KR102636457B1 - Ess 및 그 ess의 제어 방법 - Google Patents
Ess 및 그 ess의 제어 방법 Download PDFInfo
- Publication number
- KR102636457B1 KR102636457B1 KR1020190041557A KR20190041557A KR102636457B1 KR 102636457 B1 KR102636457 B1 KR 102636457B1 KR 1020190041557 A KR1020190041557 A KR 1020190041557A KR 20190041557 A KR20190041557 A KR 20190041557A KR 102636457 B1 KR102636457 B1 KR 102636457B1
- Authority
- KR
- South Korea
- Prior art keywords
- power
- amount
- ess
- discharge
- charging
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000004146 energy storage Methods 0.000 title claims abstract description 9
- 238000007599 discharging Methods 0.000 claims abstract description 75
- 241000272525 Anas platyrhynchos Species 0.000 claims abstract description 47
- 238000010248 power generation Methods 0.000 claims abstract description 47
- 230000005611 electricity Effects 0.000 claims description 24
- 230000005855 radiation Effects 0.000 claims description 23
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 238000012417 linear regression Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H02J3/383—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
- H02S10/20—Systems characterised by their energy storage means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/123—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/14—Energy storage units
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
본 발명은 ESS(Energy Storage System) 및 그 ESS를 제어하는 제어 방법에 대한 것으로, 저장되는 전력 저장부를 포함하며, 상기 전력 저장부의 충전 및 방전을 수행하는 충방전부와, 상기 ESS의 충방전 스케줄을 생성하는 스케줄링부와, 마이크로 그리드(micro grid) 내에 구비된 재생 에너지 발전기의 기 설정된 기간 동안의 발전량을 예측 및, 상기 기 설정된 기간 동안의 마이크로 그리드 내 전력 수요에 따라 상기 마이크로 그리드로 공급되는 전력량인 수전량을 예측하는 예측부 및, 상기 예측된 발전량과 수전량에 근거하여 덕 커브(Duck Curve)의 영향이 반영된 덕 커브 수전량을 예측하고, 예측된 덕 커브 수전량에 근거하여 상기 전력 저장부의 방전 시점 및 방전 시간을 결정하며, 상기 방전 시점으로부터, 상기 방전 시간 동안 상기 전력 저장부의 방전이 이루어지도록 상기 ESS의 충방전 스케줄을 수정하고, 수정된 ESS의 충방전 스케줄에 따라 상기 충방전부를 제어하는 제어부를 포함하는 것을 특징으로 한다.
Description
본 발명은 ESS(Energy Storage System) 및 그 ESS를 제어하는 제어 방법에 대한 것이다.
요즈음에는 태양광 발전과 같은 재생 에너지 기술의 발달로, 마이크로 그리드(Micro Grid)는 적어도 하나의 재생 에너지 발전기를 포함하고, 재생 에너지 발전기를 통해 발전되는 전력량에 근거하여 상기 마이크 그리드에서 사용되는 전력의 일부가 충당되고 있다. 이에 상기 재생 에너지에 의해 충당되는 전력량 만큼 전력 발전소로부터 공급되는 전력량이 줄어들 수 있으므로, 전기료를 크게 절약할 수 있다.
도 1은 이러한 재생 에너지에 의해 전력 발전소로부터 수전되는 전력량의 변화를 도시한 것이다.
도 1을 살펴보면, 먼저 도 1 상단 도면의 제1 그래프(10)는 재생 에너지가 공급되지 않을 때에, 전력 발전소로부터 마이크로 그리드에 공급되는 전력 공급량, 즉 수전량의 예를 보이고 있는 것이다. 이 경우 도 1의 제1 그래프(10)에서 보이고 있는 바와 같이, 마이크로 그리드 내의 전력 수요량이 많은 시간대에는 수전량이 증가하고, 마이크로 그리드 내의 전력 수요량이 적은 시간대에는 수전량이 감소할 수 있다.
한편 마이크로 그리드 내에 재생 에너지 발전기가 있는 경우, 재생 에너지 발전기로부터 발전되는 전력(이하 재생 에너지)이 공급될 수 있다. 도 1 하단 도면의 제2 그래프(20)는 이러한 재생 에너지의 공급량을 도시한 것이다.
이와 같이 재생 에너지가 공급되는 경우, 마이크로 그리드에서 요구되는 전력량의 적어도 일부가 상기 재생 에너지로 충당될 수 있다. 이에 따라 도 1 하단의 도면에서 보이고 있는 바와 같이, 재생 에너지의 공급이 최대인 시간대인 경우 수전량은 급격하게 줄어들 수 있다.
그런데 재생 에너지의 경우 하루 중 발전 가능 시간이 제한되어 있다. 일 예로 상기 태양광 발전의 경우 해가 떠 있는 상태, 즉 일출 후부터 일몰 전까지만 발전이 가능하다. 이에 따라 재생 에너지는 제2 그래프(20)에서 보이고 있는 바와 같이 특정 시점을 기준으로 급격하게 감소될 수 있으며, 이 경우 마이크로 그리드에서 요구되는 전력 수요에 상응하는 전력을 공급하기 위해 도 1의 하단 도면에 도시된 제3 그래프(30)에서 보이고 있는 바와 같이 수전량이 급격하게 증가할 수 있다. 따라서 제3 그래프(30)의 선로 과부하 발생 구간(32)과 같이, 재생 에너지가 급격하게 감소하는 시점에서 전력 발전소로부터 공급되는 전력량이 급격하게 증가하는 현상이 발생될 수 있다.
이러한 현상을 덕 커브(Duck curve) 현상이라고 하며, 이러한 덕 커브 현상으로 인한 수전량의 급격한 증가는 마이크로 그리드 내의 전력 공급 선로에 과부하를 유발할 수 있다(선로 과부하 발생 구간(32)). 그리고 이러한 선로 과부하는 경우 선로 파손으로 인한 단락 및 정전을 유발시킬 수 있다.
이러한 선로 과부하를 방지하기 위해서는 수전량이 급격하게 증가하는 시점에, 전력 발전소로부터 공급되는 전력량을 줄일 수 있도록, 재생 에너지를 대체하여 부하들에게 전력을 공급하는 방안이 필요하다.
한편 전력 발전소로부터 공급되는 전력량을 대체하여 부하들에게 전력을 공급하기 위한 수단으로서 ESS(Energy Storage System)가 있을 수 있다. 여기서 ESS는 전력을 저장하고 전력이 필요할 때에 충전된 전력을 공급함으로써 에너지의 효율을 높일 수 있는 에너지 저장 시스템을 의미할 수 있다.
그런데 상기 ESS는 통상적으로 전기 요금을 절약하기 위한 용도로 사용되는 것으로, 전기 요금율, 즉 전기 요율이 낮은 시간대에 충전을 수행하고, 전기 요율이 높은 시간대에 방전하여 전력을 공급함으로써 전기 요금을 절약하기 위한 용도로 널리 사용되고 있을 뿐이다. 이에 따라 덕 커브 현상으로 인한 선로 과부하를 방지하기 위한 용도로는 사용되지 않는다는 문제가 있다.
본 발명은 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 하는 것으로, 덕 커브 현상으로 인해 급격하게 증가하는 수전량에 따른 전력 공급 선로의 과부하를 방지할 수 있도록, 재생 에너지의 공급이 중단될 때에 충전된 전력을 방전할 수 있는 ESS 및 그 ESS의 제어 방법을 제공하는 것이다.
또한 본 발명의 다른 목적은, 덕 커브 현상으로 인한 전력 공급 선로의 과부하를 방지하기에 충분한 전력량을, 재생 에너지의 공급이 중단되는 시점 전에 확보할 수 있는 ESS 및 그 ESS의 제어 방법을 제공하는 것이다.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 본 발명의 실시 예에 따른 ESS(Energy Storage System)는, 전력이 저장되는 전력 저장부를 포함하며, 상기 전력 저장부의 충전 및 방전을 수행하는 충방전부와, 상기 ESS의 충방전 스케줄을 생성하는 스케줄링부와, 마이크로 그리드(micro grid) 내에 구비된 재생 에너지 발전기의 기 설정된 기간 동안의 발전량 및 마이크로 그리드 내 전력 수요에 따라 상기 마이크로 그리드로 공급되는 수전량을 예측하는 예측부 및, 상기 예측된 발전량과 수전량에 근거하여 덕 커브(Duck Curve)의 영향이 반영된 덕 커브 수전량을 예측하고, 예측된 덕 커브 수전량에 근거하여 상기 전력 저장부의 방전 시점 및 방전 시간을 결정하며, 상기 방전 시점으로부터, 상기 방전 시간 동안 상기 전력 저장부의 방전이 이루어지도록 상기 ESS의 충방전 스케줄을 수정하고, 수정된 ESS의 충방전 스케줄에 따라 상기 충방전부를 제어하는 제어부를 포함하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 제어부는, 상기 예측된 덕 커브 수전량 및 상기 방전 시간에 근거하여, 상기 덕 커브의 영향에 따른 선로 과부하를 방지하기 위한 방전량을 산출하고, 상기 방전량 이상의 전력이 상기 방전 시점 이전에 충전되도록 상기 ESS의 충방전 스케줄을 수정하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 제어부는, 전기 요율이 가장 낮은 경부하 시간대에 이루어지는 충전을 통해 충전되는 전력량보다 상기 방전량에 대응하는 전력량이 더 큰 경우, 중부하 시간대에 충전이 더 이루어지도록 상기 ESS 충방전 스케줄을 수정하고, 상기 경부하 시간대에 충전된 전력량과 상기 중부하 시간대에 더 충전된 전력량의 합보다, 상기 방전량에 대응하는 전력량이 더 큰 경우, 최대 부하 시간대에 충전이 더 이루어지도록 상기 ESS 충방전 스케줄을 수정하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 제어부는, 상기 예측된 발전량이 상기 예측된 수전량보다 작아지는 시점을 상기 방전 시점으로 결정하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 재생 에너지는, 태양광 발전 에너지이며, 상기 예측부는, 상기 기 설정된 기간에 대한 일사량을 포함하는 기상 정보를 획득하고, 획득된 기상 정보와, 상기 태양광 발전을 위해 상기 마이크로 그리드 내에 구비된 태양광 발전기 각각의 태양광 판넬 개수 및 각 판넬의 면적, 그리고 각 판넬의 변환 효율에 근거하여 태양광 에너지의 발전량을 산출하며, 상기 기 설정된 기간 동안의 일사량 변화에 근거하여 태양광 발전량의 변화를 예측하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 예측부는, 자동 기상 관측 시스템(Automatic Weather System)에 저장된 일사량의 이력에 근거하여 상기 기 설정된 시간 동안의 일사량 변화를 예측하고, 예측한 일사량 변화에 근거하여 태양광 발전량의 변화를 예측하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 기 설정된 시간은, 오전 0시를 기준으로 24시간임을 특징으로 한다.
일 실시 예에 있어서, 상기 제어부는, 상기 방전 시점으로부터 소정 시간 경과된 시점 사이의 시간에 따라 산출되는 상기 전력 저장부의 방전량과, 상기 방전 시점으로부터 상기 소정 시간 경과된 시점에서, 상기 덕 커브 수전량으로부터 예측된 수전량의 차이에 근거하여 상기 방전 시간을 결정하는 것을 특징으로 한다.
일 실시 예에 있어서, 전력 발전소로부터 상기 마이크로 그리드로 공급되는 전력인 수전량을 실측 및 실측된 수전량의 증가 속도를 산출하는 수전량 산출부를 더 구비하고, 상기 제어부는, 상기 수전량 산출부로부터 산출되는 수전량 증가 속도에 근거하여 상기 전력 저장부의 방전을 제어하는 것을 특징으로 한다.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 본 발명의 실시 예에 따른 ESS(Energy Storage System) 제어 방법은, 기 설정된 기간 동안의 상기 ESS의 충방전 스케줄을 생성하는 제1 단계와, 마이크로 그리드(micro grid) 내에 구비된 재생 에너지 발전기의 상기 기 설정된 기간 동안의 발전량을 예측하는 제2 단계와, 상기 기 설정된 기간 동안의 마이크로 그리드 내 전력 수요에 따라 상기 마이크로 그리드로 공급되는 수전량을 예측하는 제3 단계와, 상기 예측된 발전량과 수전량에 근거하여 덕 커브(Duck Curve)의 영향이 반영된 덕 커브 수전량을 예측하는 제4 단계와, 상기 예측된 덕 커브 수전량에 근거하여 상기 ESS의 방전 시점 및 방전 시간을 결정하는 제5 단계와, 상기 방전 시점으로부터, 상기 방전 시간 동안 상기 ESS의 방전이 이루어지도록 상기 ESS의 충방전 스케줄을 수정하는 제6 단계 및, 상기 수정된 ESS의 충방전 스케줄에 따라 상기 ESS의 충전 또는 방전을 제어하는 제7 단계를 포함하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 제6 단계는, 상기 예측된 덕 커브 수전량 및 상기 방전 시간에 근거하여, 상기 덕 커브의 영향에 따른 선로 과부하를 방지하기 위한 방전 요구량을 산출하는 제6-1 단계 및, 상기 방전 요구량 이상의 전력이 상기 방전 시점 이전에 충전되도록 상기 ESS의 충방전 스케줄을 수정하는 제6-2 단계를 더 포함하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 방전 시점은, 상기 예측된 발전량이 상기 예측된 수전량보다 작아지는 시점임을 특징으로 한다.
일 실시 예에 있어서, 상기 재생 에너지는, 태양광 발전 에너지이며, 상기 제2 단계는, 상기 기 설정된 기간에 대한 일사량을 포함하는 기상 정보를 획득하는 제2-1 단계와, 획득된 기상 정보와, 상기 태양광 발전을 위해 상기 마이크로 그리드 내에 구비된 적어도 하나의 태양광 발전기에 대한 정보를 획득하는 제2-2 단계와, 획득된 태양광 발전기에 대한 정보 및 상기 기상 정보에 근거하여 태양광 발전량을 산출하는 제2-3 단계 및, 상기 기 설정된 기간 동안의 일사량 변화에 근거하여 상기 태양광 발전량의 변화를 예측하는 제2-4 단계를 포함하고, 상기 태양광 발전기에 대한 정보는, 상기 태양광 발전기 각각의 태양광 판넬 개수, 각 판넬의 면적, 그리고 각 판넬의 변환 효율에 대한 정보를 포함하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 제6-1 단계는, 상기 방전 시점으로부터 소정 시간 경과된 시점 사이의 시간에 따른 상기 ESS의 방전량을 산출하는 a 단계와, 방전 시점으로부터 상기 소정 시간 경과된 시점에서, 상기 덕 커브 수전량으로부터 예측되는 수전량의 차이를 산출하는 b 단계와, 상기 산출된 차이가 기 설정된 크기 이상인지 여부를 판단하는 c 단계 및, 상기 c 단계의 판단 결과에 따라, 상기 a 단계 내지 c 단계를 더 수행하거나, 또는 상기 a 단계 내지 c 단계가 반복될 때마다 산출된 상기 ESS의 방전량을 합산하여 상기 방전 요구량을 산출하는 d 단계를 더 포함하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 제7 단계는, 전력 발전소로부터 상기 마이크로 그리드로 공급되는 전력인 수전량을 실측하는 제7-1 단계와, 실측된 수전량의 증가 속도를 산출하는 제7-2 단계 및, 산출된 수전량 증가 속도에 근거하여 상기 ESS의 방전 여부를 결정하는 제7-3 단계를 더 포함하는 것을 특징으로 한다.
본 발명의 실시 예들 중 적어도 하나에 의하면, 본 발명은 덕 커브를 미리 예측한 결과에 근거하여, 수전량의 급증이 예측되는 시점에 ESS에 충전된 전력이 방전되도록 함으로써, 전력 수요량의 일부를 ESS에서 방전되는 전력으로 대체하여 전력 발전소에서 공급되는 전력량을 줄일 수 있다. 이에 따라 수전량의 증가 속도가 둔화됨으로써 전력 공급 선로의 과부하가 해소될 수 있다는 효과가 있다.
또한 본 발명의 실시 예들 중 적어도 하나에 의하면, 본 발명은 상기 덕 커브를 예측한 결과에 근거하여 ESS에서 전력이 방전될 시점을 예측 및 요구되는 ESS 방전량을 예측할 수 있다. 그리고 예측된 방전 시점 및 방전량에 따라 ESS 스케줄을 수정함으로서, 예측된 ESS의 방전 시점 이전에 ESS가 충분한 전력량을 확보할 수 있도록 한다는 효과가 있다.
도 1은 재생 에너지에 따른 덕 커브(Duck Curve) 현상을 설명하기 위한 개념도이다.
도 2는 본 발명의 실시 예에 따른 ESS를 설명하기 위한 블록도이다.
도 3은 본 발명의 실시 예에 따른 ESS에서 선로 과부하를 방지하기 위해 전력을 방전하도록 제어되는 동작 과정을 도시한 흐름도이다.
도 4는, 도 3의 동작 과정 중, 재생 에너지의 발전량을 예측하는 동작 과정을 도시한 흐름도이다.
도 5는, 본 발명의 실시 예에 따른 ESS에서 선로 과부하를 방지하기 위해 요구되는 ESS 방전량을 산출하는 동작 과정을 도시한 흐름도이다.
도 6은, 본 발명의 실시 예에 따른 ESS에서 실측되는 수전량에 따라 ESS의 방전을 제어하는 동작 과정을 도시한 흐름도이다.
도 7은 본 발명의 실시 예에 따른 ESS 방전으로 인해 선로 과부하가 방지되는 효과를 도시한 예시도이다.
도 2는 본 발명의 실시 예에 따른 ESS를 설명하기 위한 블록도이다.
도 3은 본 발명의 실시 예에 따른 ESS에서 선로 과부하를 방지하기 위해 전력을 방전하도록 제어되는 동작 과정을 도시한 흐름도이다.
도 4는, 도 3의 동작 과정 중, 재생 에너지의 발전량을 예측하는 동작 과정을 도시한 흐름도이다.
도 5는, 본 발명의 실시 예에 따른 ESS에서 선로 과부하를 방지하기 위해 요구되는 ESS 방전량을 산출하는 동작 과정을 도시한 흐름도이다.
도 6은, 본 발명의 실시 예에 따른 ESS에서 실측되는 수전량에 따라 ESS의 방전을 제어하는 동작 과정을 도시한 흐름도이다.
도 7은 본 발명의 실시 예에 따른 ESS 방전으로 인해 선로 과부하가 방지되는 효과를 도시한 예시도이다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다." 또는 "포함한다." 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에 개시된 기술을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 기술의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예들을 상세히 설명하도록 한다.
도 2는 본 발명의 실시 예에 따른 ESS(1)를 설명하기 위한 블록도이다.
도 2를 참조하여 살펴보면, 본 발명이 실시 예에 따른 ESS(1)는 제어부(100)와 상기 제어부(100)에 연결되는 충방전부(110), 스케줄링부(120), 통신부(130), 예측부(140), 메모리(150)를 포함하여 구성될 수 있다. 그리고 수전량 산출부(160)를 더 포함할 수 있다.
먼저 충방전부(110)는 전력이 저장되는 전력 저장부(112)를 포함할 수 있다. 예를 들어 전력 저장부(112)는 적어도 하나의 셀을 포함하는 배터리(Battery)를 포함할 수 있다. 상기 충방전부(110)는 전력 발전소로부터 마이크로 그리드에 공급되는 전력 공급 선로에 연결될 수 있으며, 상기 전력 공급 선로로부터 전력을 입력받아 상기 전력 저장부(112)를 충전할 수 있다. 또한 상기 충방전부(110)는 전력 저장부(112)에 저장된 전력을 전력 공급 선로를 통해 방전하여, 전력 공급 선로에 연결된 마이크로 그리드의 부하들에게 상기 전력 발전소로부터 공급되는 전력을 대신하여 전력을 공급할 수 있다. 이러한 충방전부(110)의 충방전 동작은, 상기 제어부(100)에 의해 제어될 수 있다.
스케줄링부(120)는 기 설정된 기간 동안의 상기 ESS의 충방전 스케줄을 생성할 수 있다. 이를 위해 스케줄링부(120)는 하기와 같은 규칙들에 근거하여 상기 ESS 충방전 스케줄을 생성할 수 있다.
1) ESS의 최대 충전량은 ESS에 설정된 최대 용량을 초과할 수 없다.
2) ESS의 방전량은 ESS의 축전된 전력량을 초과할 수 없으며, ESS에 축전된 전력량은 ESS에 설정된 최대 용량 이하로 결정된다.
3) ESS는 경부하 시간대에 충전을 수행하며, 그 외 시간대에 방전한다. ESS는 최대 부하 시간대에 우선적으로 방전하며, 최대 부하 시간대에 방전하고 남은 전력량이 있는 경우에 한하여 중부하 시간대에 방전한다.
여기서 경부하 시간대는 하루 중 전기 요율이 가장 낮은 시간대를, 최대 부하 시간대는 하루 중 전기 요율이 가장 높은 시간대를 의미할 수 있다. 그리고 상기 중부하 시간대는 전기 요율이 경부하 시간대의 전기 요율보다 높고, 최대 부하 시간대의 전기 요율보다 낮은 시간대를 의미할 수 있다.
한편 각 시간대 별 전기 요율은 전기 발전소에서 제공하는 전기 요율표에 근거하여 결정될 수 있다. 또한 전기 요율은 계절별 및 요일별로 달라질 수 있다. 일 예로 토요일의 경우 최대 부하 시간대가 지정되지 않을 수 있으며, 일요일(또는 공휴일)의 경우 모든 시간대가 경부하 시간대로 지정될 수 있다.
통신부(130)는 ESS(1)와 무선 통신 시스템 사이, ESS(1)와 적어도 하나의 기 설정된 외부 서버 사이의 무선 통신을 가능하게 하는 하나 이상의 모듈을 포함할 수 있다. 여기서 상기 외부 서버는 재생 에너지의 발전량을 예측하기 위한 정보를 제공하기 위한 서버일 수 있다. 예를 들어 상기 외부 서버는 일사량이나, 온도, 또는 습도를 포함하는 기상 정보를 제공하는 서버일 수 있다.
예측부(140)는 마이크로 그리드 내에 구비된 재생 에너지 발전소의 발전량을 예측할 수 있다. 이를 위해 예측부(140)는 마이크로 그리드 내에 구비된 재생 에너지 발전기에 대한 세부 정보에 근거하여 재생 에너지의 발전량을 예측할 수 있다. 일 예로 예측부(140)는 태양광 에너지의 경우 마이크로 그리드 내에 구비된 각 태양광 발전소의 광 판넬의 크기 및 개수에 따른 광 판넬 면적, 그리고 각 광 판넬의 고유 특성에 따른 변환 효율, 그리고 일사량 등의 기상 조건에 근거하여 태양광 에너지의 발전량을 예측할 수 있다. 이를 위해 예측부(140)는 발전량 예측부(142)를 구비할 수 있다.
한편 예측부(140)는 마이크로 그리드 내의 전력 수요량을 예측할 수 있다. 이를 위해 상기 예측부(140)는 다수의 회귀 계수와 독립 변소 및 오차항을 포함하는 다중 선형 회귀 모델(multiple linear regression model)을 이용할 수 있다. 이러한 전력 수요량의 예측을 위해 예측부(140)는 전력 수요 예측부(144)를 구비할 수 있다.
한편 메모리(150)는 제어부(100)의 동작을 위한 프로그램 또는 어플리케이션을 저장할 수 있고, 입/출력되는 데이터들(예를 들어, 예측된 재생 에너지의 발전량, 예측된 전력 수요량, ESS 스케줄, ESS의 용량에 관련된 데이터, 또는 전기 요율에 관련된 데이터 등)을 임시 저장할 수도 있다.
그리고 제어부(100)는 ESS의 전반적인 동작을 제어하며, 연결된 각 구성요소를 제어할 수 있다. 먼저 제어부(100)는 ESS를 제어하여 기 설정된 기간 동안의 ESS 스케줄을 생성할 수 있다. 이 경우 생성되는 ESS 스케줄은 통상적인 경우와 마찬가지로, 각 시간대에 할당된 전기 요율 및 ESS의 용량에 근거하여 결정될 수 있다. 여기서 상기 기 설정된 기간은 하루(오전 0시를 기준으로 24시간) 일 수 있다.
그리고 제어부(100)는 예측부(140)를 제어하여 상기 기 설정된 기간 동안의 재생 에너지 발전량과 전력 수요량을 예측할 수 있다. 그리고 예측된 재생 에너지 발전량과 전력 수요량에 근거하여 상기 기 설정된 기간 동안의 덕 커브를 예측할 수 있다. 그리고 예측된 덕 커브에 근거하여 ESS의 방전이 필요한 시점을 결정할 수 있다. 여기서 상기 ESS의 방전이 필요한 시점은 예측된 재생 에너지의 발전량보다 예측된 전력 수요량의 크기가 더 커지는 시점일 수 있다.
그리고 제어부(100)는 예측된 덕 커브에 근거하여 요구되는 ESS의 방전량을 산출할 수 있다. 일 예로 제어부(100)는 상기 결정된 ESS 방전 시점으로부터 ESS 방전이 유지되는 시간 및 ESS의 시간당 방전량에 근거하여 요구되는 ESS 방전량을 산출할 수 있다.
한편 ESS 방전량이 산출되면, 제어부(100)는 상기 결정된 ESS 방전 시점 이전까지 상기 요구되는 ESS 방전량이 전력 저장부(112)에 충전될 수 있도록 현재 생성된 ESS 충방전 스케줄을 수정하도록 스케줄링부(120)를 제어할 수 있다.
여기서 제어부(100)는 먼저 경부하 시간대에 이루어지는 충전을 통해, ESS 방전 시점 이전에 상기 요구되는 ESS 방전량이 확보될 수 있도록 ESS 충방전 스케줄을 수정할 수 있다. 그리고 경부하 시간대에 이루어진 충전으로부터 상기 요구되는 ESS 방전량이 확보되지 않는 경우라면, 중부하 시간대에 충전이 더 이루어지도록 ESS 충방전 스케줄을 수정할 수 있다. 그리고 중부하 시간대에 이루어진 충전에도 불구하고 상기 요구되는 ESS 방전량이 확보되지 않는 경우라면, 최대 부하 시간대에 충전이 더 이루어지도록 ESS 충방전 스케줄을 수정할 수 있다. 즉, 상기 요구되는 ESS 방전량이, 전기 요율이 보다 저렴한 시간대에 이루어지는 충전을 통해 확보될 수 있도록 ESS 스케쥴을 수정할 수 있다.
그리고 제어부(100)는 수정된 ESS 충방전 스케줄을 통해 ESS의 충방전 동작을 제어할 수 있다.
한편 제어부(100)는 수전량 산출부(160)를 통해 전력 발전소로부터 마이크로 그리드로 공급되는 전력량, 즉 수전량을 실측할 수도 있음은 물론이다. 일 예로 수전량 산출부(160)는 단위 시간당 전력 발전소로부터 마이크로 그리드로 공급되는 전력량을 산출할 수 있다. 이러한 경우 제어부(100)는 수전량 산출부(160)를 통해 전력 발전소로부터 마이크로 그리드로 공급되는 전력량을 실측하고 실측된 결과에 근거하여 상기 전력 저장부(112)에 저장된 전력 에너지의 방전 여부를 결정할 수도 있다.
도 3은 이러한 본 발명의 실시 예에 따른 ESS(1)에서 선로 과부하를 방지하기 위해 전력을 방전하도록 제어되는 동작 과정을 도시한 흐름도이다.
도 3을 참조하여 살펴보면, 본 발명의 실시 예에 따른 ESS(1)의 제어부(100)는 먼저 기 설정된 기간 동안의 ESS 충방전 스케줄을 생성할 수 있다(S300). 여기서 상기 기 설정된 기간은 오전 0시를 기준으로 하는 24시간, 즉 하루 일 수 있다. 그리고 상기 S300 단계는 통상적인 ESS 스케줄링 방식에 따라 각 시간대에 할당된 전기 요율 및, ESS의 용량에 근거하여 ESS의 충방전 스케줄을 생성할 수 있다.
그리고 제어부(100)는 상기 기 설정된 기간 동안의 재생 에너지 발전량을 예측할 수 있다(S302). 이를 위해 제어부(100)는 적어도 하나의 기 설정된 외부 서버로부터 기상 정보를 수집할 수 있으며, 수집된 기상 정보에 근거하여 재생 에너지의 발전량을 예측할 수 있다. 이 경우 제어부(100)는 기 설정된 단위 시간마다의 재생 에너지 발전량을 예측할 수 있다. 이 경우 도 1의 하단 도면에서 보이고 있는 제2 그래프(20)와 같은 재생 발전량 예측 그래프가 생성될 수 있다.
또한 제어부(100)는 상기 기 설정된 기간 동안의 전력 수요량을 예측할 수 있다(S304). 이를 위해 제어부(100)는 하기 수학식 1에서 도시한 바와 같이 적어도 하나의 회귀 변수와 독립 변수 그리고 오차항을 포함하는 다중 선형 회귀 모델을 생성할 수 있다.
상기 수학식 1에서 보이고 있는 바와 같은 다중 회귀 모델은, 독립변수 x가 2개 이상인 경우 종속변수 y가 선형이라는 가정하에서 종속변수와 독립변수들의 관계를 설명하는 알고리즘일 수 있다. 그리고 단순 선형 회귀 모델을 다중으로 일반화한 형태일 수 있다.
여기서 종속변수는 이전의 전력 수요 패턴일 수 있으며, 회귀계수는 미래의 전력부하 패턴을 예측하기 위해 설정될 수 있다. 이때 온도, 습도 등 전력부하 예측값과 상관계수가 높은 데이터변수가 적용될 수 있으며, 이 경우 전력 수요량의 예측도가 보다 높아질 수 있다. 상기 전력 수요량의 예측 결과 도 1의 상단 도면에서 보이고 있는 제1 그래프(10)와 같은 전력 수요량 예측 그래프가 생성될 수 있다.
한편 상기 S302 단계와 S304 단계에서 각각 기 설정된 기간 동안의 재생 에너지 발전량 및 전력 수요량이 예측되면, 제어부(100)는 예측된 재생 에너지 발전량 및 전력 수요량에 근거하여 상기 기 설정된 기간 동안의 덕 커브(Duck Curve)를 예측할 수 있다. 즉, 도 1의 하단 도면에서 도시된 제3 그래프(30)와 같이 덕 커브 현상이 반영된 시간별 수전량의 변화가 예측될 수 있다. 이하 상기 덕 커브 현상이 반영된 시간별 수전량의 변화 예측 결과를 덕 커브 예측 결과라고 하기로 한다.
그러면 제어부(100)는 상기 덕 커브 예측 결과로부터 선로 과부하가 예상되는 시점을 추정할 수 있다. 일 예로 상기 선로 과부하가 추정되는 시점은, 예측된 재생 에너지 발전량의 크기가 예측된 전력 수요량의 크기보다 작아지는 시점일 수 있다. 그러면 제어부(100)는 상기 선로 과부하가 추정되는 시점을 ESS의 방전이 필요한 시점으로 판단할 수 있다. 즉 상기 선로 과부하가 추정되는 시점을 ESS 방전 시점으로 결정할 수 있다(S308).
한편 ESS 방정 시점이 결정되면, 제어부(100)는 예측된 방전 시간에 근거하여 요구되는 ESS 방전량을 산출할 수 있다(S310). 여기서 산출되는 ESS 방전량은 덕 커브의 영향에 따른 선로 과부하를 방지하기 위해 요구되는 방전량일 수 있다.
한편 상기 방전 시간은 일정 시간일 수 있다. 이 경우 제어부(100)는 단위 시간당 방전량에 상기 일정 시간을 곱하여 상기 요구되는 ESS 방전량을 산출할 수 있다.
여기서 제어부(100)는 예측된 전력 수요량에 근거하여 보다 정확하게 방전 시간을 예측하고 예측된 방전 시간에 따라 상기 요구되는 ESS 방전량을 산출할 수도 있다.
예를 들어 수전량은 ESS의 방전량에 따라 감소될 수 있다. 부하에서 요구되는 전력을 ESS에서 대신 공급하기 때문이다. 그리고 ESS 방전 시의 예측되는 수전량은 그 시점에서 요구되는 전력량, 즉 전력 수요량일 수 있다. 이는 ESS 방전 시점의 경우 재생 에너지의 공급이 거의 없으므로 전력 발전소에서 공급되는 전력이 수요에 따라 공급되기 때문이다.
따라서 ESS 방전이 이루어지는 경우, 전력 수요량의 감소에 따라 요구되는 수전량이 감소될 수 있다. 그러므로 ESS 방전량과 그 시점의 전력 수요량의 차이에 따라 ESS의 방전이 필요한지 여부가 판단될 수 있다.
즉 방전된 ESS의 총 방전량과 상기 해당 시점에서의 전력 수요량의 차이가 기 설정된 크기 미만인 경우 제어부(100)는 ESS의 방전이 필요없는 것으로 판단할 수 있으며, 이 경우 ESS의 방전이 중단될 수 있다. 따라서 제어부(100)는 ESS의 방전이 종료되는 시점을 예측할 수 있으며, 예측된 ESS 방전 종료 시점과 상기 결정된 ESS 방전 시점 사이의 시간에 근거하여 ESS 방전 시간을 예측할 수 있다. 그리고 예측된 ESS 방전 시간에 따라 상기 요구되는 ESS의 방전량을 정확하게 산출할 수 있다. 이하 ESS 방전 시간의 예측에 따라 상기 요구되는 ESS 방전량을 산출하는 동작 과정을, 하기 도 5를 참조하여 보다 자세하게 살펴보기로 한다.
상기 S310 단계에서 요구되는 ESS 방전량이 산출되면, 제어부(100)는 상기 S308 단계에서 결정된 ESS 방전 시점 전까지 상기 요구되는 ESS 방전량이 확보될 수 있도록 ESS 충방전 스케줄을 수정할 수 있다(S312). 이 경우 제어부(100)는 스케줄링부(120)를 제어하여, 보다 전기 요율이 저렴한 시간대가 다른 시간대에 우선하여 충전이 이루어지도록 ESS 충방전 스케줄을 수정할 수 있다.
이에 경부하 시간대를 이용하여 상기 ESS 방전 시점 이전까지 상기 요구되는 ESS 방전량 이상의 전력이 전력 저장부(112)에 충전되도록, ESS 충방전 스케줄을 수정할 수 있다. 그리고 상기 ESS 방전 시점 이전까지 상기 요구되는 ESS 방전량이 충전되지 않는 경우에는, 중부하 시간대에 충전이 더 이루어지도록 ESS 충방전 스케줄을 수정할 수 있다. 만약 중부하 시간대에 충전을 더 수행하는 경우에도 상기 ESS 방전 시점 이전까지 상기 요구되는 ESS 방전량이 확보되지 못하는 경우에는, 최대 부하 시간대에 충전이 더 이루어지도록 ESS 충방전 스케줄을 수정할 수 있다.
그리고 제어부(100)는, 수정된 ESS 충방전 스케줄에 따라 전력 저장부(112)에 전력이 충전되거나 또는 전력 저장부(112) 저장된 전력이 방전되도록 충방전부(110)를 제어할 수 있다. 이에 따라 본 발명의 실시 예에 따른 ESS는 재생 에너지의 공급이 중단되는 시점에 ESS를 통한 전력을 부하에 공급함으로써, 전력 발전소로부터 공급되는 전력이 급격하게 증가하는 것을 방지할 수 있다. 이에 전력 공급 선로가 과부하되는 것을 방지할 수 있다.
한편 상술한 도 3의 재생 에너지는 다양한 에너지들을 의미할 수 있다. 일 예로 상기 재생 에너지는 태양광 발전을 통한 태양광 에너지일 수 있으며, 지열 발전을 통한 지열 에너지일 수 있다. 또는 풍력을 이용한 풍력 에너지나 수력을 이용한 수력 에너지일 수 있다.
이러한 재생 에너지 중, 태양광 에너지는 획득이 쉽고 다른 재생 에너지에 비하여 에너지의 획득률이 일정(일출 ~ 일몰 동안 획득 가능)하다는 장점이 있기에 다른 재생 에너지에 비하여 사용되는 비중이 높다. 이에 따라 상기 도 3의 동작 과정 중, 재생 에너지의 발전량을 예측하는 S302 단계는 태양광 에너지의 발전량을 예측하는 단계일 수 있다.
도 4는, 이처럼 재생 에너지로서 태양광 에너지가 사용되는 경우, 태양광 에너지의 발전량을 예측하는 동작 과정을 도시한 흐름도이다.
도 4를 참조하여 살펴보면, 먼저 제어부(100)는 상기 기 설정된 기간에 대한 기상 정보를 수집할 수 있다(S400). 일 예로 제어부(100)는 통신부(130)를 통해 기상 예보 정보를 제공하는 적어도 하나의 외부 서버에 접속할 수 있으며, 접속된 외부 서버로부터 재생 에너지의 발전과 관련된 기상 정보들을 획득할 수 있다. 일 예로 태양광 발전의 경우, 제어부(100)는 S400 단계에서, 상기 기 설정된 기간에 대해 예보된 일사량, 온도, 습도 등에 대한 정보를 획득할 수 있다.
그리고 제어부(100)는 메모리(150)로부터 마이크로 그리드 내에 구비된 적어도 하나의 태양광 발전기에 대한 정보를 획득할 수 있다(S402). 이 경우 획득되는 정보들은 각 태양광 발전기에 구비된 태양광 판넬의 개수 및 각 판넬의 면적, 그리고 각 판넬의 변환 효율에 대한 정보일 수 있다. 그리고 이러한 정보들은 메모리(150)에 저장된 것일 수 있다.
그러면 제어부(100)는 상기 S400 단계에서 획득된 기상 정보, 즉 일사량과 온도 및 습도, 그리고 획득된 태양광 판넬의 개수와 각 판넬의 면적, 및 태양광 판넬의 변환 효율에 근거하여, 일사량에 따른 태양광 발전량을 예측할 수 있다(S404). 그리고 상기 기 설정된 기간 중 일사량의 변화에 따라 태양광 발전량의 변화를 예측할 수 있다. 따라서 도 1의 하단 도면에서 보이고 있는 제2 그래프(20)와 같은 태양광 에너지 발전량이 예측될 수 있다.
한편 제어부(100)는 기상 정보의 획득을 위해 자동 기상 관측 시스템(Automatic Weather System)에 저장된 정보를 이용할 수도 있음은 물론이다. 이 경우 자동 기상 관측 시스템에서 측정된 일사량의 이력을 회귀 분석하여 일사량의 변화를 예측하고, 예측된 일사량의 변화에 근거하여 상기 기 설정된 기간 동안의 태양광 에너지 발전량의 변화를 예측할 수 있다.
한편 상술한 설명에 따르면 본 발명의 실시 예에 따른 ESS(1)의 제어부(100)는 예측된 전력 수요량에 근거하여 보다 정확하게 방전 시간을 예측하고 예측된 방전 시간에 따라 요구되는 ESS 방전량을 산출할 수 있음을 설명한 바 있다. 도 5는 이러한 경우에 ESS 방전량을 산출하는 동작 과정을 도시한 흐름도이다.
도 5를 참조하여 살펴보면, 본 발명의 실시 예에 따른 ESS(1)의 제어부(100)는 먼저 상기 도 3의 S308 단계에서 결정된 ESS 방전 시점을 기준 시점으로 설정할 수 있다(S500).
그리고 제어부(100)는 현재 설정된 기준 시점으로부터 소정 시간 경과된 시간 동안의 ESS 방전량을 산출할 수 있다(S502). 이 경우 상기 소정 시간 동안의 ESS 방전량은 단위 시간동안의 방전량에 상기 소정 시간을 곱하여 산출될 수 있다.
그리고 제어부(100)는, 상기 도 3의 S306 단계에서 예측된 덕 커브에 근거하여, 현재 설정된 기준 시점으로부터 소정 시간이 경과된 시점에 대응하는 전력 수요 예측량을 검출할 수 있다. 그리고 검출된 전력 수요 예측량과 상기 S502 단계에서 산출된 ESS 방전량의 차이를 산출할 수 있다(S504). 이 경우 산출되는 차이는 상기 기준 시점으로부터 소정 시간이 경과한 시점에서 더 요구되는 ESS 방전량이 될 수 있다.
따라서 제어부(100)는 상기 S504 단계에서 산출된 차이가 기 설정된 크기 이상인지 여부를 체크할 수 있다(S506). 그리고 체크 결과 산출된 차이가 기 설정된 크기 이상인 경우라면 제어부(100)는, 현재 설정된 기준 시점에 상기 소정 시간을 더하여 기준 시점을 갱신할 수 있다(S506). 즉 상기 S506 단계에서 제어부(100)는 현재 설정된 기준 시점으로부터 상기 소정 시간만큼 경과된 시점을 새로운 기준 시점으로 설정할 수 있다.
기준 시점이 갱신되면 제어부(100)는 갱신된 기준 시점에 근거하여 상기 S502 단계 내지 S504 단계에 이르는 과정을 다시 수행할 수 있다. 그리고 S506 단계에서 상기 갱신된 기준 시점으로부터 소정 시간이 경과한 시점에 대응하는 전력 수요 예측량과, 상기 소정 시간동안의 ESS 방전량의 차이가 기 설정된 크기 이상인지 여부를 다시 체크할 수 있다. 그리고 체크 결과 산출된 차이가 기 설정된 크기 미만인 경우라면, 제어부(100)는 ESS의 방전이 불필요한 것으로 판단할 수 있다.
따라서 제어부(100)는 현재 시점, 즉 상기 갱신된 기준 시점으로부터 소정 시간이 경과한 시점을 ESS 방전이 종료되는 시점으로 결정할 수 있다. 이에 따라 제어부(100)는, 상기 도 3의 S308 단계에서 결정된 ESS 방전 시점으로부터 현재 시점, 즉 상기 갱신된 기준 시점으로부터 소정 시간이 경과한 시점까지 산출된 ESS 방전량을 모두 합산할 수 있으며, 합산된 ESS 방전량을 상기 S310 단계에서 덕 커브의 영향에 따른 선로 과부하를 방지하기 위해 요구되는 ESS 방전량으로 결정할 수 있다(S508).
한편 본 발명의 실시 예에 따른 ESS(1)는 결정된 ESS 방전 시점과 예측된 ESS 방전 요구량(요구되는 ESS 방전량)이 반영된 ESS 충방전 스케줄에 따라 전력 저장부(112)에 전력을 충전하거나 또는 방전하도록 충방전부를 제어할 수있다. 이에 본 발명의 실시 예에 따른 ESS(1)는 상기 ESS 방전 시점 이전에 ESS 방전 요구량을 확보하고, 예측된 ESS 방전 시간동안 방전이 이루어지도록 상기 충방전부(110)를 제어할 수 있다.
그러나 이와는 달리, 본 발명의 실시 예에 따른 ESS(1)는 전력 발전소로부터 공급되는 전력을 실측하여, 실측된 결과에 따라 ESS의 방전을 제어할 수도 있음은 물론이다. 이를 위해 본 발명의 실시 예에 따른 ESS(1)는 전력 발전소로부터 공급되는 전력을 실측하기 위한 수전량 산출부(160)를 구비할 수 있으며, 수전량 산출부(160)의 산출 결과에 따라 전력 저장부(112)의 전력 방전을 제어할 수 있다.
도 6은, 이처럼 본 발명의 실시 예에 따른 ESS(1)에서 실측되는 수전량에 따라 방전을 제어하는 동작 과정을 도시한 흐름도이다.
도 6을 참조하여 살펴보면, 본 발명의 실시 예에 따른 ESS(1)의 제어부(100)는 상기 도 3에서 도시한 수정된 ESS 스케줄에 따라, 예측된 ESS 방전 요구량 이상의 전력이 충전된 상태에서, 도 3의 S308 단계에서 결정된 ESS 방전 시점에 따른 방전을 시작할 수 있다(S600).
이처럼 ESS(1)의 방전이 시작되면, 제어부(100)는 일정 시간 동안의 수전량을 산출할 수 있다(S602). 일 예로 상기 일정 시간동안의 수전량은 단위 시간 동안 전력 발전소로부터 마이크로 그리드로 공급되는 전력량에 상기 일정 시간을 곱하여 산출될 수 있다.
그러면 제어부(100)는 상기 S602 단계에서 산출된 수전량에 근거하여 상기 일정 시간 동안의 수전량 증가 속도를 산출할 수 있다(S604). 여기서 상기 수전량 증가 속도는 일정 시간 동안 공급된 수전량의 변화로서 X축을 시간으로 하고 Y축을 수전량의 크기로 가정할 때, 도 1의 하단에서 도시된 제3 그래프(30)의 일정 시간동안의 기울기를 의미할 수 있다.
한편 S604 단계에서 수전량 증가 속도가 산출되면, 제어부(100)는 산출된 수전량 증가 속도가 기 설정된 속도 이상인 지 여부를 판단할 수 있다(S606). 그리고 판단 결과 수전량 증가 속도가 기 설정된 속도 미만인 경우라면 S608 단계로 진행하여 ESS 방전을 중단할 수 있다. 그리고 제어부(100)는 상기 S602 단계 및 S604 단계를 재수행하고, S606 단계에서 상기 일정 시간 동안의 수전량 증가 속도를 다시 산출할 수 있다.
그리고 S606 단계의 판단 결과, 산출된 수전량 증가 속도가 기 설정된 속도 이상인 경우라면, 제어부(100)는 S600 단계로 진행하여 ESS 방전을 시작할 수 있다. 그리고 상기 S602 단계 및 S604 단계를 재수행하고, S606 단계에서 상기 일정 시간 동안의 수전량 증가 속도를 다시 산출할 수 있다.
한편 ESS 방전이 이루어지고 있는 상태에서 상기 S600 단계가 다시 시작되는 경우, 제어부(100)는 ESS가 방전되는 상태를 계속 유지할 수 있다. 따라서 ESS 방전이 이루어지고 있는 상태에서, 상기 S602 단계 및 S604 단계에서 산출된 수전량 증가 속도가 기 설정된 속도 이상인 경우라면, S600 단계로 진행하여 ESS 방전 상태를 유지하고 다시 S602 단계와 S604 단계를 진행할 수 있다.
또한 ESS 방전이 중단된 상태에서 상기 S608 단계가 다시 시작되는 경우, 제어부(100)는 ESS 방전이 중단된 상태를 계속 유지할 수 있다. 따라서 ESS 방전이 중단된 상태에서, 상기 S602 단계 및 S604 단계에서 산출된 수전량 증가 속도가 기 설정된 속도 미만인 경우라면, S608 단계로 진행하여 ESS 방전이 중단된 상태를 유지하고 다시 S602 단계와 S604 단계를 진행할 수 있다.
이에 따라 본 발명의 실시 예에 따른 ESS(1)의 제어부(100)는 기 설정된 ESS 스케줄에 따라 방전이 설정된 경우라도, 실측된 수전량에 따라 방전 여부를 결정할 수 있다. 이에 ESS를 통해 방전되는 전력의 양을 최소화할 수 있다.
한편 도 7은 본 발명의 실시 예에 따른 ESS 방전으로 인해 선로 과부하가 방지되는 효과를 도시한 예시도이다.
먼저 도 7의 상단 도면은, 도 1의 하단 도면에서 설명한 바와 같이, 재생 에너지의 공급이 종료될 때에 발생하는 덕 커브 현상으로 인해 선로 과부하 발생 구간(32)에서 수전량의 급격한 증가가 발생되는 경우의 예를 도시한 것이다. 이 경우 짧은 시간동안에 전력 공급량이 크게 증가하므로, 전력 공급 선로가 과부하되고 그에 따른 단락 및 정전의 위험이 있다.
이에 비하여 도 7의 하단 도면은 본 발명의 실시 예에 따른 ESS(1)를 통해, 재생 에너지의 공급량이 전력 수요량보다 작아지는 시점에 ESS(1)에 저장된 전력이 부하로 공급되는 경우의 예를 보이고 있는 것이다.
이 경우 도 7의 수전량 그래프(700)의 제2 구간(710)에서 보이고 있는 바와 같이, 재생 에너지의 공급이 이루어지고 있는 중에도 ESS(1)의 충전으로 인한 전력이 더 소비될 수 있다.
그러나 본 발명의 경우 재생 에너지의 공급량이 전력 수요량보다 작아지는 시점에서 ESS(1)에 충전된 전력이 방전되어 부하들에게 공급될 수 있으며, 그에 따른 전력량만큼 전력 발전소에서 마이크로 그리드로 공급되는 수전량이 감소될 수 있다. 즉 수전량 그래프(700)의 제1 구간(710)에서 보이고 있는 바와 같이 전력 발전소에 요구되는 전력의 수요량이 감소될 수 있다. 이에 따라 도 7의 하단 도면에서 보이고 있는 바와 같이, 재생 에너지의 공급량이 전력 수요량보다 작아지는 시점을 전후로(선로 과부하 발생 구간(32)) 수전량의 증가 속도가 크게 둔화될 수 있으며, 이에 따라 전력 발전소로부터 마이크로 그리드로 전력이 공급되는 전력 공급 선로의 과부하가 방지될 수 있다.
한편 상술한 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시할 수 있다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 상기 컴퓨터는 단말기의 제어부(180)를 포함할 수도 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
1 : ESS 100 : 제어부
110 : 충방전부 112 : 전력 저장부
120 : 스케줄링부 130 : 통신부
140 : 예측부 142 : 발전량 예측부
144 : 전력 수요 예측부 150 : 메모리
160 : 수전량 산출부
110 : 충방전부 112 : 전력 저장부
120 : 스케줄링부 130 : 통신부
140 : 예측부 142 : 발전량 예측부
144 : 전력 수요 예측부 150 : 메모리
160 : 수전량 산출부
Claims (15)
- ESS(Energy Storage System)에 있어서,
전력이 저장되는 전력 저장부를 포함하며, 상기 전력 저장부의 충전 및 방전을 수행하는 충방전부;
상기 ESS의 충방전 스케줄을 생성하는 스케줄링부;
마이크로 그리드(micro grid) 내에 구비된 재생 에너지 발전기의 기 설정된 기간 동안의 발전량 및 마이크로 그리드 내 전력 수요에 따라 상기 마이크로 그리드로 공급되는 수전량을 예측하는 예측부; 및,
상기 예측된 발전량과 수전량에 근거하여 덕 커브(Duck Curve)의 영향이 반영된 덕 커브 수전량을 예측하고, 예측된 덕 커브 수전량에 근거하여 상기 전력 저장부의 방전 시점 및 방전 시간을 결정 및, 상기 덕 커브 수전량과 상기 방전 시간에 근거하여 선로 과부하를 방지하기 위한 방전량을 산출하고,
상기 방전량 이상의 전력이 상기 방전 시점 이전에 충전되도록 상기 ESS의 충방전 스케줄을 수정하고, 수정된 ESS의 충방전 스케줄에 따라 상기 충방전부를 제어하는 제어부를 포함하며,
상기 제어부는,
전기 요율이 가장 낮은 경부하 시간대에 이루어지는 충전을 통해 충전되는 전력량보다 상기 방전량에 대응하는 전력량이 더 큰 경우, 중부하 시간대에 충전이 더 이루어지도록 상기 ESS의 충방전 스케줄을 수정하고,
상기 경부하 시간대에 충전된 전력량과 상기 중부하 시간대에 더 충전된 전력량의 합보다, 상기 방전량에 대응하는 전력량이 더 큰 경우, 최대 부하 시간대에 충전이 더 이루어지도록 상기 ESS 충방전 스케줄을 수정하는 것을 특징으로 하는 ESS. - 삭제
- 삭제
- 제1항에 있어서, 상기 제어부는,
상기 예측된 발전량이 상기 예측된 수전량보다 작아지는 시점을 상기 방전 시점으로 결정하는 것을 특징으로 하는 ESS. - 제1항에 있어서,
상기 재생 에너지는,
태양광 발전 에너지이며,
상기 예측부는,
상기 기 설정된 기간에 대한 일사량을 포함하는 기상 정보를 획득하고, 획득된 기상 정보와, 상기 태양광 발전을 위해 상기 마이크로 그리드 내에 구비된 태양광 발전기 각각의 태양광 판넬 개수 및 각 판넬의 면적, 그리고 각 판넬의 변환 효율에 근거하여 태양광 에너지의 발전량을 산출하며,
상기 기 설정된 기간 동안의 일사량 변화에 근거하여 태양광 발전량의 변화를 예측하는 것을 특징으로 하는 ESS. - 제5항에 있어서, 상기 예측부는,
자동 기상 관측 시스템(Automatic Weather System)에 저장된 일사량의 이력에 근거하여 상기 기 설정된 시간 동안의 일사량 변화를 예측하고, 예측한 일사량 변화에 근거하여 태양광 발전량의 변화를 예측하는 것을 특징으로 하는 ESS. - 제1항에 있어서, 상기 기 설정된 시간은,
오전 0시를 기준으로 24시간임을 특징으로 하는 ESS. - 제1항에 있어서, 상기 제어부는,
상기 방전 시점으로부터 소정 시간 경과된 시점 사이의 시간에 따라 산출되는 상기 전력 저장부의 방전량과,
상기 방전 시점으로부터 상기 소정 시간 경과된 시점에서, 상기 덕 커브 수전량으로부터 예측된 수전량의 차이에 근거하여 상기 방전 시간을 결정하는 것을 특징으로 하는 ESS. - 제1항에 있어서,
전력 발전소로부터 상기 마이크로 그리드로 공급되는 전력인 수전량을 실측 및 실측된 수전량의 증가 속도를 산출하는 수전량 산출부를 더 구비하고,
상기 제어부는,
상기 수전량 산출부로부터 산출되는 수전량 증가 속도에 근거하여 상기 전력 저장부의 방전을 제어하는 것을 특징으로 하는 ESS. - ESS(Energy Storage System)를 제어하는 방법에 있어서,
기 설정된 기간 동안의 상기 ESS의 충방전 스케줄을 생성하는 제1 단계;
마이크로 그리드(micro grid) 내에 구비된 재생 에너지 발전기의 상기 기 설정된 기간 동안의 발전량을 예측하는 제2 단계;
상기 기 설정된 기간 동안의 마이크로 그리드 내 전력 수요에 따라 상기 마이크로 그리드로 공급되는 수전량을 예측하는 제3 단계;
상기 예측된 발전량과 수전량에 근거하여 덕 커브(Duck Curve)의 영향이 반영된 덕 커브 수전량을 예측하는 제4 단계;
상기 예측된 덕 커브 수전량에 근거하여 상기 ESS의 방전 시점 및 방전 시간을 결정 및, 상기 덕 커브 수전량과 상기 방전 시간에 근거하여 선로 과부하를 방지하기 위한 방전량을 산출하는 제5 단계;
상기 방전 시점으로부터, 상기 방전 시간 동안 상기 ESS의 방전이 이루어지도록 상기 ESS의 충방전 스케줄을 수정하는 제6 단계; 및,
상기 수정된 ESS의 충방전 스케줄에 따라 상기 ESS의 충전 또는 방전을 제어하는 제7 단계를 포함하며,
상기 제6 단계는,
전기 요율이 가장 낮은 경부하 시간대에 이루어지는 충전을 통해 충전되는 전력량보다 상기 방전량에 대응하는 전력량이 더 큰 경우, 중부하 시간대에 충전이 더 이루어지도록 상기 ESS의 충방전 스케줄을 수정하고,
상기 경부하 시간대에 충전된 전력량과 상기 중부하 시간대에 더 충전된 전력량의 합보다, 상기 방전량에 대응하는 전력량이 더 큰 경우, 최대 부하 시간대에 충전이 더 이루어지도록 상기 ESS의 충방전 스케줄을 수정하는 제6-1 단계를 더 포함하는 것을 특징으로 하는 ESS 제어 방법. - 삭제
- 제10항에 있어서, 상기 방전 시점은,
상기 예측된 발전량이 상기 예측된 수전량보다 작아지는 시점임을 특징으로 하는 ESS 제어 방법. - 제10항에 있어서,
상기 재생 에너지는,
태양광 발전 에너지이며,
상기 제2 단계는,
상기 기 설정된 기간에 대한 일사량을 포함하는 기상 정보를 획득하는 제2-1 단계;
획득된 기상 정보와, 상기 태양광 발전을 위해 상기 마이크로 그리드 내에 구비된 적어도 하나의 태양광 발전기에 대한 정보를 획득하는 제2-2 단계;
획득된 태양광 발전기에 대한 정보 및 상기 기상 정보에 근거하여 태양광 발전량을 산출하는 제2-3 단계; 및,
상기 기 설정된 기간 동안의 일사량 변화에 근거하여 상기 태양광 발전량의 변화를 예측하는 제2-4 단계를 포함하고,
상기 태양광 발전기에 대한 정보는,
상기 태양광 발전기 각각의 태양광 판넬 개수, 각 판넬의 면적, 그리고 각 판넬의 변환 효율에 대한 정보를 포함하는 것을 특징으로 하는 ESS 제어 방법. - 제10항에 있어서, 상기 제5 단계는,
상기 방전 시점으로부터 소정 시간 경과된 시점 사이에 상기 ESS에서 방전되는 방전 전력량을 산출하는 a 단계;
방전 시점으로부터 상기 소정 시간 경과된 시점에서, 상기 덕 커브 수전량으로부터 예측되는 수전량의 차이를 산출하는 b 단계;
상기 산출된 차이가 기 설정된 크기 이상인지 여부를 판단하는 c 단계; 및,
상기 c 단계의 판단 결과에 따라, 상기 a 단계 내지 c 단계를 더 수행하거나, 또는 상기 a 단계 내지 c 단계가 반복될 때마다 산출된 상기 방전 전력량을 합산하여 상기 방전량을 산출하는 d 단계를 더 포함하는 것을 특징으로 하는 ESS 제어 방법. - 제10항에 있어서, 상기 제7 단계는,
전력 발전소로부터 상기 마이크로 그리드로 공급되는 전력인 수전량을 실측하는 제7-1 단계;
실측된 수전량의 증가 속도를 산출하는 제7-2 단계; 및,
산출된 수전량 증가 속도에 근거하여 상기 ESS의 방전 여부를 결정하는 제7-3 단계를 더 포함하는 것을 특징으로 하는 ESS 제어 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190041557A KR102636457B1 (ko) | 2019-04-09 | 2019-04-09 | Ess 및 그 ess의 제어 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190041557A KR102636457B1 (ko) | 2019-04-09 | 2019-04-09 | Ess 및 그 ess의 제어 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200119125A KR20200119125A (ko) | 2020-10-19 |
KR102636457B1 true KR102636457B1 (ko) | 2024-02-15 |
Family
ID=73042833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190041557A KR102636457B1 (ko) | 2019-04-09 | 2019-04-09 | Ess 및 그 ess의 제어 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102636457B1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220036650A (ko) | 2020-09-16 | 2022-03-23 | 주식회사 엘지화학 | 광변조 디바이스의 제조 방법 |
KR102359003B1 (ko) * | 2020-11-11 | 2022-02-08 | 김원국 | 외장형 ess 데이터 통합기록 장치 및 통합 관제/위험분석 서버 |
KR102536500B1 (ko) * | 2021-05-20 | 2023-05-26 | 숭실대학교 산학협력단 | 특수일의 전력수요예측 장치 및 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011142330A1 (ja) * | 2010-05-11 | 2011-11-17 | 三洋電機株式会社 | 電力供給システム |
JP2014150641A (ja) * | 2013-01-31 | 2014-08-21 | Toshiba Corp | エネルギー管理システム、エネルギー管理方法、プログラムおよびサーバ装置 |
JP2016119728A (ja) | 2013-04-12 | 2016-06-30 | 三菱電機株式会社 | 蓄電池の充放電制御装置および蓄電池の充放電制御方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101712944B1 (ko) * | 2015-04-29 | 2017-03-07 | 서강대학교산학협력단 | 에너지 저장 장치의 충방전 스케줄링 장치 및 방법 |
-
2019
- 2019-04-09 KR KR1020190041557A patent/KR102636457B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011142330A1 (ja) * | 2010-05-11 | 2011-11-17 | 三洋電機株式会社 | 電力供給システム |
JP2014150641A (ja) * | 2013-01-31 | 2014-08-21 | Toshiba Corp | エネルギー管理システム、エネルギー管理方法、プログラムおよびサーバ装置 |
JP2016119728A (ja) | 2013-04-12 | 2016-06-30 | 三菱電機株式会社 | 蓄電池の充放電制御装置および蓄電池の充放電制御方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20200119125A (ko) | 2020-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5095495B2 (ja) | 電力システムおよびその制御方法 | |
KR101834061B1 (ko) | 신재생 에너지 연계형 ess의 전력 관리 방법 | |
US8571720B2 (en) | Supply-demand balance controller | |
KR20210125040A (ko) | 재생 가능 발전 자원 및 전하 저장 장치의 통합 제어 | |
CN100380774C (zh) | 功率控制装置、发电系统以及电力网系统 | |
KR102636457B1 (ko) | Ess 및 그 ess의 제어 방법 | |
JP5507582B2 (ja) | 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム | |
JP2015507913A (ja) | 発電能力の適応化とエネルギー貯蔵装置サイズの決定 | |
CN104220945A (zh) | 用于从分布式能源调度电能的方法和设备 | |
KR102396712B1 (ko) | 에너지 관리 시스템 및 이를 이용한 전력 구매 비용 결정 방법 | |
EP3264554B1 (en) | Power management device, power management system, and power management method | |
WO2011118766A1 (ja) | 電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラム | |
KR102240556B1 (ko) | 이종 신재생 에너지원이 결합된 발전원 운영 방법 및 장치 | |
JP7032474B2 (ja) | 配電制御システム、配電制御方法 | |
CN104600731A (zh) | 一种用于光储系统削峰填谷的储能系统控制方法 | |
KR102503382B1 (ko) | 신재생 에너지 발전설비와 연계된 에너지 저장시스템의 관리방법 | |
WO2014112454A1 (ja) | 制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置 | |
JP2014064449A (ja) | 電力管理装置、電力管理方法及びプログラム | |
WO2015059873A1 (ja) | 電力管理装置 | |
KR102028368B1 (ko) | 계층적 능동부하 투입 제어 장치 및 방법 | |
JP5948217B2 (ja) | 集合住宅における燃料電池の稼動制御方法および稼動制御システム | |
Nakamura et al. | Green base station using robust solar system and high performance lithium ion battery for next generation wireless network (5G) and against mega disaster | |
KR102593444B1 (ko) | 에너지 저장 장치가 마련된 변전 시스템, 에너지 저장 장치 용량 산정 방법 및 이를 위한 제어 장치 | |
JP2018157647A (ja) | 情報処理装置、蓄電装置の制御装置、電力システム、制御方法及びプログラム | |
KR102284303B1 (ko) | 이종 분산 자원과 연계된 에너지 저장 장치의 지능형 운전 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |