccg accaagcgac gcccaacctg 13 20 ccatcacgag atttcgattc caccgccgcc ttctatgaaa ggttgggctt cggaatcgtt 1380 ttccgggacg ccggctggat gatcctccag cgcggggatc tcatgctgga gttcttcgcc 1440 caccccagct tcaaaagcgc tctgaagttc ctatactttc tagagaatag ga acttcgga 1500 ataggaacta aggaggatat tcatatggac aacgcaaaac ggcaacgaaa gttgccgttt 1560ttttgtttgc cccctcccct 1580

Claims (11)

2,3-부탄디올 (2,3-butandiol) 및 락테이트 (Lactate) 생합성 경로를 갖는 미생물에 있어서,
상기 미생물은, 젖산 탈수소효소를 코딩하는 ldhA 유전자, 및 아세토인 환원효소를 코딩하는 budC 유전자, 및 포도당 탈수소효소를 코딩하는 gcd 유전자가 결실되거나,
상기 각 유전자로부터 발현된 젖산 탈수소효소, 아세토인 환원효소, 및 포도당 탈수소효소의 활성이 약화 또는 불활성화되어 아세토인 생성능이 증진된, 엔테로박테리아세아에 (Enterobacteriaceae) 과의 세균인 것을 특징으로 하는, 재조합 미생물.
In microorganisms with 2,3-butandiol and lactate biosynthetic pathways,
The microorganism has the ldhA gene encoding lactate dehydrogenase, the budC gene encoding acetoin reductase, and the gcd gene encoding glucose dehydrogenase deleted, or
Characterized in that it is a bacterium of the Enterobacteriaceae family in which the activity of lactate dehydrogenase, acetoin reductase, and glucose dehydrogenase expressed from each of the above genes is weakened or inactivated and the acetoin production ability is enhanced. Recombinant microorganisms.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 세균은, 엔테로박터 (Enterobacter ) 속 또는 크렙시엘라 (Klebsiella) 속의 세균인 것을 특징으로 하는, 재조합 미생물.
According to paragraph 1,
The bacterium is a recombinant microorganism, characterized in that it is a bacterium of the genus Enterobacter or Klebsiella .
제1항에 있어서,
상기 세균은, 엔테로박터 에어로게네스균 (Enterobacter aerogenes)인 것을 특징으로 하는, 재조합 미생물.
According to paragraph 1,
The bacteria are Enterobacter aerogenes ( Enterobacter aerogenes ), a recombinant microorganism.
(a) 제1항, 및 제5항 내지 제6항 중 어느 한 항의 재조합 미생물을 탄소원이 포함된 배지에 배양시키는 단계; 및
(b) 상기 재조합 미생물이 배양된 배지로부터 아세토인을 회수하는 단계를 포함하는, 아세토인의 제조방법.
(a) culturing the recombinant microorganism of any one of claims 1 and 5 to 6 in a medium containing a carbon source; and
(b) A method for producing acetoin, comprising the step of recovering acetoin from the medium in which the recombinant microorganism was cultured.
제7항에 있어서,
상기 세균은, 엔테로박터 속 또는 크렙시엘라 속의 세균인 것을 특징으로 하는, 제조방법.
In clause 7,
A manufacturing method, characterized in that the bacteria are bacteria of the genus Enterobacter or Krebsiella.
제7항에 있어서,
상기 세균은, 엔테로박터 에어로게네스균인 것을 특징으로 하는, 제조방법.
In clause 7,
A manufacturing method, characterized in that the bacteria are Enterobacter aerogenes.
제7항에 있어서,
상기 배양배지는, Na2HPO4, KH2PO4, NaCl, NH4Cl, MgSO4, 및 CaCl2를 함유한 최소배지인 것을 특징으로 하는, 제조방법.
In clause 7,
The culture medium contains Na 2 HPO 4 , KH 2 PO 4 , NaCl, NH 4 Cl, MgSO 4 , and CaCl 2 A manufacturing method, characterized in that it is a minimal medium.
제7항에 있어서,
상기 배양은, 호기성 조건에서 실시되는 것을 특징으로 하는, 제조방법.
In clause 7,
A production method, characterized in that the culture is carried out under aerobic conditions.
KR1020160006582A 2016-01-19 2016-01-19 Recombinant microorganisms enhanced ability of producing acetoin and method for preparing acetoin using the same KR102642882B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160006582A KR102642882B1 (en) 2016-01-19 2016-01-19 Recombinant microorganisms enhanced ability of producing acetoin and method for preparing acetoin using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160006582A KR102642882B1 (en) 2016-01-19 2016-01-19 Recombinant microorganisms enhanced ability of producing acetoin and method for preparing acetoin using the same

Publications (2)

Publication Number Publication Date
KR20170086931A KR20170086931A (en) 2017-07-27
KR102642882B1 true KR102642882B1 (en) 2024-03-04

Family

ID=59427878

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160006582A KR102642882B1 (en) 2016-01-19 2016-01-19 Recombinant microorganisms enhanced ability of producing acetoin and method for preparing acetoin using the same

Country Status (1)

Country Link
KR (1) KR102642882B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102028161B1 (en) * 2017-01-10 2019-10-02 경희대학교 산학협력단 Process for preparing 2,3-butanediol using transformant
US10858661B2 (en) 2017-01-10 2020-12-08 University-Industry Cooperation Group Of Kyung Hee University Use of Methylomonas sp. DH-1 strain and its transformants
KR20190006227A (en) 2017-07-10 2019-01-18 현대자동차주식회사 Decoupler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105582A (en) * 2010-11-17 2012-06-07 Kobe Univ Acetoin-producing cell, and method for producing acetoin by using the cell
CN104630100A (en) * 2015-01-23 2015-05-20 中国科学院上海高等研究院 Reconstructed Klebsiella pneumoniae and application of reconstructed Klebsiella pneumoniae in production of R-acetoin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101565024B1 (en) 2013-12-26 2015-11-03 대상 주식회사 Mutant Strain with improved Amino acid production by inactivating malic enzyme or lactate dehydrogenase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105582A (en) * 2010-11-17 2012-06-07 Kobe Univ Acetoin-producing cell, and method for producing acetoin by using the cell
CN104630100A (en) * 2015-01-23 2015-05-20 中国科学院上海高等研究院 Reconstructed Klebsiella pneumoniae and application of reconstructed Klebsiella pneumoniae in production of R-acetoin

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INFECTION AND IMMUNITY, 1987, pp. 1399-1402.*
Metabolic Engineering, 2014, vol. 23, pp. 34-41.*

Also Published As

Publication number Publication date
KR20170086931A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
CN105121637B (en) Electron-consuming ethanol production pathway replacing glycerol formation in saccharomyces cerevisiae
ES2620770T3 (en) Fermentation process that uses yeast cells that have an altered route from dihydroxyacetone phosphate to glycerol
EA019482B1 (en) A pentose sugar fermenting cell
KR102642882B1 (en) Recombinant microorganisms enhanced ability of producing acetoin and method for preparing acetoin using the same
Chien et al. Solar-to-bioH2 production enhanced by homologous overexpression of hydrogenase in green alga Chlorella sp. DT
US20120149077A1 (en) Mesophilic and Thermophilic Organisms Modified to Produce Acrylate, and Methods of Use Thereof
US20100311140A1 (en) Bacterium capable of fermenting glucose, mannose and xylose simultaneously, and method for production of bioethanol using the bacterium
BR112013010169B1 (en) MONASCUS RUBER MICRO-ORGANISM, ITS USE IN LACTIC ACID PRODUCTION AND METHOD TO PRODUCE A HIGH YIELD COMPOSITION INCLUDING A LACTIC ACID
CN114874959A (en) Genetically engineered bacterium for producing L-theanine by using glucose from head fermentation, method and application
CN112852694B (en) Construction and application of astaxanthin synthetic strain
CN114395575B (en) Clostridium tyrobutyrate recombinant strain for producing butyl butyrate and construction method and application thereof
ES2912995T3 (en) Obtaining high-yield yeast strains for arabinose metabolization
CN108148853B (en) Genome editing vector, genome editing system composed of same and application of genome editing system
CN104334716A (en) Bacteria with reconstructed transcriptional units and the uses thereof
Lee et al. A simple biosynthetic pathway for 2, 3-butanediol production in Thermococcus onnurineus NA1
Liu et al. Cloning, sequencing and expression of the cellobiose phosphorylase gene of Cellvibrio gilvus
ES2645680T3 (en) Yeast cells and process to convert acetaldehyde into ethanol
KR101397483B1 (en) Production of alcohol method using bio-ethanol production capacity of recombinant Ralstonia eutropha
US20240018556A1 (en) Acid tolerant clostridia
JP5963260B2 (en) New thermophilic acetic acid producing bacteria
CN115074303B (en) Genetically engineered bacterium capable of degrading feathers, construction method and application thereof
Miyasaka et al. Production of PHA (poly hydroxyalkanoate) by genetically engineered marine cyanobacterium
US20150275238A1 (en) Genetically engineered microbes and methods for converting organic acids to alcohols
Mastroeni et al. The influence of oxygen supply on the production of acetaldehyde by Zymomonas mobilis
KR20100007210A (en) The improvement of hydrogen production yield of clostridium tyrobutyricum by overexpression of hydrogenase

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant